summaryrefslogtreecommitdiff
path: root/drivers/misc/habanalabs/common/firmware_if.c
blob: 6f3692bf5efffb8c338cfd06bb46fbf6ea9199f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
// SPDX-License-Identifier: GPL-2.0

/*
 * Copyright 2016-2019 HabanaLabs, Ltd.
 * All Rights Reserved.
 */

#include "habanalabs.h"
#include "../include/common/hl_boot_if.h"

#include <linux/firmware.h>
#include <linux/slab.h>

#define FW_FILE_MAX_SIZE	0x1400000 /* maximum size of 20MB */
/**
 * hl_fw_load_fw_to_device() - Load F/W code to device's memory.
 *
 * @hdev: pointer to hl_device structure.
 * @fw_name: the firmware image name
 * @dst: IO memory mapped address space to copy firmware to
 * @src_offset: offset in src FW to copy from
 * @size: amount of bytes to copy (0 to copy the whole binary)
 *
 * Copy fw code from firmware file to device memory.
 *
 * Return: 0 on success, non-zero for failure.
 */
int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
				void __iomem *dst, u32 src_offset, u32 size)
{
	const struct firmware *fw;
	const void *fw_data;
	size_t fw_size;
	int rc;

	rc = request_firmware(&fw, fw_name, hdev->dev);
	if (rc) {
		dev_err(hdev->dev, "Firmware file %s is not found!\n", fw_name);
		goto out;
	}

	fw_size = fw->size;
	if ((fw_size % 4) != 0) {
		dev_err(hdev->dev, "Illegal %s firmware size %zu\n",
			fw_name, fw_size);
		rc = -EINVAL;
		goto out;
	}

	dev_dbg(hdev->dev, "%s firmware size == %zu\n", fw_name, fw_size);

	if (fw_size > FW_FILE_MAX_SIZE) {
		dev_err(hdev->dev,
			"FW file size %zu exceeds maximum of %u bytes\n",
			fw_size, FW_FILE_MAX_SIZE);
		rc = -EINVAL;
		goto out;
	}

	if (size - src_offset > fw_size) {
		dev_err(hdev->dev,
			"size to copy(%u) and offset(%u) are invalid\n",
			size, src_offset);
		rc = -EINVAL;
		goto out;
	}

	if (size)
		fw_size = size;

	fw_data = (const void *) fw->data;

	memcpy_toio(dst, fw_data + src_offset, fw_size);

out:
	release_firmware(fw);
	return rc;
}

int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode)
{
	struct cpucp_packet pkt = {};

	pkt.ctl = cpu_to_le32(opcode << CPUCP_PKT_CTL_OPCODE_SHIFT);

	return hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt,
						sizeof(pkt), 0, NULL);
}

int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
				u16 len, u32 timeout, u64 *result)
{
	struct hl_hw_queue *queue = &hdev->kernel_queues[hw_queue_id];
	struct cpucp_packet *pkt;
	dma_addr_t pkt_dma_addr;
	u32 tmp, expected_ack_val;
	int rc = 0;

	pkt = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev, len,
								&pkt_dma_addr);
	if (!pkt) {
		dev_err(hdev->dev,
			"Failed to allocate DMA memory for packet to CPU\n");
		return -ENOMEM;
	}

	memcpy(pkt, msg, len);

	mutex_lock(&hdev->send_cpu_message_lock);

	if (hdev->disabled)
		goto out;

	if (hdev->device_cpu_disabled) {
		rc = -EIO;
		goto out;
	}

	/* set fence to a non valid value */
	pkt->fence = UINT_MAX;

	rc = hl_hw_queue_send_cb_no_cmpl(hdev, hw_queue_id, len, pkt_dma_addr);
	if (rc) {
		dev_err(hdev->dev, "Failed to send CB on CPU PQ (%d)\n", rc);
		goto out;
	}

	if (hdev->asic_prop.fw_app_security_map &
			CPU_BOOT_DEV_STS0_PKT_PI_ACK_EN)
		expected_ack_val = queue->pi;
	else
		expected_ack_val = CPUCP_PACKET_FENCE_VAL;

	rc = hl_poll_timeout_memory(hdev, &pkt->fence, tmp,
				(tmp == expected_ack_val), 1000,
				timeout, true);

	hl_hw_queue_inc_ci_kernel(hdev, hw_queue_id);

	if (rc == -ETIMEDOUT) {
		dev_err(hdev->dev, "Device CPU packet timeout (0x%x)\n", tmp);
		hdev->device_cpu_disabled = true;
		goto out;
	}

	tmp = le32_to_cpu(pkt->ctl);

	rc = (tmp & CPUCP_PKT_CTL_RC_MASK) >> CPUCP_PKT_CTL_RC_SHIFT;
	if (rc) {
		dev_err(hdev->dev, "F/W ERROR %d for CPU packet %d\n",
			rc,
			(tmp & CPUCP_PKT_CTL_OPCODE_MASK)
						>> CPUCP_PKT_CTL_OPCODE_SHIFT);
		rc = -EIO;
	} else if (result) {
		*result = le64_to_cpu(pkt->result);
	}

out:
	mutex_unlock(&hdev->send_cpu_message_lock);

	hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, len, pkt);

	return rc;
}

int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type)
{
	struct cpucp_packet pkt;
	u64 result;
	int rc;

	memset(&pkt, 0, sizeof(pkt));

	pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ <<
				CPUCP_PKT_CTL_OPCODE_SHIFT);
	pkt.value = cpu_to_le64(event_type);

	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
						0, &result);

	if (rc)
		dev_err(hdev->dev, "failed to unmask RAZWI IRQ %d", event_type);

	return rc;
}

int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
		size_t irq_arr_size)
{
	struct cpucp_unmask_irq_arr_packet *pkt;
	size_t total_pkt_size;
	u64 result;
	int rc;

	total_pkt_size = sizeof(struct cpucp_unmask_irq_arr_packet) +
			irq_arr_size;

	/* data should be aligned to 8 bytes in order to CPU-CP to copy it */
	total_pkt_size = (total_pkt_size + 0x7) & ~0x7;

	/* total_pkt_size is casted to u16 later on */
	if (total_pkt_size > USHRT_MAX) {
		dev_err(hdev->dev, "too many elements in IRQ array\n");
		return -EINVAL;
	}

	pkt = kzalloc(total_pkt_size, GFP_KERNEL);
	if (!pkt)
		return -ENOMEM;

	pkt->length = cpu_to_le32(irq_arr_size / sizeof(irq_arr[0]));
	memcpy(&pkt->irqs, irq_arr, irq_arr_size);

	pkt->cpucp_pkt.ctl = cpu_to_le32(CPUCP_PACKET_UNMASK_RAZWI_IRQ_ARRAY <<
						CPUCP_PKT_CTL_OPCODE_SHIFT);

	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) pkt,
						total_pkt_size, 0, &result);

	if (rc)
		dev_err(hdev->dev, "failed to unmask IRQ array\n");

	kfree(pkt);

	return rc;
}

int hl_fw_test_cpu_queue(struct hl_device *hdev)
{
	struct cpucp_packet test_pkt = {};
	u64 result;
	int rc;

	test_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
					CPUCP_PKT_CTL_OPCODE_SHIFT);
	test_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);

	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &test_pkt,
						sizeof(test_pkt), 0, &result);

	if (!rc) {
		if (result != CPUCP_PACKET_FENCE_VAL)
			dev_err(hdev->dev,
				"CPU queue test failed (%#08llx)\n", result);
	} else {
		dev_err(hdev->dev, "CPU queue test failed, error %d\n", rc);
	}

	return rc;
}

void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
						dma_addr_t *dma_handle)
{
	u64 kernel_addr;

	kernel_addr = gen_pool_alloc(hdev->cpu_accessible_dma_pool, size);

	*dma_handle = hdev->cpu_accessible_dma_address +
		(kernel_addr - (u64) (uintptr_t) hdev->cpu_accessible_dma_mem);

	return (void *) (uintptr_t) kernel_addr;
}

void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
					void *vaddr)
{
	gen_pool_free(hdev->cpu_accessible_dma_pool, (u64) (uintptr_t) vaddr,
			size);
}

int hl_fw_send_heartbeat(struct hl_device *hdev)
{
	struct cpucp_packet hb_pkt = {};
	u64 result;
	int rc;

	hb_pkt.ctl = cpu_to_le32(CPUCP_PACKET_TEST <<
					CPUCP_PKT_CTL_OPCODE_SHIFT);
	hb_pkt.value = cpu_to_le64(CPUCP_PACKET_FENCE_VAL);

	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &hb_pkt,
						sizeof(hb_pkt), 0, &result);

	if ((rc) || (result != CPUCP_PACKET_FENCE_VAL))
		rc = -EIO;

	return rc;
}

static int fw_read_errors(struct hl_device *hdev, u32 boot_err0_reg,
		u32 cpu_security_boot_status_reg)
{
	u32 err_val, security_val;

	/* Some of the firmware status codes are deprecated in newer f/w
	 * versions. In those versions, the errors are reported
	 * in different registers. Therefore, we need to check those
	 * registers and print the exact errors. Moreover, there
	 * may be multiple errors, so we need to report on each error
	 * separately. Some of the error codes might indicate a state
	 * that is not an error per-se, but it is an error in production
	 * environment
	 */
	err_val = RREG32(boot_err0_reg);
	if (!(err_val & CPU_BOOT_ERR0_ENABLED))
		return 0;

	if (err_val & CPU_BOOT_ERR0_DRAM_INIT_FAIL)
		dev_err(hdev->dev,
			"Device boot error - DRAM initialization failed\n");
	if (err_val & CPU_BOOT_ERR0_FIT_CORRUPTED)
		dev_err(hdev->dev, "Device boot error - FIT image corrupted\n");
	if (err_val & CPU_BOOT_ERR0_TS_INIT_FAIL)
		dev_err(hdev->dev,
			"Device boot error - Thermal Sensor initialization failed\n");
	if (err_val & CPU_BOOT_ERR0_DRAM_SKIPPED)
		dev_warn(hdev->dev,
			"Device boot warning - Skipped DRAM initialization\n");

	if (err_val & CPU_BOOT_ERR0_BMC_WAIT_SKIPPED) {
		if (hdev->bmc_enable)
			dev_warn(hdev->dev,
				"Device boot error - Skipped waiting for BMC\n");
		else
			err_val &= ~CPU_BOOT_ERR0_BMC_WAIT_SKIPPED;
	}

	if (err_val & CPU_BOOT_ERR0_NIC_DATA_NOT_RDY)
		dev_err(hdev->dev,
			"Device boot error - Serdes data from BMC not available\n");
	if (err_val & CPU_BOOT_ERR0_NIC_FW_FAIL)
		dev_err(hdev->dev,
			"Device boot error - NIC F/W initialization failed\n");
	if (err_val & CPU_BOOT_ERR0_SECURITY_NOT_RDY)
		dev_warn(hdev->dev,
			"Device boot warning - security not ready\n");
	if (err_val & CPU_BOOT_ERR0_SECURITY_FAIL)
		dev_err(hdev->dev, "Device boot error - security failure\n");
	if (err_val & CPU_BOOT_ERR0_EFUSE_FAIL)
		dev_err(hdev->dev, "Device boot error - eFuse failure\n");
	if (err_val & CPU_BOOT_ERR0_PLL_FAIL)
		dev_err(hdev->dev, "Device boot error - PLL failure\n");

	security_val = RREG32(cpu_security_boot_status_reg);
	if (security_val & CPU_BOOT_DEV_STS0_ENABLED)
		dev_dbg(hdev->dev, "Device security status %#x\n",
				security_val);

	if (err_val & ~CPU_BOOT_ERR0_ENABLED)
		return -EIO;

	return 0;
}

int hl_fw_cpucp_info_get(struct hl_device *hdev,
			u32 cpu_security_boot_status_reg,
			u32 boot_err0_reg)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct cpucp_packet pkt = {};
	void *cpucp_info_cpu_addr;
	dma_addr_t cpucp_info_dma_addr;
	u64 result;
	int rc;

	cpucp_info_cpu_addr =
			hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
					sizeof(struct cpucp_info),
					&cpucp_info_dma_addr);
	if (!cpucp_info_cpu_addr) {
		dev_err(hdev->dev,
			"Failed to allocate DMA memory for CPU-CP info packet\n");
		return -ENOMEM;
	}

	memset(cpucp_info_cpu_addr, 0, sizeof(struct cpucp_info));

	pkt.ctl = cpu_to_le32(CPUCP_PACKET_INFO_GET <<
				CPUCP_PKT_CTL_OPCODE_SHIFT);
	pkt.addr = cpu_to_le64(cpucp_info_dma_addr);
	pkt.data_max_size = cpu_to_le32(sizeof(struct cpucp_info));

	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
	if (rc) {
		dev_err(hdev->dev,
			"Failed to handle CPU-CP info pkt, error %d\n", rc);
		goto out;
	}

	rc = fw_read_errors(hdev, boot_err0_reg, cpu_security_boot_status_reg);
	if (rc) {
		dev_err(hdev->dev, "Errors in device boot\n");
		goto out;
	}

	memcpy(&prop->cpucp_info, cpucp_info_cpu_addr,
			sizeof(prop->cpucp_info));

	rc = hl_build_hwmon_channel_info(hdev, prop->cpucp_info.sensors);
	if (rc) {
		dev_err(hdev->dev,
			"Failed to build hwmon channel info, error %d\n", rc);
		rc = -EFAULT;
		goto out;
	}

	/* Read FW application security bits again */
	if (hdev->asic_prop.fw_security_status_valid)
		hdev->asic_prop.fw_app_security_map =
				RREG32(cpu_security_boot_status_reg);

out:
	hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
			sizeof(struct cpucp_info), cpucp_info_cpu_addr);

	return rc;
}

int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size)
{
	struct cpucp_packet pkt = {};
	void *eeprom_info_cpu_addr;
	dma_addr_t eeprom_info_dma_addr;
	u64 result;
	int rc;

	eeprom_info_cpu_addr =
			hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
					max_size, &eeprom_info_dma_addr);
	if (!eeprom_info_cpu_addr) {
		dev_err(hdev->dev,
			"Failed to allocate DMA memory for CPU-CP EEPROM packet\n");
		return -ENOMEM;
	}

	memset(eeprom_info_cpu_addr, 0, max_size);

	pkt.ctl = cpu_to_le32(CPUCP_PACKET_EEPROM_DATA_GET <<
				CPUCP_PKT_CTL_OPCODE_SHIFT);
	pkt.addr = cpu_to_le64(eeprom_info_dma_addr);
	pkt.data_max_size = cpu_to_le32(max_size);

	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
			HL_CPUCP_EEPROM_TIMEOUT_USEC, &result);

	if (rc) {
		dev_err(hdev->dev,
			"Failed to handle CPU-CP EEPROM packet, error %d\n",
			rc);
		goto out;
	}

	/* result contains the actual size */
	memcpy(data, eeprom_info_cpu_addr, min((size_t)result, max_size));

out:
	hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev, max_size,
			eeprom_info_cpu_addr);

	return rc;
}

int hl_fw_cpucp_pci_counters_get(struct hl_device *hdev,
		struct hl_info_pci_counters *counters)
{
	struct cpucp_packet pkt = {};
	u64 result;
	int rc;

	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
			CPUCP_PKT_CTL_OPCODE_SHIFT);

	/* Fetch PCI rx counter */
	pkt.index = cpu_to_le32(cpucp_pcie_throughput_rx);
	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
	if (rc) {
		dev_err(hdev->dev,
			"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
		return rc;
	}
	counters->rx_throughput = result;

	memset(&pkt, 0, sizeof(pkt));
	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_THROUGHPUT_GET <<
			CPUCP_PKT_CTL_OPCODE_SHIFT);

	/* Fetch PCI tx counter */
	pkt.index = cpu_to_le32(cpucp_pcie_throughput_tx);
	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
	if (rc) {
		dev_err(hdev->dev,
			"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
		return rc;
	}
	counters->tx_throughput = result;

	/* Fetch PCI replay counter */
	memset(&pkt, 0, sizeof(pkt));
	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PCIE_REPLAY_CNT_GET <<
			CPUCP_PKT_CTL_OPCODE_SHIFT);

	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
			HL_CPUCP_INFO_TIMEOUT_USEC, &result);
	if (rc) {
		dev_err(hdev->dev,
			"Failed to handle CPU-CP PCI info pkt, error %d\n", rc);
		return rc;
	}
	counters->replay_cnt = (u32) result;

	return rc;
}

int hl_fw_cpucp_total_energy_get(struct hl_device *hdev, u64 *total_energy)
{
	struct cpucp_packet pkt = {};
	u64 result;
	int rc;

	pkt.ctl = cpu_to_le32(CPUCP_PACKET_TOTAL_ENERGY_GET <<
				CPUCP_PKT_CTL_OPCODE_SHIFT);

	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
					HL_CPUCP_INFO_TIMEOUT_USEC, &result);
	if (rc) {
		dev_err(hdev->dev,
			"Failed to handle CpuCP total energy pkt, error %d\n",
				rc);
		return rc;
	}

	*total_energy = result;

	return rc;
}

int hl_fw_cpucp_pll_info_get(struct hl_device *hdev, u16 pll_index,
		u16 *pll_freq_arr)
{
	struct cpucp_packet pkt;
	u64 result;
	int rc;

	memset(&pkt, 0, sizeof(pkt));

	pkt.ctl = cpu_to_le32(CPUCP_PACKET_PLL_INFO_GET <<
				CPUCP_PKT_CTL_OPCODE_SHIFT);
	pkt.pll_type = __cpu_to_le16(pll_index);

	rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
			HL_CPUCP_INFO_TIMEOUT_USEC, &result);
	if (rc)
		dev_err(hdev->dev, "Failed to read PLL info, error %d\n", rc);

	pll_freq_arr[0] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT0_MASK, result);
	pll_freq_arr[1] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT1_MASK, result);
	pll_freq_arr[2] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT2_MASK, result);
	pll_freq_arr[3] = FIELD_GET(CPUCP_PKT_RES_PLL_OUT3_MASK, result);

	return rc;
}

static void detect_cpu_boot_status(struct hl_device *hdev, u32 status)
{
	/* Some of the status codes below are deprecated in newer f/w
	 * versions but we keep them here for backward compatibility
	 */
	switch (status) {
	case CPU_BOOT_STATUS_NA:
		dev_err(hdev->dev,
			"Device boot error - BTL did NOT run\n");
		break;
	case CPU_BOOT_STATUS_IN_WFE:
		dev_err(hdev->dev,
			"Device boot error - Stuck inside WFE loop\n");
		break;
	case CPU_BOOT_STATUS_IN_BTL:
		dev_err(hdev->dev,
			"Device boot error - Stuck in BTL\n");
		break;
	case CPU_BOOT_STATUS_IN_PREBOOT:
		dev_err(hdev->dev,
			"Device boot error - Stuck in Preboot\n");
		break;
	case CPU_BOOT_STATUS_IN_SPL:
		dev_err(hdev->dev,
			"Device boot error - Stuck in SPL\n");
		break;
	case CPU_BOOT_STATUS_IN_UBOOT:
		dev_err(hdev->dev,
			"Device boot error - Stuck in u-boot\n");
		break;
	case CPU_BOOT_STATUS_DRAM_INIT_FAIL:
		dev_err(hdev->dev,
			"Device boot error - DRAM initialization failed\n");
		break;
	case CPU_BOOT_STATUS_UBOOT_NOT_READY:
		dev_err(hdev->dev,
			"Device boot error - u-boot stopped by user\n");
		break;
	case CPU_BOOT_STATUS_TS_INIT_FAIL:
		dev_err(hdev->dev,
			"Device boot error - Thermal Sensor initialization failed\n");
		break;
	default:
		dev_err(hdev->dev,
			"Device boot error - Invalid status code %d\n",
			status);
		break;
	}
}

int hl_fw_read_preboot_status(struct hl_device *hdev, u32 cpu_boot_status_reg,
		u32 cpu_security_boot_status_reg, u32 boot_err0_reg,
		u32 timeout)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u32 status, security_status;
	int rc;

	/* pldm was added for cases in which we use preboot on pldm and want
	 * to load boot fit, but we can't wait for preboot because it runs
	 * very slowly
	 */
	if (!(hdev->fw_components & FW_TYPE_PREBOOT_CPU) || hdev->pldm)
		return 0;

	/* Need to check two possible scenarios:
	 *
	 * CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT - for newer firmwares where
	 * the preboot is waiting for the boot fit
	 *
	 * All other status values - for older firmwares where the uboot was
	 * loaded from the FLASH
	 */
	rc = hl_poll_timeout(
		hdev,
		cpu_boot_status_reg,
		status,
		(status == CPU_BOOT_STATUS_IN_UBOOT) ||
		(status == CPU_BOOT_STATUS_DRAM_RDY) ||
		(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
		(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
		(status == CPU_BOOT_STATUS_SRAM_AVAIL) ||
		(status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT),
		10000,
		timeout);

	if (rc) {
		dev_err(hdev->dev, "Failed to read preboot version\n");
		detect_cpu_boot_status(hdev, status);
		fw_read_errors(hdev, boot_err0_reg,
				cpu_security_boot_status_reg);
		return -EIO;
	}

	rc = hdev->asic_funcs->read_device_fw_version(hdev, FW_COMP_PREBOOT);
	if (rc)
		return rc;

	security_status = RREG32(cpu_security_boot_status_reg);

	/* We read security status multiple times during boot:
	 * 1. preboot - a. Check whether the security status bits are valid
	 *              b. Check whether fw security is enabled
	 *              c. Check whether hard reset is done by preboot
	 * 2. boot cpu - a. Fetch boot cpu security status
	 *               b. Check whether hard reset is done by boot cpu
	 * 3. FW application - a. Fetch fw application security status
	 *                     b. Check whether hard reset is done by fw app
	 *
	 * Preboot:
	 * Check security status bit (CPU_BOOT_DEV_STS0_ENABLED), if it is set
	 * check security enabled bit (CPU_BOOT_DEV_STS0_SECURITY_EN)
	 */
	if (security_status & CPU_BOOT_DEV_STS0_ENABLED) {
		prop->fw_security_status_valid = 1;

		if (security_status & CPU_BOOT_DEV_STS0_SECURITY_EN)
			prop->fw_security_disabled = false;
		else
			prop->fw_security_disabled = true;

		if (security_status & CPU_BOOT_DEV_STS0_FW_HARD_RST_EN)
			prop->hard_reset_done_by_fw = true;
	} else {
		prop->fw_security_status_valid = 0;
		prop->fw_security_disabled = true;
	}

	dev_dbg(hdev->dev, "Firmware preboot security status %#x\n",
			security_status);

	dev_dbg(hdev->dev, "Firmware preboot hard-reset is %s\n",
			prop->hard_reset_done_by_fw ? "enabled" : "disabled");

	dev_info(hdev->dev, "firmware-level security is %s\n",
			prop->fw_security_disabled ? "disabled" : "enabled");

	return 0;
}

int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg,
			u32 msg_to_cpu_reg, u32 cpu_msg_status_reg,
			u32 cpu_security_boot_status_reg, u32 boot_err0_reg,
			bool skip_bmc, u32 cpu_timeout, u32 boot_fit_timeout)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	u32 status;
	int rc;

	if (!(hdev->fw_components & FW_TYPE_BOOT_CPU))
		return 0;

	dev_info(hdev->dev, "Going to wait for device boot (up to %lds)\n",
		cpu_timeout / USEC_PER_SEC);

	/* Wait for boot FIT request */
	rc = hl_poll_timeout(
		hdev,
		cpu_boot_status_reg,
		status,
		status == CPU_BOOT_STATUS_WAITING_FOR_BOOT_FIT,
		10000,
		boot_fit_timeout);

	if (rc) {
		dev_dbg(hdev->dev,
			"No boot fit request received, resuming boot\n");
	} else {
		rc = hdev->asic_funcs->load_boot_fit_to_device(hdev);
		if (rc)
			goto out;

		/* Clear device CPU message status */
		WREG32(cpu_msg_status_reg, CPU_MSG_CLR);

		/* Signal device CPU that boot loader is ready */
		WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);

		/* Poll for CPU device ack */
		rc = hl_poll_timeout(
			hdev,
			cpu_msg_status_reg,
			status,
			status == CPU_MSG_OK,
			10000,
			boot_fit_timeout);

		if (rc) {
			dev_err(hdev->dev,
				"Timeout waiting for boot fit load ack\n");
			goto out;
		}

		/* Clear message */
		WREG32(msg_to_cpu_reg, KMD_MSG_NA);
	}

	/* Make sure CPU boot-loader is running */
	rc = hl_poll_timeout(
		hdev,
		cpu_boot_status_reg,
		status,
		(status == CPU_BOOT_STATUS_DRAM_RDY) ||
		(status == CPU_BOOT_STATUS_NIC_FW_RDY) ||
		(status == CPU_BOOT_STATUS_READY_TO_BOOT) ||
		(status == CPU_BOOT_STATUS_SRAM_AVAIL),
		10000,
		cpu_timeout);

	dev_dbg(hdev->dev, "uboot status = %d\n", status);

	/* Read U-Boot version now in case we will later fail */
	hdev->asic_funcs->read_device_fw_version(hdev, FW_COMP_UBOOT);

	/* Clear reset status since we need to read it again from boot CPU */
	prop->hard_reset_done_by_fw = false;

	/* Read boot_cpu security bits */
	if (prop->fw_security_status_valid) {
		prop->fw_boot_cpu_security_map =
				RREG32(cpu_security_boot_status_reg);

		if (prop->fw_boot_cpu_security_map &
				CPU_BOOT_DEV_STS0_FW_HARD_RST_EN)
			prop->hard_reset_done_by_fw = true;

		dev_dbg(hdev->dev,
			"Firmware boot CPU security status %#x\n",
			prop->fw_boot_cpu_security_map);
	}

	dev_dbg(hdev->dev, "Firmware boot CPU hard-reset is %s\n",
			prop->hard_reset_done_by_fw ? "enabled" : "disabled");

	if (rc) {
		detect_cpu_boot_status(hdev, status);
		rc = -EIO;
		goto out;
	}

	if (!(hdev->fw_components & FW_TYPE_LINUX)) {
		dev_info(hdev->dev, "Skip loading Linux F/W\n");
		goto out;
	}

	if (status == CPU_BOOT_STATUS_SRAM_AVAIL)
		goto out;

	dev_info(hdev->dev,
		"Loading firmware to device, may take some time...\n");

	rc = hdev->asic_funcs->load_firmware_to_device(hdev);
	if (rc)
		goto out;

	if (skip_bmc) {
		WREG32(msg_to_cpu_reg, KMD_MSG_SKIP_BMC);

		rc = hl_poll_timeout(
			hdev,
			cpu_boot_status_reg,
			status,
			(status == CPU_BOOT_STATUS_BMC_WAITING_SKIPPED),
			10000,
			cpu_timeout);

		if (rc) {
			dev_err(hdev->dev,
				"Failed to get ACK on skipping BMC, %d\n",
				status);
			WREG32(msg_to_cpu_reg, KMD_MSG_NA);
			rc = -EIO;
			goto out;
		}
	}

	WREG32(msg_to_cpu_reg, KMD_MSG_FIT_RDY);

	rc = hl_poll_timeout(
		hdev,
		cpu_boot_status_reg,
		status,
		(status == CPU_BOOT_STATUS_SRAM_AVAIL),
		10000,
		cpu_timeout);

	/* Clear message */
	WREG32(msg_to_cpu_reg, KMD_MSG_NA);

	if (rc) {
		if (status == CPU_BOOT_STATUS_FIT_CORRUPTED)
			dev_err(hdev->dev,
				"Device reports FIT image is corrupted\n");
		else
			dev_err(hdev->dev,
				"Failed to load firmware to device, %d\n",
				status);

		rc = -EIO;
		goto out;
	}

	rc = fw_read_errors(hdev, boot_err0_reg, cpu_security_boot_status_reg);
	if (rc)
		return rc;

	/* Clear reset status since we need to read again from app */
	prop->hard_reset_done_by_fw = false;

	/* Read FW application security bits */
	if (prop->fw_security_status_valid) {
		prop->fw_app_security_map =
				RREG32(cpu_security_boot_status_reg);

		if (prop->fw_app_security_map &
				CPU_BOOT_DEV_STS0_FW_HARD_RST_EN)
			prop->hard_reset_done_by_fw = true;

		dev_dbg(hdev->dev,
			"Firmware application CPU security status %#x\n",
			prop->fw_app_security_map);
	}

	dev_dbg(hdev->dev, "Firmware application CPU hard-reset is %s\n",
			prop->hard_reset_done_by_fw ? "enabled" : "disabled");

	dev_info(hdev->dev, "Successfully loaded firmware to device\n");

	return 0;

out:
	fw_read_errors(hdev, boot_err0_reg, cpu_security_boot_status_reg);

	return rc;
}