1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* TI Camera Access Layer (CAL) - CAMERARX
*
* Copyright (c) 2015-2020 Texas Instruments Inc.
*
* Authors:
* Benoit Parrot <bparrot@ti.com>
* Laurent Pinchart <laurent.pinchart@ideasonboard.com>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_graph.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <media/v4l2-ctrls.h>
#include <media/v4l2-fwnode.h>
#include <media/v4l2-subdev.h>
#include "cal.h"
#include "cal_regs.h"
/* ------------------------------------------------------------------
* I/O Register Accessors
* ------------------------------------------------------------------
*/
static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset)
{
return ioread32(phy->base + offset);
}
static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val)
{
iowrite32(val, phy->base + offset);
}
/* ------------------------------------------------------------------
* CAMERARX Management
* ------------------------------------------------------------------
*/
static s64 cal_camerarx_get_ext_link_freq(struct cal_camerarx *phy)
{
struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 = &phy->endpoint.bus.mipi_csi2;
u32 num_lanes = mipi_csi2->num_data_lanes;
const struct cal_format_info *fmtinfo;
struct v4l2_subdev_state *state;
struct v4l2_mbus_framefmt *fmt;
u32 bpp;
s64 freq;
state = v4l2_subdev_get_locked_active_state(&phy->subdev);
fmt = v4l2_subdev_get_pad_format(&phy->subdev, state, CAL_CAMERARX_PAD_SINK);
fmtinfo = cal_format_by_code(fmt->code);
if (!fmtinfo)
return -EINVAL;
bpp = fmtinfo->bpp;
freq = v4l2_get_link_freq(phy->source->ctrl_handler, bpp, 2 * num_lanes);
if (freq < 0) {
phy_err(phy, "failed to get link freq for subdev '%s'\n",
phy->source->name);
return freq;
}
phy_dbg(3, phy, "Source Link Freq: %llu\n", freq);
return freq;
}
static void cal_camerarx_lane_config(struct cal_camerarx *phy)
{
u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance));
u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK;
u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK;
struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 =
&phy->endpoint.bus.mipi_csi2;
int lane;
cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask);
cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask);
for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) {
/*
* Every lane are one nibble apart starting with the
* clock followed by the data lanes so shift masks by 4.
*/
lane_mask <<= 4;
polarity_mask <<= 4;
cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask);
cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1],
polarity_mask);
}
cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val);
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n",
phy->instance, val);
}
static void cal_camerarx_enable(struct cal_camerarx *phy)
{
u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes;
regmap_field_write(phy->fields[F_CAMMODE], 0);
/* Always enable all lanes at the phy control level */
regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1);
/* F_CSI_MODE is not present on every architecture */
if (phy->fields[F_CSI_MODE])
regmap_field_write(phy->fields[F_CSI_MODE], 1);
regmap_field_write(phy->fields[F_CTRLCLKEN], 1);
}
void cal_camerarx_disable(struct cal_camerarx *phy)
{
regmap_field_write(phy->fields[F_CTRLCLKEN], 0);
}
/*
* TCLK values are OK at their reset values
*/
#define TCLK_TERM 0
#define TCLK_MISS 1
#define TCLK_SETTLE 14
static void cal_camerarx_config(struct cal_camerarx *phy, s64 link_freq)
{
unsigned int reg0, reg1;
unsigned int ths_term, ths_settle;
/* DPHY timing configuration */
/* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */
ths_term = div_s64(20 * link_freq, 1000 * 1000 * 1000);
phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term);
/* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */
ths_settle = div_s64(105 * link_freq, 1000 * 1000 * 1000) + 4;
phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle);
reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0);
cal_set_field(®0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE,
CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK);
cal_set_field(®0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK);
cal_set_field(®0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK);
phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0);
camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0);
reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1);
cal_set_field(®1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK);
cal_set_field(®1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK);
cal_set_field(®1, TCLK_MISS,
CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK);
cal_set_field(®1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK);
phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1);
camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1);
}
static void cal_camerarx_power(struct cal_camerarx *phy, bool enable)
{
u32 target_state;
unsigned int i;
target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON :
CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF;
cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK);
for (i = 0; i < 10; i++) {
u32 current_state;
current_state = cal_read_field(phy->cal,
CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK);
if (current_state == target_state)
break;
usleep_range(1000, 1100);
}
if (i == 10)
phy_err(phy, "Failed to power %s complexio\n",
enable ? "up" : "down");
}
static void cal_camerarx_wait_reset(struct cal_camerarx *phy)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(750);
while (time_before(jiffies, timeout)) {
if (cal_read_field(phy->cal,
CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) ==
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
break;
usleep_range(500, 5000);
}
if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) !=
CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED)
phy_err(phy, "Timeout waiting for Complex IO reset done\n");
}
static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy)
{
unsigned long timeout;
timeout = jiffies + msecs_to_jiffies(750);
while (time_before(jiffies, timeout)) {
if (cal_read_field(phy->cal,
CAL_CSI2_TIMING(phy->instance),
CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0)
break;
usleep_range(500, 5000);
}
if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0)
phy_err(phy, "Timeout waiting for stop state\n");
}
static void cal_camerarx_enable_irqs(struct cal_camerarx *phy)
{
const u32 cio_err_mask =
CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK |
CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK |
CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK |
CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK;
const u32 vc_err_mask =
CAL_CSI2_VC_IRQ_CS_IRQ_MASK(0) |
CAL_CSI2_VC_IRQ_CS_IRQ_MASK(1) |
CAL_CSI2_VC_IRQ_CS_IRQ_MASK(2) |
CAL_CSI2_VC_IRQ_CS_IRQ_MASK(3) |
CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(0) |
CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(1) |
CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(2) |
CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(3);
/* Enable CIO & VC error IRQs. */
cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0),
CAL_HL_IRQ_CIO_MASK(phy->instance) |
CAL_HL_IRQ_VC_MASK(phy->instance));
cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance),
cio_err_mask);
cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance),
vc_err_mask);
}
static void cal_camerarx_disable_irqs(struct cal_camerarx *phy)
{
/* Disable CIO error irqs */
cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0),
CAL_HL_IRQ_CIO_MASK(phy->instance) |
CAL_HL_IRQ_VC_MASK(phy->instance));
cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0);
cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), 0);
}
static void cal_camerarx_ppi_enable(struct cal_camerarx *phy)
{
cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
1, CAL_CSI2_PPI_CTRL_ECC_EN_MASK);
cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
1, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
}
static void cal_camerarx_ppi_disable(struct cal_camerarx *phy)
{
cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance),
0, CAL_CSI2_PPI_CTRL_IF_EN_MASK);
}
static int cal_camerarx_start(struct cal_camerarx *phy)
{
s64 link_freq;
u32 sscounter;
u32 val;
int ret;
if (phy->enable_count > 0) {
phy->enable_count++;
return 0;
}
link_freq = cal_camerarx_get_ext_link_freq(phy);
if (link_freq < 0)
return link_freq;
ret = v4l2_subdev_call(phy->source, core, s_power, 1);
if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) {
phy_err(phy, "power on failed in subdev\n");
return ret;
}
cal_camerarx_enable_irqs(phy);
/*
* CSI-2 PHY Link Initialization Sequence, according to the DRA74xP /
* DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x /
* DRA80xM TRMs have a slightly simplified sequence.
*/
/*
* 1. Configure all CSI-2 low level protocol registers to be ready to
* receive signals/data from the CSI-2 PHY.
*
* i.-v. Configure the lanes position and polarity.
*/
cal_camerarx_lane_config(phy);
/*
* vi.-vii. Configure D-PHY mode, enable the required lanes and
* enable the CAMERARX clock.
*/
cal_camerarx_enable(phy);
/*
* 2. CSI PHY and link initialization sequence.
*
* a. Deassert the CSI-2 PHY reset. Do not wait for reset completion
* at this point, as it requires the external source to send the
* CSI-2 HS clock.
*/
cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL,
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n",
phy->instance,
cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
/* Dummy read to allow SCP reset to complete. */
camerarx_read(phy, CAL_CSI2_PHY_REG0);
/* Program the PHY timing parameters. */
cal_camerarx_config(phy, link_freq);
/*
* b. Assert the FORCERXMODE signal.
*
* The stop-state-counter is based on fclk cycles, and we always use
* the x16 and x4 settings, so stop-state-timeout =
* fclk-cycle * 16 * 4 * counter.
*
* Stop-state-timeout must be more than 100us as per CSI-2 spec, so we
* calculate a timeout that's 100us (rounding up).
*/
sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 * 16 * 4);
val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance));
cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK);
cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK);
cal_set_field(&val, sscounter,
CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK);
cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val);
phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n",
phy->instance,
cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
/* Assert the FORCERXMODE signal. */
cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance),
1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK);
phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n",
phy->instance,
cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)));
/*
* c. Connect pull-down on CSI-2 PHY link (using pad control).
*
* This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
* implemented.
*/
/*
* d. Power up the CSI-2 PHY.
* e. Check whether the state status reaches the ON state.
*/
cal_camerarx_power(phy, true);
/*
* Start the source to enable the CSI-2 HS clock. We can now wait for
* CSI-2 PHY reset to complete.
*/
ret = v4l2_subdev_call(phy->source, video, s_stream, 1);
if (ret) {
v4l2_subdev_call(phy->source, core, s_power, 0);
cal_camerarx_disable_irqs(phy);
phy_err(phy, "stream on failed in subdev\n");
return ret;
}
cal_camerarx_wait_reset(phy);
/* f. Wait for STOPSTATE=1 for all enabled lane modules. */
cal_camerarx_wait_stop_state(phy);
phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n",
phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1));
/*
* g. Disable pull-down on CSI-2 PHY link (using pad control).
*
* This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not
* implemented.
*/
/* Finally, enable the PHY Protocol Interface (PPI). */
cal_camerarx_ppi_enable(phy);
phy->enable_count++;
return 0;
}
static void cal_camerarx_stop(struct cal_camerarx *phy)
{
int ret;
if (--phy->enable_count > 0)
return;
cal_camerarx_ppi_disable(phy);
cal_camerarx_disable_irqs(phy);
cal_camerarx_power(phy, false);
/* Assert Complex IO Reset */
cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance),
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL,
CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK);
phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset\n",
phy->instance,
cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)));
/* Disable the phy */
cal_camerarx_disable(phy);
if (v4l2_subdev_call(phy->source, video, s_stream, 0))
phy_err(phy, "stream off failed in subdev\n");
ret = v4l2_subdev_call(phy->source, core, s_power, 0);
if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV)
phy_err(phy, "power off failed in subdev\n");
}
/*
* Errata i913: CSI2 LDO Needs to be disabled when module is powered on
*
* Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2
* LDOs on the device are disabled if CSI-2 module is powered on
* (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304
* | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high
* current draw on the module supply in active mode.
*
* Errata does not apply when CSI-2 module is powered off
* (0x4845 B304 | 0x4845 B384 [28:27] = 0x0).
*
* SW Workaround:
* Set the following register bits to disable the LDO,
* which is essentially CSI2 REG10 bit 6:
*
* Core 0: 0x4845 B828 = 0x0000 0040
* Core 1: 0x4845 B928 = 0x0000 0040
*/
void cal_camerarx_i913_errata(struct cal_camerarx *phy)
{
u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10);
cal_set_field(®10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK);
phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10);
camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10);
}
static int cal_camerarx_regmap_init(struct cal_dev *cal,
struct cal_camerarx *phy)
{
const struct cal_camerarx_data *phy_data;
unsigned int i;
if (!cal->data)
return -EINVAL;
phy_data = &cal->data->camerarx[phy->instance];
for (i = 0; i < F_MAX_FIELDS; i++) {
struct reg_field field = {
.reg = cal->syscon_camerrx_offset,
.lsb = phy_data->fields[i].lsb,
.msb = phy_data->fields[i].msb,
};
/*
* Here we update the reg offset with the
* value found in DT
*/
phy->fields[i] = devm_regmap_field_alloc(cal->dev,
cal->syscon_camerrx,
field);
if (IS_ERR(phy->fields[i])) {
cal_err(cal, "Unable to allocate regmap fields\n");
return PTR_ERR(phy->fields[i]);
}
}
return 0;
}
static int cal_camerarx_parse_dt(struct cal_camerarx *phy)
{
struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint;
char data_lanes[V4L2_MBUS_CSI2_MAX_DATA_LANES * 2];
struct device_node *ep_node;
unsigned int i;
int ret;
/*
* Find the endpoint node for the port corresponding to the PHY
* instance, and parse its CSI-2-related properties.
*/
ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node,
phy->instance, 0);
if (!ep_node) {
/*
* The endpoint is not mandatory, not all PHY instances need to
* be connected in DT.
*/
phy_dbg(3, phy, "Port has no endpoint\n");
return 0;
}
endpoint->bus_type = V4L2_MBUS_CSI2_DPHY;
ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint);
if (ret < 0) {
phy_err(phy, "Failed to parse endpoint\n");
goto done;
}
for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) {
unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i];
if (lane > 4) {
phy_err(phy, "Invalid position %u for data lane %u\n",
lane, i);
ret = -EINVAL;
goto done;
}
data_lanes[i*2] = '0' + lane;
data_lanes[i*2+1] = ' ';
}
data_lanes[i*2-1] = '\0';
phy_dbg(3, phy,
"CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n",
endpoint->bus.mipi_csi2.clock_lane, data_lanes,
endpoint->bus.mipi_csi2.flags);
/* Retrieve the connected device and store it for later use. */
phy->source_ep_node = of_graph_get_remote_endpoint(ep_node);
phy->source_node = of_graph_get_port_parent(phy->source_ep_node);
if (!phy->source_node) {
phy_dbg(3, phy, "Can't get remote parent\n");
of_node_put(phy->source_ep_node);
ret = -EINVAL;
goto done;
}
phy_dbg(1, phy, "Found connected device %pOFn\n", phy->source_node);
done:
of_node_put(ep_node);
return ret;
}
/* ------------------------------------------------------------------
* V4L2 Subdev Operations
* ------------------------------------------------------------------
*/
static inline struct cal_camerarx *to_cal_camerarx(struct v4l2_subdev *sd)
{
return container_of(sd, struct cal_camerarx, subdev);
}
static int cal_camerarx_sd_s_stream(struct v4l2_subdev *sd, int enable)
{
struct cal_camerarx *phy = to_cal_camerarx(sd);
struct v4l2_subdev_state *state;
int ret = 0;
state = v4l2_subdev_lock_and_get_active_state(sd);
if (enable)
ret = cal_camerarx_start(phy);
else
cal_camerarx_stop(phy);
v4l2_subdev_unlock_state(state);
return ret;
}
static int cal_camerarx_sd_enum_mbus_code(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_mbus_code_enum *code)
{
struct cal_camerarx *phy = to_cal_camerarx(sd);
/* No transcoding, source and sink codes must match. */
if (cal_rx_pad_is_source(code->pad)) {
struct v4l2_mbus_framefmt *fmt;
if (code->index > 0)
return -EINVAL;
fmt = v4l2_subdev_get_pad_format(&phy->subdev, state,
CAL_CAMERARX_PAD_SINK);
code->code = fmt->code;
} else {
if (code->index >= cal_num_formats)
return -EINVAL;
code->code = cal_formats[code->index].code;
}
return 0;
}
static int cal_camerarx_sd_enum_frame_size(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_frame_size_enum *fse)
{
const struct cal_format_info *fmtinfo;
if (fse->index > 0)
return -EINVAL;
/* No transcoding, source and sink formats must match. */
if (cal_rx_pad_is_source(fse->pad)) {
struct v4l2_mbus_framefmt *fmt;
fmt = v4l2_subdev_get_pad_format(sd, state,
CAL_CAMERARX_PAD_SINK);
if (fse->code != fmt->code)
return -EINVAL;
fse->min_width = fmt->width;
fse->max_width = fmt->width;
fse->min_height = fmt->height;
fse->max_height = fmt->height;
} else {
fmtinfo = cal_format_by_code(fse->code);
if (!fmtinfo)
return -EINVAL;
fse->min_width = CAL_MIN_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
fse->max_width = CAL_MAX_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8);
fse->min_height = CAL_MIN_HEIGHT_LINES;
fse->max_height = CAL_MAX_HEIGHT_LINES;
}
return 0;
}
static int cal_camerarx_sd_set_fmt(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state,
struct v4l2_subdev_format *format)
{
const struct cal_format_info *fmtinfo;
struct v4l2_mbus_framefmt *fmt;
unsigned int bpp;
/* No transcoding, source and sink formats must match. */
if (cal_rx_pad_is_source(format->pad))
return v4l2_subdev_get_fmt(sd, state, format);
/*
* Default to the first format if the requested media bus code isn't
* supported.
*/
fmtinfo = cal_format_by_code(format->format.code);
if (!fmtinfo)
fmtinfo = &cal_formats[0];
/* Clamp the size, update the code. The colorspace is accepted as-is. */
bpp = ALIGN(fmtinfo->bpp, 8);
format->format.width = clamp_t(unsigned int, format->format.width,
CAL_MIN_WIDTH_BYTES * 8 / bpp,
CAL_MAX_WIDTH_BYTES * 8 / bpp);
format->format.height = clamp_t(unsigned int, format->format.height,
CAL_MIN_HEIGHT_LINES,
CAL_MAX_HEIGHT_LINES);
format->format.code = fmtinfo->code;
format->format.field = V4L2_FIELD_NONE;
/* Store the format and propagate it to the source pad. */
fmt = v4l2_subdev_get_pad_format(sd, state, CAL_CAMERARX_PAD_SINK);
*fmt = format->format;
fmt = v4l2_subdev_get_pad_format(sd, state,
CAL_CAMERARX_PAD_FIRST_SOURCE);
*fmt = format->format;
return 0;
}
static int cal_camerarx_sd_init_cfg(struct v4l2_subdev *sd,
struct v4l2_subdev_state *state)
{
struct v4l2_subdev_format format = {
.which = state ? V4L2_SUBDEV_FORMAT_TRY
: V4L2_SUBDEV_FORMAT_ACTIVE,
.pad = CAL_CAMERARX_PAD_SINK,
.format = {
.width = 640,
.height = 480,
.code = MEDIA_BUS_FMT_UYVY8_1X16,
.field = V4L2_FIELD_NONE,
.colorspace = V4L2_COLORSPACE_SRGB,
.ycbcr_enc = V4L2_YCBCR_ENC_601,
.quantization = V4L2_QUANTIZATION_LIM_RANGE,
.xfer_func = V4L2_XFER_FUNC_SRGB,
},
};
return cal_camerarx_sd_set_fmt(sd, state, &format);
}
static int cal_camerarx_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad,
struct v4l2_mbus_frame_desc *fd)
{
struct cal_camerarx *phy = to_cal_camerarx(sd);
struct v4l2_mbus_frame_desc remote_desc;
const struct media_pad *remote_pad;
int ret;
remote_pad = media_pad_remote_pad_first(&phy->pads[CAL_CAMERARX_PAD_SINK]);
if (!remote_pad)
return -EPIPE;
ret = v4l2_subdev_call(phy->source, pad, get_frame_desc,
remote_pad->index, &remote_desc);
if (ret)
return ret;
if (remote_desc.type != V4L2_MBUS_FRAME_DESC_TYPE_CSI2) {
cal_err(phy->cal,
"Frame descriptor does not describe CSI-2 link");
return -EINVAL;
}
if (remote_desc.num_entries > 1)
cal_err(phy->cal,
"Multiple streams not supported in remote frame descriptor, using the first one\n");
fd->type = V4L2_MBUS_FRAME_DESC_TYPE_CSI2;
fd->num_entries = 1;
fd->entry[0] = remote_desc.entry[0];
return 0;
}
static const struct v4l2_subdev_video_ops cal_camerarx_video_ops = {
.s_stream = cal_camerarx_sd_s_stream,
};
static const struct v4l2_subdev_pad_ops cal_camerarx_pad_ops = {
.init_cfg = cal_camerarx_sd_init_cfg,
.enum_mbus_code = cal_camerarx_sd_enum_mbus_code,
.enum_frame_size = cal_camerarx_sd_enum_frame_size,
.get_fmt = v4l2_subdev_get_fmt,
.set_fmt = cal_camerarx_sd_set_fmt,
.get_frame_desc = cal_camerarx_get_frame_desc,
};
static const struct v4l2_subdev_ops cal_camerarx_subdev_ops = {
.video = &cal_camerarx_video_ops,
.pad = &cal_camerarx_pad_ops,
};
static struct media_entity_operations cal_camerarx_media_ops = {
.link_validate = v4l2_subdev_link_validate,
};
/* ------------------------------------------------------------------
* Create and Destroy
* ------------------------------------------------------------------
*/
struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal,
unsigned int instance)
{
struct platform_device *pdev = to_platform_device(cal->dev);
struct cal_camerarx *phy;
struct v4l2_subdev *sd;
unsigned int i;
int ret;
phy = devm_kzalloc(cal->dev, sizeof(*phy), GFP_KERNEL);
if (!phy)
return ERR_PTR(-ENOMEM);
phy->cal = cal;
phy->instance = instance;
spin_lock_init(&phy->vc_lock);
phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
(instance == 0) ?
"cal_rx_core0" :
"cal_rx_core1");
phy->base = devm_ioremap_resource(cal->dev, phy->res);
if (IS_ERR(phy->base)) {
cal_err(cal, "failed to ioremap\n");
return ERR_CAST(phy->base);
}
cal_dbg(1, cal, "ioresource %s at %pa - %pa\n",
phy->res->name, &phy->res->start, &phy->res->end);
ret = cal_camerarx_regmap_init(cal, phy);
if (ret)
return ERR_PTR(ret);
ret = cal_camerarx_parse_dt(phy);
if (ret)
return ERR_PTR(ret);
/* Initialize the V4L2 subdev and media entity. */
sd = &phy->subdev;
v4l2_subdev_init(sd, &cal_camerarx_subdev_ops);
sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE;
sd->flags = V4L2_SUBDEV_FL_HAS_DEVNODE;
snprintf(sd->name, sizeof(sd->name), "CAMERARX%u", instance);
sd->dev = cal->dev;
phy->pads[CAL_CAMERARX_PAD_SINK].flags = MEDIA_PAD_FL_SINK;
for (i = CAL_CAMERARX_PAD_FIRST_SOURCE; i < CAL_CAMERARX_NUM_PADS; ++i)
phy->pads[i].flags = MEDIA_PAD_FL_SOURCE;
sd->entity.ops = &cal_camerarx_media_ops;
ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(phy->pads),
phy->pads);
if (ret)
goto err_node_put;
ret = v4l2_subdev_init_finalize(sd);
if (ret)
goto err_entity_cleanup;
ret = v4l2_device_register_subdev(&cal->v4l2_dev, sd);
if (ret)
goto err_free_state;
return phy;
err_free_state:
v4l2_subdev_cleanup(sd);
err_entity_cleanup:
media_entity_cleanup(&phy->subdev.entity);
err_node_put:
of_node_put(phy->source_ep_node);
of_node_put(phy->source_node);
return ERR_PTR(ret);
}
void cal_camerarx_destroy(struct cal_camerarx *phy)
{
if (!phy)
return;
v4l2_device_unregister_subdev(&phy->subdev);
v4l2_subdev_cleanup(&phy->subdev);
media_entity_cleanup(&phy->subdev.entity);
of_node_put(phy->source_ep_node);
of_node_put(phy->source_node);
}
|