summaryrefslogtreecommitdiff
path: root/drivers/media/platform/rockchip/rkvdec/rkvdec-hevc.c
blob: fc7e6a260b0a77fb2d3b265eba1e98a25b267494 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
// SPDX-License-Identifier: GPL-2.0
/*
 * Rockchip Video Decoder HEVC backend
 *
 * Copyright (C) 2023 Collabora, Ltd.
 *      Sebastian Fricke <sebastian.fricke@collabora.com>
 *
 * Copyright (C) 2019 Collabora, Ltd.
 *	Boris Brezillon <boris.brezillon@collabora.com>
 *
 * Copyright (C) 2016 Rockchip Electronics Co., Ltd.
 *	Jeffy Chen <jeffy.chen@rock-chips.com>
 */

#include <media/v4l2-mem2mem.h>

#include "rkvdec.h"
#include "rkvdec-regs.h"
#include "rkvdec-hevc-data.c"

/* Size in u8/u32 units. */
#define RKV_SCALING_LIST_SIZE		1360
#define RKV_PPS_SIZE			(80 / 4)
#define RKV_PPS_LEN			64
#define RKV_RPS_SIZE			(32 / 4)
#define RKV_RPS_LEN			600

struct rkvdec_sps_pps_packet {
	u32 info[RKV_PPS_SIZE];
};

struct rkvdec_rps_packet {
	u32 info[RKV_RPS_SIZE];
};

struct rkvdec_ps_field {
	u16 offset;
	u8 len;
};

#define PS_FIELD(_offset, _len) \
	((struct rkvdec_ps_field){ _offset, _len })

/* SPS */
#define VIDEO_PARAMETER_SET_ID				PS_FIELD(0, 4)
#define SEQ_PARAMETER_SET_ID				PS_FIELD(4, 4)
#define CHROMA_FORMAT_IDC				PS_FIELD(8, 2)
#define PIC_WIDTH_IN_LUMA_SAMPLES			PS_FIELD(10, 13)
#define PIC_HEIGHT_IN_LUMA_SAMPLES			PS_FIELD(23, 13)
#define BIT_DEPTH_LUMA					PS_FIELD(36, 4)
#define BIT_DEPTH_CHROMA				PS_FIELD(40, 4)
#define LOG2_MAX_PIC_ORDER_CNT_LSB			PS_FIELD(44, 5)
#define LOG2_DIFF_MAX_MIN_LUMA_CODING_BLOCK_SIZE	PS_FIELD(49, 2)
#define LOG2_MIN_LUMA_CODING_BLOCK_SIZE			PS_FIELD(51, 3)
#define LOG2_MIN_TRANSFORM_BLOCK_SIZE			PS_FIELD(54, 3)
#define LOG2_DIFF_MAX_MIN_LUMA_TRANSFORM_BLOCK_SIZE	PS_FIELD(57, 2)
#define MAX_TRANSFORM_HIERARCHY_DEPTH_INTER		PS_FIELD(59, 3)
#define MAX_TRANSFORM_HIERARCHY_DEPTH_INTRA		PS_FIELD(62, 3)
#define SCALING_LIST_ENABLED_FLAG			PS_FIELD(65, 1)
#define AMP_ENABLED_FLAG				PS_FIELD(66, 1)
#define SAMPLE_ADAPTIVE_OFFSET_ENABLED_FLAG		PS_FIELD(67, 1)
#define PCM_ENABLED_FLAG				PS_FIELD(68, 1)
#define PCM_SAMPLE_BIT_DEPTH_LUMA			PS_FIELD(69, 4)
#define PCM_SAMPLE_BIT_DEPTH_CHROMA			PS_FIELD(73, 4)
#define PCM_LOOP_FILTER_DISABLED_FLAG			PS_FIELD(77, 1)
#define LOG2_DIFF_MAX_MIN_PCM_LUMA_CODING_BLOCK_SIZE	PS_FIELD(78, 3)
#define LOG2_MIN_PCM_LUMA_CODING_BLOCK_SIZE		PS_FIELD(81, 3)
#define NUM_SHORT_TERM_REF_PIC_SETS			PS_FIELD(84, 7)
#define LONG_TERM_REF_PICS_PRESENT_FLAG			PS_FIELD(91, 1)
#define NUM_LONG_TERM_REF_PICS_SPS			PS_FIELD(92, 6)
#define SPS_TEMPORAL_MVP_ENABLED_FLAG			PS_FIELD(98, 1)
#define STRONG_INTRA_SMOOTHING_ENABLED_FLAG		PS_FIELD(99, 1)
/* PPS */
#define PIC_PARAMETER_SET_ID				PS_FIELD(128, 6)
#define PPS_SEQ_PARAMETER_SET_ID			PS_FIELD(134, 4)
#define DEPENDENT_SLICE_SEGMENTS_ENABLED_FLAG		PS_FIELD(138, 1)
#define OUTPUT_FLAG_PRESENT_FLAG			PS_FIELD(139, 1)
#define NUM_EXTRA_SLICE_HEADER_BITS			PS_FIELD(140, 13)
#define SIGN_DATA_HIDING_ENABLED_FLAG			PS_FIELD(153, 1)
#define CABAC_INIT_PRESENT_FLAG				PS_FIELD(154, 1)
#define NUM_REF_IDX_L0_DEFAULT_ACTIVE			PS_FIELD(155, 4)
#define NUM_REF_IDX_L1_DEFAULT_ACTIVE			PS_FIELD(159, 4)
#define INIT_QP_MINUS26					PS_FIELD(163, 7)
#define CONSTRAINED_INTRA_PRED_FLAG			PS_FIELD(170, 1)
#define TRANSFORM_SKIP_ENABLED_FLAG			PS_FIELD(171, 1)
#define CU_QP_DELTA_ENABLED_FLAG			PS_FIELD(172, 1)
#define LOG2_MIN_CU_QP_DELTA_SIZE			PS_FIELD(173, 3)
#define PPS_CB_QP_OFFSET				PS_FIELD(176, 5)
#define PPS_CR_QP_OFFSET				PS_FIELD(181, 5)
#define PPS_SLICE_CHROMA_QP_OFFSETS_PRESENT_FLAG	PS_FIELD(186, 1)
#define WEIGHTED_PRED_FLAG				PS_FIELD(187, 1)
#define WEIGHTED_BIPRED_FLAG				PS_FIELD(188, 1)
#define TRANSQUANT_BYPASS_ENABLED_FLAG			PS_FIELD(189, 1)
#define TILES_ENABLED_FLAG				PS_FIELD(190, 1)
#define ENTROPY_CODING_SYNC_ENABLED_FLAG		PS_FIELD(191, 1)
#define PPS_LOOP_FILTER_ACROSS_SLICES_ENABLED_FLAG	PS_FIELD(192, 1)
#define LOOP_FILTER_ACROSS_TILES_ENABLED_FLAG		PS_FIELD(193, 1)
#define DEBLOCKING_FILTER_OVERRIDE_ENABLED_FLAG		PS_FIELD(194, 1)
#define PPS_DEBLOCKING_FILTER_DISABLED_FLAG		PS_FIELD(195, 1)
#define PPS_BETA_OFFSET_DIV2				PS_FIELD(196, 4)
#define PPS_TC_OFFSET_DIV2				PS_FIELD(200, 4)
#define LISTS_MODIFICATION_PRESENT_FLAG			PS_FIELD(204, 1)
#define LOG2_PARALLEL_MERGE_LEVEL			PS_FIELD(205, 3)
#define SLICE_SEGMENT_HEADER_EXTENSION_PRESENT_FLAG	PS_FIELD(208, 1)
#define NUM_TILE_COLUMNS				PS_FIELD(212, 5)
#define NUM_TILE_ROWS					PS_FIELD(217, 5)
#define COLUMN_WIDTH(i)					PS_FIELD(256 + ((i) * 8), 8)
#define ROW_HEIGHT(i)					PS_FIELD(416 + ((i) * 8), 8)
#define SCALING_LIST_ADDRESS				PS_FIELD(592, 32)

/* Data structure describing auxiliary buffer format. */
struct rkvdec_hevc_priv_tbl {
	u8 cabac_table[RKV_CABAC_TABLE_SIZE];
	u8 scaling_list[RKV_SCALING_LIST_SIZE];
	struct rkvdec_sps_pps_packet param_set[RKV_PPS_LEN];
	struct rkvdec_rps_packet rps[RKV_RPS_LEN];
};

struct rkvdec_hevc_run {
	struct rkvdec_run base;
	const struct v4l2_ctrl_hevc_slice_params *slices_params;
	const struct v4l2_ctrl_hevc_decode_params *decode_params;
	const struct v4l2_ctrl_hevc_sps *sps;
	const struct v4l2_ctrl_hevc_pps *pps;
	const struct v4l2_ctrl_hevc_scaling_matrix *scaling_matrix;
	int num_slices;
};

struct rkvdec_hevc_ctx {
	struct rkvdec_aux_buf priv_tbl;
	struct v4l2_ctrl_hevc_scaling_matrix scaling_matrix_cache;
};

struct scaling_factor {
	u8 scalingfactor0[1248];
	u8 scalingfactor1[96];		/*4X4 TU Rotate, total 16X4*/
	u8 scalingdc[12];		/*N1005 Vienna Meeting*/
	u8 reserved[4];		/*16Bytes align*/
};

static void set_ps_field(u32 *buf, struct rkvdec_ps_field field, u32 value)
{
	u8 bit = field.offset % 32, word = field.offset / 32;
	u64 mask = GENMASK_ULL(bit + field.len - 1, bit);
	u64 val = ((u64)value << bit) & mask;

	buf[word] &= ~mask;
	buf[word] |= val;
	if (bit + field.len > 32) {
		buf[word + 1] &= ~(mask >> 32);
		buf[word + 1] |= val >> 32;
	}
}

static void assemble_hw_pps(struct rkvdec_ctx *ctx,
			    struct rkvdec_hevc_run *run)
{
	struct rkvdec_hevc_ctx *hevc_ctx = ctx->priv;
	const struct v4l2_ctrl_hevc_sps *sps = run->sps;
	const struct v4l2_ctrl_hevc_pps *pps = run->pps;
	struct rkvdec_hevc_priv_tbl *priv_tbl = hevc_ctx->priv_tbl.cpu;
	struct rkvdec_sps_pps_packet *hw_ps;
	u32 min_cb_log2_size_y, ctb_log2_size_y, ctb_size_y;
	u32 log2_min_cu_qp_delta_size, scaling_distance;
	dma_addr_t scaling_list_address;
	int i;

	/*
	 * HW read the SPS/PPS information from PPS packet index by PPS id.
	 * offset from the base can be calculated by PPS_id * 80 (size per PPS
	 * packet unit). so the driver copy SPS/PPS information to the exact PPS
	 * packet unit for HW accessing.
	 */
	hw_ps = &priv_tbl->param_set[pps->pic_parameter_set_id];
	memset(hw_ps, 0, sizeof(*hw_ps));

#define WRITE_PPS(value, field) set_ps_field(hw_ps->info, field, value)
	/* write sps */
	WRITE_PPS(sps->video_parameter_set_id, VIDEO_PARAMETER_SET_ID);
	WRITE_PPS(sps->seq_parameter_set_id, SEQ_PARAMETER_SET_ID);
	WRITE_PPS(sps->chroma_format_idc, CHROMA_FORMAT_IDC);
	WRITE_PPS(sps->pic_width_in_luma_samples, PIC_WIDTH_IN_LUMA_SAMPLES);
	WRITE_PPS(sps->pic_height_in_luma_samples, PIC_HEIGHT_IN_LUMA_SAMPLES);
	WRITE_PPS(sps->bit_depth_luma_minus8 + 8, BIT_DEPTH_LUMA);
	WRITE_PPS(sps->bit_depth_chroma_minus8 + 8, BIT_DEPTH_CHROMA);
	WRITE_PPS(sps->log2_max_pic_order_cnt_lsb_minus4 + 4,
		  LOG2_MAX_PIC_ORDER_CNT_LSB);
	WRITE_PPS(sps->log2_diff_max_min_luma_coding_block_size,
		  LOG2_DIFF_MAX_MIN_LUMA_CODING_BLOCK_SIZE);
	WRITE_PPS(sps->log2_min_luma_coding_block_size_minus3 + 3,
		  LOG2_MIN_LUMA_CODING_BLOCK_SIZE);
	WRITE_PPS(sps->log2_min_luma_transform_block_size_minus2 + 2,
		  LOG2_MIN_TRANSFORM_BLOCK_SIZE);
	WRITE_PPS(sps->log2_diff_max_min_luma_transform_block_size,
		  LOG2_DIFF_MAX_MIN_LUMA_TRANSFORM_BLOCK_SIZE);
	WRITE_PPS(sps->max_transform_hierarchy_depth_inter,
		  MAX_TRANSFORM_HIERARCHY_DEPTH_INTER);
	WRITE_PPS(sps->max_transform_hierarchy_depth_intra,
		  MAX_TRANSFORM_HIERARCHY_DEPTH_INTRA);
	WRITE_PPS(!!(sps->flags & V4L2_HEVC_SPS_FLAG_SCALING_LIST_ENABLED),
		  SCALING_LIST_ENABLED_FLAG);
	WRITE_PPS(!!(sps->flags & V4L2_HEVC_SPS_FLAG_AMP_ENABLED),
		  AMP_ENABLED_FLAG);
	WRITE_PPS(!!(sps->flags & V4L2_HEVC_SPS_FLAG_SAMPLE_ADAPTIVE_OFFSET),
		  SAMPLE_ADAPTIVE_OFFSET_ENABLED_FLAG);
	if (sps->flags & V4L2_HEVC_SPS_FLAG_PCM_ENABLED) {
		WRITE_PPS(1, PCM_ENABLED_FLAG);
		WRITE_PPS(sps->pcm_sample_bit_depth_luma_minus1 + 1,
			  PCM_SAMPLE_BIT_DEPTH_LUMA);
		WRITE_PPS(sps->pcm_sample_bit_depth_chroma_minus1 + 1,
			  PCM_SAMPLE_BIT_DEPTH_CHROMA);
		WRITE_PPS(!!(sps->flags & V4L2_HEVC_SPS_FLAG_PCM_LOOP_FILTER_DISABLED),
			  PCM_LOOP_FILTER_DISABLED_FLAG);
		WRITE_PPS(sps->log2_diff_max_min_pcm_luma_coding_block_size,
			  LOG2_DIFF_MAX_MIN_PCM_LUMA_CODING_BLOCK_SIZE);
		WRITE_PPS(sps->log2_min_pcm_luma_coding_block_size_minus3 + 3,
			  LOG2_MIN_PCM_LUMA_CODING_BLOCK_SIZE);
	}
	WRITE_PPS(sps->num_short_term_ref_pic_sets, NUM_SHORT_TERM_REF_PIC_SETS);
	WRITE_PPS(!!(sps->flags & V4L2_HEVC_SPS_FLAG_LONG_TERM_REF_PICS_PRESENT),
		  LONG_TERM_REF_PICS_PRESENT_FLAG);
	WRITE_PPS(sps->num_long_term_ref_pics_sps, NUM_LONG_TERM_REF_PICS_SPS);
	WRITE_PPS(!!(sps->flags & V4L2_HEVC_SPS_FLAG_SPS_TEMPORAL_MVP_ENABLED),
		  SPS_TEMPORAL_MVP_ENABLED_FLAG);
	WRITE_PPS(!!(sps->flags & V4L2_HEVC_SPS_FLAG_STRONG_INTRA_SMOOTHING_ENABLED),
		  STRONG_INTRA_SMOOTHING_ENABLED_FLAG);

	/* write pps */
	WRITE_PPS(pps->pic_parameter_set_id, PIC_PARAMETER_SET_ID);
	WRITE_PPS(sps->seq_parameter_set_id, PPS_SEQ_PARAMETER_SET_ID);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_DEPENDENT_SLICE_SEGMENT_ENABLED),
		  DEPENDENT_SLICE_SEGMENTS_ENABLED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_OUTPUT_FLAG_PRESENT),
		  OUTPUT_FLAG_PRESENT_FLAG);
	WRITE_PPS(pps->num_extra_slice_header_bits, NUM_EXTRA_SLICE_HEADER_BITS);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_SIGN_DATA_HIDING_ENABLED),
		  SIGN_DATA_HIDING_ENABLED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_CABAC_INIT_PRESENT),
		  CABAC_INIT_PRESENT_FLAG);
	WRITE_PPS(pps->num_ref_idx_l0_default_active_minus1 + 1,
		  NUM_REF_IDX_L0_DEFAULT_ACTIVE);
	WRITE_PPS(pps->num_ref_idx_l1_default_active_minus1 + 1,
		  NUM_REF_IDX_L1_DEFAULT_ACTIVE);
	WRITE_PPS(pps->init_qp_minus26, INIT_QP_MINUS26);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_CONSTRAINED_INTRA_PRED),
		  CONSTRAINED_INTRA_PRED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_TRANSFORM_SKIP_ENABLED),
		  TRANSFORM_SKIP_ENABLED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_CU_QP_DELTA_ENABLED),
		  CU_QP_DELTA_ENABLED_FLAG);

	min_cb_log2_size_y = sps->log2_min_luma_coding_block_size_minus3 + 3;
	ctb_log2_size_y = min_cb_log2_size_y +
		sps->log2_diff_max_min_luma_coding_block_size;
	ctb_size_y = 1 << ctb_log2_size_y;
	log2_min_cu_qp_delta_size = ctb_log2_size_y - pps->diff_cu_qp_delta_depth;
	WRITE_PPS(log2_min_cu_qp_delta_size, LOG2_MIN_CU_QP_DELTA_SIZE);
	WRITE_PPS(pps->pps_cb_qp_offset, PPS_CB_QP_OFFSET);
	WRITE_PPS(pps->pps_cr_qp_offset, PPS_CR_QP_OFFSET);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_PPS_SLICE_CHROMA_QP_OFFSETS_PRESENT),
		  PPS_SLICE_CHROMA_QP_OFFSETS_PRESENT_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_WEIGHTED_PRED),
		  WEIGHTED_PRED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_WEIGHTED_BIPRED),
		  WEIGHTED_BIPRED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_TRANSQUANT_BYPASS_ENABLED),
		  TRANSQUANT_BYPASS_ENABLED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_TILES_ENABLED),
		  TILES_ENABLED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_ENTROPY_CODING_SYNC_ENABLED),
		  ENTROPY_CODING_SYNC_ENABLED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_PPS_LOOP_FILTER_ACROSS_SLICES_ENABLED),
		  PPS_LOOP_FILTER_ACROSS_SLICES_ENABLED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_LOOP_FILTER_ACROSS_TILES_ENABLED),
		  LOOP_FILTER_ACROSS_TILES_ENABLED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_DEBLOCKING_FILTER_OVERRIDE_ENABLED),
		  DEBLOCKING_FILTER_OVERRIDE_ENABLED_FLAG);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_PPS_DISABLE_DEBLOCKING_FILTER),
		  PPS_DEBLOCKING_FILTER_DISABLED_FLAG);
	WRITE_PPS(pps->pps_beta_offset_div2, PPS_BETA_OFFSET_DIV2);
	WRITE_PPS(pps->pps_tc_offset_div2, PPS_TC_OFFSET_DIV2);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_LISTS_MODIFICATION_PRESENT),
		  LISTS_MODIFICATION_PRESENT_FLAG);
	WRITE_PPS(pps->log2_parallel_merge_level_minus2 + 2, LOG2_PARALLEL_MERGE_LEVEL);
	WRITE_PPS(!!(pps->flags & V4L2_HEVC_PPS_FLAG_SLICE_SEGMENT_HEADER_EXTENSION_PRESENT),
		  SLICE_SEGMENT_HEADER_EXTENSION_PRESENT_FLAG);
	WRITE_PPS(pps->num_tile_columns_minus1 + 1, NUM_TILE_COLUMNS);
	WRITE_PPS(pps->num_tile_rows_minus1 + 1, NUM_TILE_ROWS);

	if (pps->flags & V4L2_HEVC_PPS_FLAG_TILES_ENABLED) {
		/* Userspace also provide column width and row height for uniform spacing */
		for (i = 0; i <= pps->num_tile_columns_minus1; i++)
			WRITE_PPS(pps->column_width_minus1[i], COLUMN_WIDTH(i));
		for (i = 0; i <= pps->num_tile_rows_minus1; i++)
			WRITE_PPS(pps->row_height_minus1[i], ROW_HEIGHT(i));
	} else {
		WRITE_PPS(((sps->pic_width_in_luma_samples + ctb_size_y - 1) / ctb_size_y) - 1,
			  COLUMN_WIDTH(0));
		WRITE_PPS(((sps->pic_height_in_luma_samples + ctb_size_y - 1) / ctb_size_y) - 1,
			  ROW_HEIGHT(0));
	}

	scaling_distance = offsetof(struct rkvdec_hevc_priv_tbl, scaling_list);
	scaling_list_address = hevc_ctx->priv_tbl.dma + scaling_distance;
	WRITE_PPS(scaling_list_address, SCALING_LIST_ADDRESS);
}

/*
 * Creation of the Reference Picture Set memory blob for the hardware.
 * The layout looks like this:
 * [0] 32 bits for L0 (6 references + 2 bits of the 7th reference)
 * [1] 32 bits for L0 (remaining 3 bits of the 7th reference + 5 references
 *     + 4 bits of the 13th reference)
 * [2] 11 bits for L0 (remaining bit for 13 and 2 references) and
 *     21 bits for L1 (4 references + first bit of 5)
 * [3] 32 bits of padding with 0s
 * [4] 32 bits for L1 (remaining 4 bits for 5 + 5 references + 3 bits of 11)
 * [5] 22 bits for L1 (remaining 2 bits of 11 and 4 references)
 *     lowdelay flag (bit 23), rps bit offset long term (bit 24 - 32)
 * [6] rps bit offset long term (bit 1 - 3),  rps bit offset short term (bit 4 - 12)
 *     number of references (bit 13 - 16), remaining 16 bits of padding with 0s
 * [7] 32 bits of padding with 0s
 *
 * Thus we have to set up padding in between reference 5 of the L1 list.
 */
static void assemble_sw_rps(struct rkvdec_ctx *ctx,
			    struct rkvdec_hevc_run *run)
{
	const struct v4l2_ctrl_hevc_decode_params *decode_params = run->decode_params;
	const struct v4l2_ctrl_hevc_sps *sps = run->sps;
	const struct v4l2_ctrl_hevc_slice_params *sl_params;
	const struct v4l2_hevc_dpb_entry *dpb;
	struct rkvdec_hevc_ctx *hevc_ctx = ctx->priv;
	struct rkvdec_hevc_priv_tbl *priv_tbl = hevc_ctx->priv_tbl.cpu;
	struct rkvdec_rps_packet *hw_ps;
	int i, j;
	unsigned int lowdelay;

#define WRITE_RPS(value, field) set_ps_field(hw_ps->info, field, value)

#define REF_PIC_LONG_TERM_L0(i)			PS_FIELD((i) * 5, 1)
#define REF_PIC_IDX_L0(i)			PS_FIELD(1 + ((i) * 5), 4)
#define REF_PIC_LONG_TERM_L1(i)			PS_FIELD(((i) < 5 ? 75 : 132) + ((i) * 5), 1)
#define REF_PIC_IDX_L1(i)			PS_FIELD(((i) < 4 ? 76 : 128) + ((i) * 5), 4)

#define LOWDELAY				PS_FIELD(182, 1)
#define LONG_TERM_RPS_BIT_OFFSET		PS_FIELD(183, 10)
#define SHORT_TERM_RPS_BIT_OFFSET		PS_FIELD(193, 9)
#define NUM_RPS_POC				PS_FIELD(202, 4)

	for (j = 0; j < run->num_slices; j++) {
		uint st_bit_offset = 0;
		uint num_l0_refs = 0;
		uint num_l1_refs = 0;

		sl_params = &run->slices_params[j];
		dpb = decode_params->dpb;

		if (sl_params->slice_type != V4L2_HEVC_SLICE_TYPE_I) {
			num_l0_refs = sl_params->num_ref_idx_l0_active_minus1 + 1;

			if (sl_params->slice_type == V4L2_HEVC_SLICE_TYPE_B)
				num_l1_refs = sl_params->num_ref_idx_l1_active_minus1 + 1;

			lowdelay = 1;
		} else {
			lowdelay = 0;
		}

		hw_ps = &priv_tbl->rps[j];
		memset(hw_ps, 0, sizeof(*hw_ps));

		for (i = 0; i < num_l0_refs; i++) {
			const struct v4l2_hevc_dpb_entry dpb_l0 = dpb[sl_params->ref_idx_l0[i]];

			WRITE_RPS(!!(dpb_l0.flags & V4L2_HEVC_DPB_ENTRY_LONG_TERM_REFERENCE),
				  REF_PIC_LONG_TERM_L0(i));
			WRITE_RPS(sl_params->ref_idx_l0[i], REF_PIC_IDX_L0(i));

			if (dpb_l0.pic_order_cnt_val > sl_params->slice_pic_order_cnt)
				lowdelay = 0;
		}

		for (i = 0; i < num_l1_refs; i++) {
			const struct v4l2_hevc_dpb_entry dpb_l1 = dpb[sl_params->ref_idx_l1[i]];
			int is_long_term =
				!!(dpb_l1.flags & V4L2_HEVC_DPB_ENTRY_LONG_TERM_REFERENCE);

			WRITE_RPS(is_long_term, REF_PIC_LONG_TERM_L1(i));
			WRITE_RPS(sl_params->ref_idx_l1[i], REF_PIC_IDX_L1(i));

			if (dpb_l1.pic_order_cnt_val > sl_params->slice_pic_order_cnt)
				lowdelay = 0;
		}

		WRITE_RPS(lowdelay, LOWDELAY);

		if (!(decode_params->flags & V4L2_HEVC_DECODE_PARAM_FLAG_IDR_PIC)) {
			if (sl_params->short_term_ref_pic_set_size)
				st_bit_offset = sl_params->short_term_ref_pic_set_size;
			else if (sps->num_short_term_ref_pic_sets > 1)
				st_bit_offset = fls(sps->num_short_term_ref_pic_sets - 1);
		}

		WRITE_RPS(st_bit_offset + sl_params->long_term_ref_pic_set_size,
			  LONG_TERM_RPS_BIT_OFFSET);
		WRITE_RPS(sl_params->short_term_ref_pic_set_size,
			  SHORT_TERM_RPS_BIT_OFFSET);

		WRITE_RPS(decode_params->num_poc_st_curr_before +
			  decode_params->num_poc_st_curr_after +
			  decode_params->num_poc_lt_curr,
			  NUM_RPS_POC);
	}
}

/*
 * Flip one or more matrices along their main diagonal and flatten them
 * before writing it to the memory.
 * Convert:
 * ABCD         AEIM
 * EFGH     =>  BFJN     =>     AEIMBFJNCGKODHLP
 * IJKL         CGKO
 * MNOP         DHLP
 */
static void transpose_and_flatten_matrices(u8 *output, const u8 *input,
					   int matrices, int row_length)
{
	int i, j, row, x_offset, matrix_offset, rot_index, y_offset, matrix_size, new_value;

	matrix_size = row_length * row_length;
	for (i = 0; i < matrices; i++) {
		row = 0;
		x_offset = 0;
		matrix_offset = i * matrix_size;
		for (j = 0; j < matrix_size; j++) {
			y_offset = j - (row * row_length);
			rot_index = y_offset * row_length + x_offset;
			new_value = *(input + i * matrix_size + j);
			output[matrix_offset + rot_index] = new_value;
			if ((j + 1) % row_length == 0) {
				row += 1;
				x_offset += 1;
			}
		}
	}
}

static void assemble_scalingfactor0(u8 *output, const struct v4l2_ctrl_hevc_scaling_matrix *input)
{
	int offset = 0;

	transpose_and_flatten_matrices(output, (const u8 *)input->scaling_list_4x4, 6, 4);
	offset = 6 * 16 * sizeof(u8);
	transpose_and_flatten_matrices(output + offset, (const u8 *)input->scaling_list_8x8, 6, 8);
	offset += 6 * 64 * sizeof(u8);
	transpose_and_flatten_matrices(output + offset,
				       (const u8 *)input->scaling_list_16x16, 6, 8);
	offset += 6 * 64 * sizeof(u8);
	/* Add a 128 byte padding with 0s between the two 32x32 matrices */
	transpose_and_flatten_matrices(output + offset,
				       (const u8 *)input->scaling_list_32x32, 1, 8);
	offset += 64 * sizeof(u8);
	memset(output + offset, 0, 128);
	offset += 128 * sizeof(u8);
	transpose_and_flatten_matrices(output + offset,
				       (const u8 *)input->scaling_list_32x32 + (64 * sizeof(u8)),
				       1, 8);
	offset += 64 * sizeof(u8);
	memset(output + offset, 0, 128);
}

/*
 * Required layout:
 * A = scaling_list_dc_coef_16x16
 * B = scaling_list_dc_coef_32x32
 * 0 = Padding
 *
 * A, A, A, A, A, A, B, 0, 0, B, 0, 0
 */
static void assemble_scalingdc(u8 *output, const struct v4l2_ctrl_hevc_scaling_matrix *input)
{
	u8 list_32x32[6] = {0};

	memcpy(output, input->scaling_list_dc_coef_16x16, 6 * sizeof(u8));
	list_32x32[0] = input->scaling_list_dc_coef_32x32[0];
	list_32x32[3] = input->scaling_list_dc_coef_32x32[1];
	memcpy(output + 6 * sizeof(u8), list_32x32, 6 * sizeof(u8));
}

static void translate_scaling_list(struct scaling_factor *output,
				   const struct v4l2_ctrl_hevc_scaling_matrix *input)
{
	assemble_scalingfactor0(output->scalingfactor0, input);
	memcpy(output->scalingfactor1, (const u8 *)input->scaling_list_4x4, 96);
	assemble_scalingdc(output->scalingdc, input);
	memset(output->reserved, 0, 4 * sizeof(u8));
}

static void assemble_hw_scaling_list(struct rkvdec_ctx *ctx,
				     struct rkvdec_hevc_run *run)
{
	const struct v4l2_ctrl_hevc_scaling_matrix *scaling = run->scaling_matrix;
	struct rkvdec_hevc_ctx *hevc_ctx = ctx->priv;
	struct rkvdec_hevc_priv_tbl *tbl = hevc_ctx->priv_tbl.cpu;
	u8 *dst;

	if (!memcmp((void *)&hevc_ctx->scaling_matrix_cache, scaling,
		    sizeof(struct v4l2_ctrl_hevc_scaling_matrix)))
		return;

	dst = tbl->scaling_list;
	translate_scaling_list((struct scaling_factor *)dst, scaling);

	memcpy((void *)&hevc_ctx->scaling_matrix_cache, scaling,
	       sizeof(struct v4l2_ctrl_hevc_scaling_matrix));
}

static struct vb2_buffer *
get_ref_buf(struct rkvdec_ctx *ctx, struct rkvdec_hevc_run *run,
	    unsigned int dpb_idx)
{
	struct v4l2_m2m_ctx *m2m_ctx = ctx->fh.m2m_ctx;
	const struct v4l2_ctrl_hevc_decode_params *decode_params = run->decode_params;
	const struct v4l2_hevc_dpb_entry *dpb = decode_params->dpb;
	struct vb2_queue *cap_q = &m2m_ctx->cap_q_ctx.q;
	struct vb2_buffer *buf = NULL;

	if (dpb_idx < decode_params->num_active_dpb_entries)
		buf = vb2_find_buffer(cap_q, dpb[dpb_idx].timestamp);

	/*
	 * If a DPB entry is unused or invalid, the address of current destination
	 * buffer is returned.
	 */
	if (!buf)
		return &run->base.bufs.dst->vb2_buf;

	return buf;
}

static void config_registers(struct rkvdec_ctx *ctx,
			     struct rkvdec_hevc_run *run)
{
	struct rkvdec_dev *rkvdec = ctx->dev;
	const struct v4l2_ctrl_hevc_decode_params *decode_params = run->decode_params;
	const struct v4l2_ctrl_hevc_sps *sps = run->sps;
	const struct v4l2_ctrl_hevc_slice_params *sl_params = &run->slices_params[0];
	const struct v4l2_hevc_dpb_entry *dpb = decode_params->dpb;
	struct rkvdec_hevc_ctx *hevc_ctx = ctx->priv;
	dma_addr_t priv_start_addr = hevc_ctx->priv_tbl.dma;
	const struct v4l2_pix_format_mplane *dst_fmt;
	struct vb2_v4l2_buffer *src_buf = run->base.bufs.src;
	struct vb2_v4l2_buffer *dst_buf = run->base.bufs.dst;
	const struct v4l2_format *f;
	dma_addr_t rlc_addr;
	dma_addr_t refer_addr;
	u32 rlc_len;
	u32 hor_virstride;
	u32 ver_virstride;
	u32 y_virstride;
	u32 yuv_virstride = 0;
	u32 offset;
	dma_addr_t dst_addr;
	u32 reg, i;

	reg = RKVDEC_MODE(RKVDEC_MODE_HEVC);
	writel_relaxed(reg, rkvdec->regs + RKVDEC_REG_SYSCTRL);

	f = &ctx->decoded_fmt;
	dst_fmt = &f->fmt.pix_mp;
	hor_virstride = dst_fmt->plane_fmt[0].bytesperline;
	ver_virstride = dst_fmt->height;
	y_virstride = hor_virstride * ver_virstride;

	if (sps->chroma_format_idc == 0)
		yuv_virstride = y_virstride;
	else if (sps->chroma_format_idc == 1)
		yuv_virstride = y_virstride + y_virstride / 2;
	else if (sps->chroma_format_idc == 2)
		yuv_virstride = 2 * y_virstride;

	reg = RKVDEC_Y_HOR_VIRSTRIDE(hor_virstride / 16) |
	      RKVDEC_UV_HOR_VIRSTRIDE(hor_virstride / 16) |
	      RKVDEC_SLICE_NUM_LOWBITS(run->num_slices);
	writel_relaxed(reg, rkvdec->regs + RKVDEC_REG_PICPAR);

	/* config rlc base address */
	rlc_addr = vb2_dma_contig_plane_dma_addr(&src_buf->vb2_buf, 0);
	writel_relaxed(rlc_addr, rkvdec->regs + RKVDEC_REG_STRM_RLC_BASE);

	rlc_len = vb2_get_plane_payload(&src_buf->vb2_buf, 0);
	reg = RKVDEC_STRM_LEN(round_up(rlc_len, 16) + 64);
	writel_relaxed(reg, rkvdec->regs + RKVDEC_REG_STRM_LEN);

	/* config cabac table */
	offset = offsetof(struct rkvdec_hevc_priv_tbl, cabac_table);
	writel_relaxed(priv_start_addr + offset,
		       rkvdec->regs + RKVDEC_REG_CABACTBL_PROB_BASE);

	/* config output base address */
	dst_addr = vb2_dma_contig_plane_dma_addr(&dst_buf->vb2_buf, 0);
	writel_relaxed(dst_addr, rkvdec->regs + RKVDEC_REG_DECOUT_BASE);

	reg = RKVDEC_Y_VIRSTRIDE(y_virstride / 16);
	writel_relaxed(reg, rkvdec->regs + RKVDEC_REG_Y_VIRSTRIDE);

	reg = RKVDEC_YUV_VIRSTRIDE(yuv_virstride / 16);
	writel_relaxed(reg, rkvdec->regs + RKVDEC_REG_YUV_VIRSTRIDE);

	/* config ref pic address */
	for (i = 0; i < 15; i++) {
		struct vb2_buffer *vb_buf = get_ref_buf(ctx, run, i);

		if (i < 4 && decode_params->num_active_dpb_entries) {
			reg = GENMASK(decode_params->num_active_dpb_entries - 1, 0);
			reg = (reg >> (i * 4)) & 0xf;
		} else {
			reg = 0;
		}

		refer_addr = vb2_dma_contig_plane_dma_addr(vb_buf, 0);
		writel_relaxed(refer_addr | reg,
			       rkvdec->regs + RKVDEC_REG_H264_BASE_REFER(i));

		reg = RKVDEC_POC_REFER(i < decode_params->num_active_dpb_entries ?
			dpb[i].pic_order_cnt_val : 0);
		writel_relaxed(reg,
			       rkvdec->regs + RKVDEC_REG_H264_POC_REFER0(i));
	}

	reg = RKVDEC_CUR_POC(sl_params->slice_pic_order_cnt);
	writel_relaxed(reg, rkvdec->regs + RKVDEC_REG_CUR_POC0);

	/* config hw pps address */
	offset = offsetof(struct rkvdec_hevc_priv_tbl, param_set);
	writel_relaxed(priv_start_addr + offset,
		       rkvdec->regs + RKVDEC_REG_PPS_BASE);

	/* config hw rps address */
	offset = offsetof(struct rkvdec_hevc_priv_tbl, rps);
	writel_relaxed(priv_start_addr + offset,
		       rkvdec->regs + RKVDEC_REG_RPS_BASE);

	reg = RKVDEC_AXI_DDR_RDATA(0);
	writel_relaxed(reg, rkvdec->regs + RKVDEC_REG_AXI_DDR_RDATA);

	reg = RKVDEC_AXI_DDR_WDATA(0);
	writel_relaxed(reg, rkvdec->regs + RKVDEC_REG_AXI_DDR_WDATA);
}

#define RKVDEC_HEVC_MAX_DEPTH_IN_BYTES		2

static int rkvdec_hevc_adjust_fmt(struct rkvdec_ctx *ctx,
				  struct v4l2_format *f)
{
	struct v4l2_pix_format_mplane *fmt = &f->fmt.pix_mp;

	fmt->num_planes = 1;
	if (!fmt->plane_fmt[0].sizeimage)
		fmt->plane_fmt[0].sizeimage = fmt->width * fmt->height *
					      RKVDEC_HEVC_MAX_DEPTH_IN_BYTES;
	return 0;
}

static enum rkvdec_image_fmt rkvdec_hevc_get_image_fmt(struct rkvdec_ctx *ctx,
						       struct v4l2_ctrl *ctrl)
{
	const struct v4l2_ctrl_hevc_sps *sps = ctrl->p_new.p_hevc_sps;

	if (ctrl->id != V4L2_CID_STATELESS_HEVC_SPS)
		return RKVDEC_IMG_FMT_ANY;

	if (sps->bit_depth_luma_minus8 == 0) {
		if (sps->chroma_format_idc == 2)
			return RKVDEC_IMG_FMT_422_8BIT;
		else
			return RKVDEC_IMG_FMT_420_8BIT;
	} else if (sps->bit_depth_luma_minus8 == 2) {
		if (sps->chroma_format_idc == 2)
			return RKVDEC_IMG_FMT_422_10BIT;
		else
			return RKVDEC_IMG_FMT_420_10BIT;
	}

	return RKVDEC_IMG_FMT_ANY;
}

static int rkvdec_hevc_validate_sps(struct rkvdec_ctx *ctx,
				    const struct v4l2_ctrl_hevc_sps *sps)
{
	if (sps->chroma_format_idc > 1)
		/* Only 4:0:0 and 4:2:0 are supported */
		return -EINVAL;
	if (sps->bit_depth_luma_minus8 != sps->bit_depth_chroma_minus8)
		/* Luma and chroma bit depth mismatch */
		return -EINVAL;
	if (sps->bit_depth_luma_minus8 != 0 && sps->bit_depth_luma_minus8 != 2)
		/* Only 8-bit and 10-bit is supported */
		return -EINVAL;

	if (sps->pic_width_in_luma_samples > ctx->coded_fmt.fmt.pix_mp.width ||
	    sps->pic_height_in_luma_samples > ctx->coded_fmt.fmt.pix_mp.height)
		return -EINVAL;

	return 0;
}

static int rkvdec_hevc_start(struct rkvdec_ctx *ctx)
{
	struct rkvdec_dev *rkvdec = ctx->dev;
	struct rkvdec_hevc_priv_tbl *priv_tbl;
	struct rkvdec_hevc_ctx *hevc_ctx;

	hevc_ctx = kzalloc(sizeof(*hevc_ctx), GFP_KERNEL);
	if (!hevc_ctx)
		return -ENOMEM;

	priv_tbl = dma_alloc_coherent(rkvdec->dev, sizeof(*priv_tbl),
				      &hevc_ctx->priv_tbl.dma, GFP_KERNEL);
	if (!priv_tbl) {
		kfree(hevc_ctx);
		return -ENOMEM;
	}

	hevc_ctx->priv_tbl.size = sizeof(*priv_tbl);
	hevc_ctx->priv_tbl.cpu = priv_tbl;
	memcpy(priv_tbl->cabac_table, rkvdec_hevc_cabac_table,
	       sizeof(rkvdec_hevc_cabac_table));

	ctx->priv = hevc_ctx;
	return 0;
}

static void rkvdec_hevc_stop(struct rkvdec_ctx *ctx)
{
	struct rkvdec_hevc_ctx *hevc_ctx = ctx->priv;
	struct rkvdec_dev *rkvdec = ctx->dev;

	dma_free_coherent(rkvdec->dev, hevc_ctx->priv_tbl.size,
			  hevc_ctx->priv_tbl.cpu, hevc_ctx->priv_tbl.dma);
	kfree(hevc_ctx);
}

static void rkvdec_hevc_run_preamble(struct rkvdec_ctx *ctx,
				     struct rkvdec_hevc_run *run)
{
	struct v4l2_ctrl *ctrl;

	ctrl = v4l2_ctrl_find(&ctx->ctrl_hdl,
			      V4L2_CID_STATELESS_HEVC_DECODE_PARAMS);
	run->decode_params = ctrl ? ctrl->p_cur.p : NULL;
	ctrl = v4l2_ctrl_find(&ctx->ctrl_hdl,
			      V4L2_CID_STATELESS_HEVC_SLICE_PARAMS);
	run->slices_params = ctrl ? ctrl->p_cur.p : NULL;
	run->num_slices = ctrl ? ctrl->new_elems : 0;
	ctrl = v4l2_ctrl_find(&ctx->ctrl_hdl,
			      V4L2_CID_STATELESS_HEVC_SPS);
	run->sps = ctrl ? ctrl->p_cur.p : NULL;
	ctrl = v4l2_ctrl_find(&ctx->ctrl_hdl,
			      V4L2_CID_STATELESS_HEVC_PPS);
	run->pps = ctrl ? ctrl->p_cur.p : NULL;
	ctrl = v4l2_ctrl_find(&ctx->ctrl_hdl,
			      V4L2_CID_STATELESS_HEVC_SCALING_MATRIX);
	run->scaling_matrix = ctrl ? ctrl->p_cur.p : NULL;

	rkvdec_run_preamble(ctx, &run->base);
}

static int rkvdec_hevc_run(struct rkvdec_ctx *ctx)
{
	struct rkvdec_dev *rkvdec = ctx->dev;
	struct rkvdec_hevc_run run;
	u32 reg;

	rkvdec_hevc_run_preamble(ctx, &run);

	assemble_hw_scaling_list(ctx, &run);
	assemble_hw_pps(ctx, &run);
	assemble_sw_rps(ctx, &run);
	config_registers(ctx, &run);

	rkvdec_run_postamble(ctx, &run.base);

	schedule_delayed_work(&rkvdec->watchdog_work, msecs_to_jiffies(2000));

	writel(0, rkvdec->regs + RKVDEC_REG_STRMD_ERR_EN);
	writel(0, rkvdec->regs + RKVDEC_REG_H264_ERR_E);
	writel(1, rkvdec->regs + RKVDEC_REG_PREF_LUMA_CACHE_COMMAND);
	writel(1, rkvdec->regs + RKVDEC_REG_PREF_CHR_CACHE_COMMAND);

	if (rkvdec->variant->quirks & RKVDEC_QUIRK_DISABLE_QOS)
		rkvdec_quirks_disable_qos(ctx);

	/* Start decoding! */
	reg = (run.pps->flags & V4L2_HEVC_PPS_FLAG_TILES_ENABLED) ?
		0 : RKVDEC_WR_DDR_ALIGN_EN;
	writel(RKVDEC_INTERRUPT_DEC_E | RKVDEC_CONFIG_DEC_CLK_GATE_E |
	       RKVDEC_TIMEOUT_E | RKVDEC_BUF_EMPTY_E | reg,
	       rkvdec->regs + RKVDEC_REG_INTERRUPT);

	return 0;
}

static int rkvdec_hevc_try_ctrl(struct rkvdec_ctx *ctx, struct v4l2_ctrl *ctrl)
{
	if (ctrl->id == V4L2_CID_STATELESS_HEVC_SPS)
		return rkvdec_hevc_validate_sps(ctx, ctrl->p_new.p_hevc_sps);

	return 0;
}

const struct rkvdec_coded_fmt_ops rkvdec_hevc_fmt_ops = {
	.adjust_fmt = rkvdec_hevc_adjust_fmt,
	.start = rkvdec_hevc_start,
	.stop = rkvdec_hevc_stop,
	.run = rkvdec_hevc_run,
	.try_ctrl = rkvdec_hevc_try_ctrl,
	.get_image_fmt = rkvdec_hevc_get_image_fmt,
};