1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
|
/*
* drivers/mtd/nand/cs553x_nand.c
*
* (C) 2005, 2006 Red Hat Inc.
*
* Author: David Woodhouse <dwmw2@infradead.org>
* Tom Sylla <tom.sylla@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Overview:
* This is a device driver for the NAND flash controller found on
* the AMD CS5535/CS5536 companion chipsets for the Geode processor.
* mtd-id for command line partitioning is cs553x_nand_cs[0-3]
* where 0-3 reflects the chip select for NAND.
*
*/
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/mtd/partitions.h>
#include <asm/msr.h>
#include <asm/io.h>
#define NR_CS553X_CONTROLLERS 4
#define MSR_DIVIL_GLD_CAP 0x51400000 /* DIVIL capabilitiies */
#define CAP_CS5535 0x2df000ULL
#define CAP_CS5536 0x5df500ULL
/* NAND Timing MSRs */
#define MSR_NANDF_DATA 0x5140001b /* NAND Flash Data Timing MSR */
#define MSR_NANDF_CTL 0x5140001c /* NAND Flash Control Timing */
#define MSR_NANDF_RSVD 0x5140001d /* Reserved */
/* NAND BAR MSRs */
#define MSR_DIVIL_LBAR_FLSH0 0x51400010 /* Flash Chip Select 0 */
#define MSR_DIVIL_LBAR_FLSH1 0x51400011 /* Flash Chip Select 1 */
#define MSR_DIVIL_LBAR_FLSH2 0x51400012 /* Flash Chip Select 2 */
#define MSR_DIVIL_LBAR_FLSH3 0x51400013 /* Flash Chip Select 3 */
/* Each made up of... */
#define FLSH_LBAR_EN (1ULL<<32)
#define FLSH_NOR_NAND (1ULL<<33) /* 1 for NAND */
#define FLSH_MEM_IO (1ULL<<34) /* 1 for MMIO */
/* I/O BARs have BASE_ADDR in bits 15:4, IO_MASK in 47:36 */
/* MMIO BARs have BASE_ADDR in bits 31:12, MEM_MASK in 63:44 */
/* Pin function selection MSR (IDE vs. flash on the IDE pins) */
#define MSR_DIVIL_BALL_OPTS 0x51400015
#define PIN_OPT_IDE (1<<0) /* 0 for flash, 1 for IDE */
/* Registers within the NAND flash controller BAR -- memory mapped */
#define MM_NAND_DATA 0x00 /* 0 to 0x7ff, in fact */
#define MM_NAND_CTL 0x800 /* Any even address 0x800-0x80e */
#define MM_NAND_IO 0x801 /* Any odd address 0x801-0x80f */
#define MM_NAND_STS 0x810
#define MM_NAND_ECC_LSB 0x811
#define MM_NAND_ECC_MSB 0x812
#define MM_NAND_ECC_COL 0x813
#define MM_NAND_LAC 0x814
#define MM_NAND_ECC_CTL 0x815
/* Registers within the NAND flash controller BAR -- I/O mapped */
#define IO_NAND_DATA 0x00 /* 0 to 3, in fact */
#define IO_NAND_CTL 0x04
#define IO_NAND_IO 0x05
#define IO_NAND_STS 0x06
#define IO_NAND_ECC_CTL 0x08
#define IO_NAND_ECC_LSB 0x09
#define IO_NAND_ECC_MSB 0x0a
#define IO_NAND_ECC_COL 0x0b
#define IO_NAND_LAC 0x0c
#define CS_NAND_CTL_DIST_EN (1<<4) /* Enable NAND Distract interrupt */
#define CS_NAND_CTL_RDY_INT_MASK (1<<3) /* Enable RDY/BUSY# interrupt */
#define CS_NAND_CTL_ALE (1<<2)
#define CS_NAND_CTL_CLE (1<<1)
#define CS_NAND_CTL_CE (1<<0) /* Keep low; 1 to reset */
#define CS_NAND_STS_FLASH_RDY (1<<3)
#define CS_NAND_CTLR_BUSY (1<<2)
#define CS_NAND_CMD_COMP (1<<1)
#define CS_NAND_DIST_ST (1<<0)
#define CS_NAND_ECC_PARITY (1<<2)
#define CS_NAND_ECC_CLRECC (1<<1)
#define CS_NAND_ECC_ENECC (1<<0)
static void cs553x_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
while (unlikely(len > 0x800)) {
memcpy_fromio(buf, this->IO_ADDR_R, 0x800);
buf += 0x800;
len -= 0x800;
}
memcpy_fromio(buf, this->IO_ADDR_R, len);
}
static void cs553x_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
while (unlikely(len > 0x800)) {
memcpy_toio(this->IO_ADDR_R, buf, 0x800);
buf += 0x800;
len -= 0x800;
}
memcpy_toio(this->IO_ADDR_R, buf, len);
}
static unsigned char cs553x_read_byte(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
return readb(this->IO_ADDR_R);
}
static void cs553x_write_byte(struct mtd_info *mtd, u_char byte)
{
struct nand_chip *this = mtd->priv;
int i = 100000;
while (i && readb(this->IO_ADDR_R + MM_NAND_STS) & CS_NAND_CTLR_BUSY) {
udelay(1);
i--;
}
writeb(byte, this->IO_ADDR_W + 0x801);
}
static void cs553x_hwcontrol(struct mtd_info *mtd, int cmd,
unsigned int ctrl)
{
struct nand_chip *this = mtd->priv;
void __iomem *mmio_base = this->IO_ADDR_R;
if (ctrl & NAND_CTRL_CHANGE) {
unsigned char ctl = (ctrl & ~NAND_CTRL_CHANGE ) ^ 0x01;
writeb(ctl, mmio_base + MM_NAND_CTL);
}
if (cmd != NAND_CMD_NONE)
cs553x_write_byte(mtd, cmd);
}
static int cs553x_device_ready(struct mtd_info *mtd)
{
struct nand_chip *this = mtd->priv;
void __iomem *mmio_base = this->IO_ADDR_R;
unsigned char foo = readb(mmio_base + MM_NAND_STS);
return (foo & CS_NAND_STS_FLASH_RDY) && !(foo & CS_NAND_CTLR_BUSY);
}
static void cs_enable_hwecc(struct mtd_info *mtd, int mode)
{
struct nand_chip *this = mtd->priv;
void __iomem *mmio_base = this->IO_ADDR_R;
writeb(0x07, mmio_base + MM_NAND_ECC_CTL);
}
static int cs_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
{
uint32_t ecc;
struct nand_chip *this = mtd->priv;
void __iomem *mmio_base = this->IO_ADDR_R;
ecc = readl(mmio_base + MM_NAND_STS);
ecc_code[1] = ecc >> 8;
ecc_code[0] = ecc >> 16;
ecc_code[2] = ecc >> 24;
return 0;
}
static struct mtd_info *cs553x_mtd[4];
static int __init cs553x_init_one(int cs, int mmio, unsigned long adr)
{
int err = 0;
struct nand_chip *this;
struct mtd_info *new_mtd;
printk(KERN_NOTICE "Probing CS553x NAND controller CS#%d at %sIO 0x%08lx\n", cs, mmio?"MM":"P", adr);
if (!mmio) {
printk(KERN_NOTICE "PIO mode not yet implemented for CS553X NAND controller\n");
return -ENXIO;
}
/* Allocate memory for MTD device structure and private data */
new_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
if (!new_mtd) {
printk(KERN_WARNING "Unable to allocate CS553X NAND MTD device structure.\n");
err = -ENOMEM;
goto out;
}
/* Get pointer to private data */
this = (struct nand_chip *)(&new_mtd[1]);
/* Initialize structures */
memset(new_mtd, 0, sizeof(struct mtd_info));
memset(this, 0, sizeof(struct nand_chip));
/* Link the private data with the MTD structure */
new_mtd->priv = this;
new_mtd->owner = THIS_MODULE;
/* map physical address */
this->IO_ADDR_R = this->IO_ADDR_W = ioremap(adr, 4096);
if (!this->IO_ADDR_R) {
printk(KERN_WARNING "ioremap cs553x NAND @0x%08lx failed\n", adr);
err = -EIO;
goto out_mtd;
}
this->cmd_ctrl = cs553x_hwcontrol;
this->dev_ready = cs553x_device_ready;
this->read_byte = cs553x_read_byte;
this->read_buf = cs553x_read_buf;
this->write_buf = cs553x_write_buf;
this->chip_delay = 0;
this->ecc.mode = NAND_ECC_HW;
this->ecc.size = 256;
this->ecc.bytes = 3;
this->ecc.hwctl = cs_enable_hwecc;
this->ecc.calculate = cs_calculate_ecc;
this->ecc.correct = nand_correct_data;
/* Enable the following for a flash based bad block table */
this->bbt_options = NAND_BBT_USE_FLASH;
this->options = NAND_NO_AUTOINCR;
/* Scan to find existence of the device */
if (nand_scan(new_mtd, 1)) {
err = -ENXIO;
goto out_ior;
}
new_mtd->name = kasprintf(GFP_KERNEL, "cs553x_nand_cs%d", cs);
cs553x_mtd[cs] = new_mtd;
goto out;
out_ior:
iounmap(this->IO_ADDR_R);
out_mtd:
kfree(new_mtd);
out:
return err;
}
static int is_geode(void)
{
/* These are the CPUs which will have a CS553[56] companion chip */
if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD &&
boot_cpu_data.x86 == 5 &&
boot_cpu_data.x86_model == 10)
return 1; /* Geode LX */
if ((boot_cpu_data.x86_vendor == X86_VENDOR_NSC ||
boot_cpu_data.x86_vendor == X86_VENDOR_CYRIX) &&
boot_cpu_data.x86 == 5 &&
boot_cpu_data.x86_model == 5)
return 1; /* Geode GX (née GX2) */
return 0;
}
static const char *part_probes[] = { "cmdlinepart", NULL };
static int __init cs553x_init(void)
{
int err = -ENXIO;
int i;
uint64_t val;
int mtd_parts_nb = 0;
struct mtd_partition *mtd_parts = NULL;
/* If the CPU isn't a Geode GX or LX, abort */
if (!is_geode())
return -ENXIO;
/* If it doesn't have the CS553[56], abort */
rdmsrl(MSR_DIVIL_GLD_CAP, val);
val &= ~0xFFULL;
if (val != CAP_CS5535 && val != CAP_CS5536)
return -ENXIO;
/* If it doesn't have the NAND controller enabled, abort */
rdmsrl(MSR_DIVIL_BALL_OPTS, val);
if (val & PIN_OPT_IDE) {
printk(KERN_INFO "CS553x NAND controller: Flash I/O not enabled in MSR_DIVIL_BALL_OPTS.\n");
return -ENXIO;
}
for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
rdmsrl(MSR_DIVIL_LBAR_FLSH0 + i, val);
if ((val & (FLSH_LBAR_EN|FLSH_NOR_NAND)) == (FLSH_LBAR_EN|FLSH_NOR_NAND))
err = cs553x_init_one(i, !!(val & FLSH_MEM_IO), val & 0xFFFFFFFF);
}
/* Register all devices together here. This means we can easily hack it to
do mtdconcat etc. if we want to. */
for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
if (cs553x_mtd[i]) {
/* If any devices registered, return success. Else the last error. */
mtd_parts_nb = parse_mtd_partitions(cs553x_mtd[i], part_probes, &mtd_parts, 0);
if (mtd_parts_nb > 0)
printk(KERN_NOTICE "Using command line partition definition\n");
mtd_device_register(cs553x_mtd[i], mtd_parts,
mtd_parts_nb);
err = 0;
}
}
return err;
}
module_init(cs553x_init);
static void __exit cs553x_cleanup(void)
{
int i;
for (i = 0; i < NR_CS553X_CONTROLLERS; i++) {
struct mtd_info *mtd = cs553x_mtd[i];
struct nand_chip *this;
void __iomem *mmio_base;
if (!mtd)
continue;
this = cs553x_mtd[i]->priv;
mmio_base = this->IO_ADDR_R;
/* Release resources, unregister device */
nand_release(cs553x_mtd[i]);
kfree(cs553x_mtd[i]->name);
cs553x_mtd[i] = NULL;
/* unmap physical address */
iounmap(mmio_base);
/* Free the MTD device structure */
kfree(mtd);
}
}
module_exit(cs553x_cleanup);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
MODULE_DESCRIPTION("NAND controller driver for AMD CS5535/CS5536 companion chip");
|