summaryrefslogtreecommitdiff
path: root/drivers/md/dm-vdo/slab-depot.c
blob: 2d2cccf89edb6a283991172ac90c7b99c8714f56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright 2023 Red Hat
 */

#include "slab-depot.h"

#include <linux/atomic.h>
#include <linux/bio.h>
#include <linux/err.h>
#include <linux/log2.h>
#include <linux/min_heap.h>
#include <linux/minmax.h>

#include "logger.h"
#include "memory-alloc.h"
#include "numeric.h"
#include "permassert.h"
#include "string-utils.h"

#include "action-manager.h"
#include "admin-state.h"
#include "completion.h"
#include "constants.h"
#include "data-vio.h"
#include "encodings.h"
#include "io-submitter.h"
#include "physical-zone.h"
#include "priority-table.h"
#include "recovery-journal.h"
#include "repair.h"
#include "status-codes.h"
#include "types.h"
#include "vdo.h"
#include "vio.h"
#include "wait-queue.h"

static const u64 BYTES_PER_WORD = sizeof(u64);
static const bool NORMAL_OPERATION = true;

/**
 * get_lock() - Get the lock object for a slab journal block by sequence number.
 * @journal: vdo_slab journal to retrieve from.
 * @sequence_number: Sequence number of the block.
 *
 * Return: The lock object for the given sequence number.
 */
static inline struct journal_lock * __must_check get_lock(struct slab_journal *journal,
							  sequence_number_t sequence_number)
{
	return &journal->locks[sequence_number % journal->size];
}

static bool is_slab_open(struct vdo_slab *slab)
{
	return (!vdo_is_state_quiescing(&slab->state) &&
		!vdo_is_state_quiescent(&slab->state));
}

/**
 * must_make_entries_to_flush() - Check whether there are entry waiters which should delay a flush.
 * @journal: The journal to check.
 *
 * Return: true if there are no entry waiters, or if the slab is unrecovered.
 */
static inline bool __must_check must_make_entries_to_flush(struct slab_journal *journal)
{
	return ((journal->slab->status != VDO_SLAB_REBUILDING) &&
		vdo_waitq_has_waiters(&journal->entry_waiters));
}

/**
 * is_reaping() - Check whether a reap is currently in progress.
 * @journal: The journal which may be reaping.
 *
 * Return: true if the journal is reaping.
 */
static inline bool __must_check is_reaping(struct slab_journal *journal)
{
	return (journal->head != journal->unreapable);
}

/**
 * initialize_tail_block() - Initialize tail block as a new block.
 * @journal: The journal whose tail block is being initialized.
 */
static void initialize_tail_block(struct slab_journal *journal)
{
	struct slab_journal_block_header *header = &journal->tail_header;

	header->sequence_number = journal->tail;
	header->entry_count = 0;
	header->has_block_map_increments = false;
}

/**
 * initialize_journal_state() - Set all journal fields appropriately to start journaling.
 * @journal: The journal to be reset, based on its tail sequence number.
 */
static void initialize_journal_state(struct slab_journal *journal)
{
	journal->unreapable = journal->head;
	journal->reap_lock = get_lock(journal, journal->unreapable);
	journal->next_commit = journal->tail;
	journal->summarized = journal->last_summarized = journal->tail;
	initialize_tail_block(journal);
}

/**
 * block_is_full() - Check whether a journal block is full.
 * @journal: The slab journal for the block.
 *
 * Return: true if the tail block is full.
 */
static bool __must_check block_is_full(struct slab_journal *journal)
{
	journal_entry_count_t count = journal->tail_header.entry_count;

	return (journal->tail_header.has_block_map_increments ?
		(journal->full_entries_per_block == count) :
		(journal->entries_per_block == count));
}

static void add_entries(struct slab_journal *journal);
static void update_tail_block_location(struct slab_journal *journal);
static void release_journal_locks(struct vdo_waiter *waiter, void *context);

/**
 * is_slab_journal_blank() - Check whether a slab's journal is blank.
 *
 * A slab journal is blank if it has never had any entries recorded in it.
 *
 * Return: true if the slab's journal has never been modified.
 */
static bool is_slab_journal_blank(const struct vdo_slab *slab)
{
	return ((slab->journal.tail == 1) &&
		(slab->journal.tail_header.entry_count == 0));
}

/**
 * mark_slab_journal_dirty() - Put a slab journal on the dirty ring of its allocator in the correct
 *                             order.
 * @journal: The journal to be marked dirty.
 * @lock: The recovery journal lock held by the slab journal.
 */
static void mark_slab_journal_dirty(struct slab_journal *journal, sequence_number_t lock)
{
	struct slab_journal *dirty_journal;
	struct list_head *dirty_list = &journal->slab->allocator->dirty_slab_journals;

	ASSERT_LOG_ONLY(journal->recovery_lock == 0, "slab journal was clean");

	journal->recovery_lock = lock;
	list_for_each_entry_reverse(dirty_journal, dirty_list, dirty_entry) {
		if (dirty_journal->recovery_lock <= journal->recovery_lock)
			break;
	}

	list_move_tail(&journal->dirty_entry, dirty_journal->dirty_entry.next);
}

static void mark_slab_journal_clean(struct slab_journal *journal)
{
	journal->recovery_lock = 0;
	list_del_init(&journal->dirty_entry);
}

static void check_if_slab_drained(struct vdo_slab *slab)
{
	bool read_only;
	struct slab_journal *journal = &slab->journal;
	const struct admin_state_code *code;

	if (!vdo_is_state_draining(&slab->state) ||
	    must_make_entries_to_flush(journal) ||
	    is_reaping(journal) ||
	    journal->waiting_to_commit ||
	    !list_empty(&journal->uncommitted_blocks) ||
	    journal->updating_slab_summary ||
	    (slab->active_count > 0))
		return;

	/* When not suspending or recovering, the slab must be clean. */
	code = vdo_get_admin_state_code(&slab->state);
	read_only = vdo_is_read_only(slab->allocator->depot->vdo);
	if (!read_only &&
	    vdo_waitq_has_waiters(&slab->dirty_blocks) &&
	    (code != VDO_ADMIN_STATE_SUSPENDING) &&
	    (code != VDO_ADMIN_STATE_RECOVERING))
		return;

	vdo_finish_draining_with_result(&slab->state,
					(read_only ? VDO_READ_ONLY : VDO_SUCCESS));
}

/* FULLNESS HINT COMPUTATION */

/**
 * compute_fullness_hint() - Translate a slab's free block count into a 'fullness hint' that can be
 *                           stored in a slab_summary_entry's 7 bits that are dedicated to its free
 *                           count.
 * @depot: The depot whose summary being updated.
 * @free_blocks: The number of free blocks.
 *
 * Note: the number of free blocks must be strictly less than 2^23 blocks, even though
 * theoretically slabs could contain precisely 2^23 blocks; there is an assumption that at least
 * one block is used by metadata. This assumption is necessary; otherwise, the fullness hint might
 * overflow. The fullness hint formula is roughly (fullness >> 16) & 0x7f, but (2^23 >> 16) & 0x7f
 * is 0, which would make it impossible to distinguish completely full from completely empty.
 *
 * Return: A fullness hint, which can be stored in 7 bits.
 */
static u8 __must_check compute_fullness_hint(struct slab_depot *depot,
					     block_count_t free_blocks)
{
	block_count_t hint;

	ASSERT_LOG_ONLY((free_blocks < (1 << 23)), "free blocks must be less than 2^23");

	if (free_blocks == 0)
		return 0;

	hint = free_blocks >> depot->hint_shift;
	return ((hint == 0) ? 1 : hint);
}

/**
 * check_summary_drain_complete() - Check whether an allocators summary has finished draining.
 */
static void check_summary_drain_complete(struct block_allocator *allocator)
{
	if (!vdo_is_state_draining(&allocator->summary_state) ||
	    (allocator->summary_write_count > 0))
		return;

	vdo_finish_operation(&allocator->summary_state,
			     (vdo_is_read_only(allocator->depot->vdo) ?
			      VDO_READ_ONLY : VDO_SUCCESS));
}

/**
 * notify_summary_waiters() - Wake all the waiters in a given queue.
 * @allocator: The block allocator summary which owns the queue.
 * @queue: The queue to notify.
 */
static void notify_summary_waiters(struct block_allocator *allocator,
				   struct vdo_wait_queue *queue)
{
	int result = (vdo_is_read_only(allocator->depot->vdo) ?
		      VDO_READ_ONLY : VDO_SUCCESS);

	vdo_waitq_notify_all_waiters(queue, NULL, &result);
}

static void launch_write(struct slab_summary_block *summary_block);

/**
 * finish_updating_slab_summary_block() - Finish processing a block which attempted to write,
 *                                        whether or not the attempt succeeded.
 * @block: The block.
 */
static void finish_updating_slab_summary_block(struct slab_summary_block *block)
{
	notify_summary_waiters(block->allocator, &block->current_update_waiters);
	block->writing = false;
	block->allocator->summary_write_count--;
	if (vdo_waitq_has_waiters(&block->next_update_waiters))
		launch_write(block);
	else
		check_summary_drain_complete(block->allocator);
}

/**
 * finish_update() - This is the callback for a successful summary block write.
 * @completion: The write vio.
 */
static void finish_update(struct vdo_completion *completion)
{
	struct slab_summary_block *block =
		container_of(as_vio(completion), struct slab_summary_block, vio);

	atomic64_inc(&block->allocator->depot->summary_statistics.blocks_written);
	finish_updating_slab_summary_block(block);
}

/**
 * handle_write_error() - Handle an error writing a slab summary block.
 * @completion: The write VIO.
 */
static void handle_write_error(struct vdo_completion *completion)
{
	struct slab_summary_block *block =
		container_of(as_vio(completion), struct slab_summary_block, vio);

	vio_record_metadata_io_error(as_vio(completion));
	vdo_enter_read_only_mode(completion->vdo, completion->result);
	finish_updating_slab_summary_block(block);
}

static void write_slab_summary_endio(struct bio *bio)
{
	struct vio *vio = bio->bi_private;
	struct slab_summary_block *block =
		container_of(vio, struct slab_summary_block, vio);

	continue_vio_after_io(vio, finish_update, block->allocator->thread_id);
}

/**
 * launch_write() - Write a slab summary block unless it is currently out for writing.
 * @block: The block that needs to be committed.
 */
static void launch_write(struct slab_summary_block *block)
{
	struct block_allocator *allocator = block->allocator;
	struct slab_depot *depot = allocator->depot;
	physical_block_number_t pbn;

	if (block->writing)
		return;

	allocator->summary_write_count++;
	vdo_waitq_transfer_all_waiters(&block->next_update_waiters,
				       &block->current_update_waiters);
	block->writing = true;

	if (vdo_is_read_only(depot->vdo)) {
		finish_updating_slab_summary_block(block);
		return;
	}

	memcpy(block->outgoing_entries, block->entries, VDO_BLOCK_SIZE);

	/*
	 * Flush before writing to ensure that the slab journal tail blocks and reference updates
	 * covered by this summary update are stable. Otherwise, a subsequent recovery could
	 * encounter a slab summary update that refers to a slab journal tail block that has not
	 * actually been written. In such cases, the slab journal referenced will be treated as
	 * empty, causing any data within the slab which predates the existing recovery journal
	 * entries to be lost.
	 */
	pbn = (depot->summary_origin +
	       (VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE * allocator->zone_number) +
	       block->index);
	vdo_submit_metadata_vio(&block->vio, pbn, write_slab_summary_endio,
				handle_write_error, REQ_OP_WRITE | REQ_PREFLUSH);
}

/**
 * update_slab_summary_entry() - Update the entry for a slab.
 * @slab: The slab whose entry is to be updated
 * @waiter: The waiter that is updating the summary.
 * @tail_block_offset: The offset of the slab journal's tail block.
 * @load_ref_counts: Whether the reference counts must be loaded from disk on the vdo load.
 * @is_clean: Whether the slab is clean.
 * @free_blocks: The number of free blocks.
 */
static void update_slab_summary_entry(struct vdo_slab *slab, struct vdo_waiter *waiter,
				      tail_block_offset_t tail_block_offset,
				      bool load_ref_counts, bool is_clean,
				      block_count_t free_blocks)
{
	u8 index = slab->slab_number / VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK;
	struct block_allocator *allocator = slab->allocator;
	struct slab_summary_block *block = &allocator->summary_blocks[index];
	int result;
	struct slab_summary_entry *entry;

	if (vdo_is_read_only(block->vio.completion.vdo)) {
		result = VDO_READ_ONLY;
		waiter->callback(waiter, &result);
		return;
	}

	if (vdo_is_state_draining(&allocator->summary_state) ||
	    vdo_is_state_quiescent(&allocator->summary_state)) {
		result = VDO_INVALID_ADMIN_STATE;
		waiter->callback(waiter, &result);
		return;
	}

	entry = &allocator->summary_entries[slab->slab_number];
	*entry = (struct slab_summary_entry) {
		.tail_block_offset = tail_block_offset,
		.load_ref_counts = (entry->load_ref_counts || load_ref_counts),
		.is_dirty = !is_clean,
		.fullness_hint = compute_fullness_hint(allocator->depot, free_blocks),
	};
	vdo_waitq_enqueue_waiter(&block->next_update_waiters, waiter);
	launch_write(block);
}

/**
 * finish_reaping() - Actually advance the head of the journal now that any necessary flushes are
 *                    complete.
 * @journal: The journal to be reaped.
 */
static void finish_reaping(struct slab_journal *journal)
{
	journal->head = journal->unreapable;
	add_entries(journal);
	check_if_slab_drained(journal->slab);
}

static void reap_slab_journal(struct slab_journal *journal);

/**
 * complete_reaping() - Finish reaping now that we have flushed the lower layer and then try
 *                      reaping again in case we deferred reaping due to an outstanding vio.
 * @completion: The flush vio.
 */
static void complete_reaping(struct vdo_completion *completion)
{
	struct slab_journal *journal = completion->parent;

	return_vio_to_pool(journal->slab->allocator->vio_pool,
			   vio_as_pooled_vio(as_vio(vdo_forget(completion))));
	finish_reaping(journal);
	reap_slab_journal(journal);
}

/**
 * handle_flush_error() - Handle an error flushing the lower layer.
 * @completion: The flush vio.
 */
static void handle_flush_error(struct vdo_completion *completion)
{
	vio_record_metadata_io_error(as_vio(completion));
	vdo_enter_read_only_mode(completion->vdo, completion->result);
	complete_reaping(completion);
}

static void flush_endio(struct bio *bio)
{
	struct vio *vio = bio->bi_private;
	struct slab_journal *journal = vio->completion.parent;

	continue_vio_after_io(vio, complete_reaping,
			      journal->slab->allocator->thread_id);
}

/**
 * flush_for_reaping() - A waiter callback for getting a vio with which to flush the lower layer
 *                       prior to reaping.
 * @waiter: The journal as a flush waiter.
 * @context: The newly acquired flush vio.
 */
static void flush_for_reaping(struct vdo_waiter *waiter, void *context)
{
	struct slab_journal *journal =
		container_of(waiter, struct slab_journal, flush_waiter);
	struct pooled_vio *pooled = context;
	struct vio *vio = &pooled->vio;

	vio->completion.parent = journal;
	vdo_submit_flush_vio(vio, flush_endio, handle_flush_error);
}

/**
 * reap_slab_journal() - Conduct a reap on a slab journal to reclaim unreferenced blocks.
 * @journal: The slab journal.
 */
static void reap_slab_journal(struct slab_journal *journal)
{
	bool reaped = false;

	if (is_reaping(journal)) {
		/* We already have a reap in progress so wait for it to finish. */
		return;
	}

	if ((journal->slab->status != VDO_SLAB_REBUILT) ||
	    !vdo_is_state_normal(&journal->slab->state) ||
	    vdo_is_read_only(journal->slab->allocator->depot->vdo)) {
		/*
		 * We must not reap in the first two cases, and there's no point in read-only mode.
		 */
		return;
	}

	/*
	 * Start reclaiming blocks only when the journal head has no references. Then stop when a
	 * block is referenced or reap reaches the most recently written block, referenced by the
	 * slab summary, which has the sequence number just before the tail.
	 */
	while ((journal->unreapable < journal->tail) && (journal->reap_lock->count == 0)) {
		reaped = true;
		journal->unreapable++;
		journal->reap_lock++;
		if (journal->reap_lock == &journal->locks[journal->size])
			journal->reap_lock = &journal->locks[0];
	}

	if (!reaped)
		return;

	/*
	 * It is never safe to reap a slab journal block without first issuing a flush, regardless
	 * of whether a user flush has been received or not. In the absence of the flush, the
	 * reference block write which released the locks allowing the slab journal to reap may not
	 * be persisted. Although slab summary writes will eventually issue flushes, multiple slab
	 * journal block writes can be issued while previous slab summary updates have not yet been
	 * made. Even though those slab journal block writes will be ignored if the slab summary
	 * update is not persisted, they may still overwrite the to-be-reaped slab journal block
	 * resulting in a loss of reference count updates.
	 */
	journal->flush_waiter.callback = flush_for_reaping;
	acquire_vio_from_pool(journal->slab->allocator->vio_pool,
			      &journal->flush_waiter);
}

/**
 * adjust_slab_journal_block_reference() - Adjust the reference count for a slab journal block.
 * @journal: The slab journal.
 * @sequence_number: The journal sequence number of the referenced block.
 * @adjustment: Amount to adjust the reference counter.
 *
 * Note that when the adjustment is negative, the slab journal will be reaped.
 */
static void adjust_slab_journal_block_reference(struct slab_journal *journal,
						sequence_number_t sequence_number,
						int adjustment)
{
	struct journal_lock *lock;

	if (sequence_number == 0)
		return;

	if (journal->slab->status == VDO_SLAB_REPLAYING) {
		/* Locks should not be used during offline replay. */
		return;
	}

	ASSERT_LOG_ONLY((adjustment != 0), "adjustment must be non-zero");
	lock = get_lock(journal, sequence_number);
	if (adjustment < 0) {
		ASSERT_LOG_ONLY((-adjustment <= lock->count),
				"adjustment %d of lock count %u for slab journal block %llu must not underflow",
				adjustment, lock->count,
				(unsigned long long) sequence_number);
	}

	lock->count += adjustment;
	if (lock->count == 0)
		reap_slab_journal(journal);
}

/**
 * release_journal_locks() - Callback invoked after a slab summary update completes.
 * @waiter: The slab summary waiter that has just been notified.
 * @context: The result code of the update.
 *
 * Registered in the constructor on behalf of update_tail_block_location().
 *
 * Implements waiter_callback_fn.
 */
static void release_journal_locks(struct vdo_waiter *waiter, void *context)
{
	sequence_number_t first, i;
	struct slab_journal *journal =
		container_of(waiter, struct slab_journal, slab_summary_waiter);
	int result = *((int *) context);

	if (result != VDO_SUCCESS) {
		if (result != VDO_READ_ONLY) {
			/*
			 * Don't bother logging what might be lots of errors if we are already in
			 * read-only mode.
			 */
			uds_log_error_strerror(result, "failed slab summary update %llu",
					       (unsigned long long) journal->summarized);
		}

		journal->updating_slab_summary = false;
		vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result);
		check_if_slab_drained(journal->slab);
		return;
	}

	if (journal->partial_write_in_progress && (journal->summarized == journal->tail)) {
		journal->partial_write_in_progress = false;
		add_entries(journal);
	}

	first = journal->last_summarized;
	journal->last_summarized = journal->summarized;
	for (i = journal->summarized - 1; i >= first; i--) {
		/*
		 * Release the lock the summarized block held on the recovery journal. (During
		 * replay, recovery_start will always be 0.)
		 */
		if (journal->recovery_journal != NULL) {
			zone_count_t zone_number = journal->slab->allocator->zone_number;
			struct journal_lock *lock = get_lock(journal, i);

			vdo_release_recovery_journal_block_reference(journal->recovery_journal,
								     lock->recovery_start,
								     VDO_ZONE_TYPE_PHYSICAL,
								     zone_number);
		}

		/*
		 * Release our own lock against reaping for blocks that are committed. (This
		 * function will not change locks during replay.)
		 */
		adjust_slab_journal_block_reference(journal, i, -1);
	}

	journal->updating_slab_summary = false;

	reap_slab_journal(journal);

	/* Check if the slab summary needs to be updated again. */
	update_tail_block_location(journal);
}

/**
 * update_tail_block_location() - Update the tail block location in the slab summary, if necessary.
 * @journal: The slab journal that is updating its tail block location.
 */
static void update_tail_block_location(struct slab_journal *journal)
{
	block_count_t free_block_count;
	struct vdo_slab *slab = journal->slab;

	if (journal->updating_slab_summary ||
	    vdo_is_read_only(journal->slab->allocator->depot->vdo) ||
	    (journal->last_summarized >= journal->next_commit)) {
		check_if_slab_drained(slab);
		return;
	}

	if (slab->status != VDO_SLAB_REBUILT) {
		u8 hint = slab->allocator->summary_entries[slab->slab_number].fullness_hint;

		free_block_count = ((block_count_t) hint) << slab->allocator->depot->hint_shift;
	} else {
		free_block_count = slab->free_blocks;
	}

	journal->summarized = journal->next_commit;
	journal->updating_slab_summary = true;

	/*
	 * Update slab summary as dirty.
	 * vdo_slab journal can only reap past sequence number 1 when all the ref counts for this
	 * slab have been written to the layer. Therefore, indicate that the ref counts must be
	 * loaded when the journal head has reaped past sequence number 1.
	 */
	update_slab_summary_entry(slab, &journal->slab_summary_waiter,
				  journal->summarized % journal->size,
				  (journal->head > 1), false, free_block_count);
}

/**
 * reopen_slab_journal() - Reopen a slab's journal by emptying it and then adding pending entries.
 */
static void reopen_slab_journal(struct vdo_slab *slab)
{
	struct slab_journal *journal = &slab->journal;
	sequence_number_t block;

	ASSERT_LOG_ONLY(journal->tail_header.entry_count == 0,
			"vdo_slab journal's active block empty before reopening");
	journal->head = journal->tail;
	initialize_journal_state(journal);

	/* Ensure no locks are spuriously held on an empty journal. */
	for (block = 1; block <= journal->size; block++) {
		ASSERT_LOG_ONLY((get_lock(journal, block)->count == 0),
				"Scrubbed journal's block %llu is not locked",
				(unsigned long long) block);
	}

	add_entries(journal);
}

static sequence_number_t get_committing_sequence_number(const struct pooled_vio *vio)
{
	const struct packed_slab_journal_block *block =
		(const struct packed_slab_journal_block *) vio->vio.data;

	return __le64_to_cpu(block->header.sequence_number);
}

/**
 * complete_write() - Handle post-commit processing.
 * @completion: The write vio as a completion.
 *
 * This is the callback registered by write_slab_journal_block().
 */
static void complete_write(struct vdo_completion *completion)
{
	int result = completion->result;
	struct pooled_vio *pooled = vio_as_pooled_vio(as_vio(completion));
	struct slab_journal *journal = completion->parent;
	sequence_number_t committed = get_committing_sequence_number(pooled);

	list_del_init(&pooled->list_entry);
	return_vio_to_pool(journal->slab->allocator->vio_pool, vdo_forget(pooled));

	if (result != VDO_SUCCESS) {
		vio_record_metadata_io_error(as_vio(completion));
		uds_log_error_strerror(result, "cannot write slab journal block %llu",
				       (unsigned long long) committed);
		vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result);
		check_if_slab_drained(journal->slab);
		return;
	}

	WRITE_ONCE(journal->events->blocks_written, journal->events->blocks_written + 1);

	if (list_empty(&journal->uncommitted_blocks)) {
		/* If no blocks are outstanding, then the commit point is at the tail. */
		journal->next_commit = journal->tail;
	} else {
		/* The commit point is always the beginning of the oldest incomplete block. */
		pooled = container_of(journal->uncommitted_blocks.next,
				      struct pooled_vio, list_entry);
		journal->next_commit = get_committing_sequence_number(pooled);
	}

	update_tail_block_location(journal);
}

static void write_slab_journal_endio(struct bio *bio)
{
	struct vio *vio = bio->bi_private;
	struct slab_journal *journal = vio->completion.parent;

	continue_vio_after_io(vio, complete_write, journal->slab->allocator->thread_id);
}

/**
 * write_slab_journal_block() - Write a slab journal block.
 * @waiter: The vio pool waiter which was just notified.
 * @context: The vio pool entry for the write.
 *
 * Callback from acquire_vio_from_pool() registered in commit_tail().
 */
static void write_slab_journal_block(struct vdo_waiter *waiter, void *context)
{
	struct pooled_vio *pooled = context;
	struct vio *vio = &pooled->vio;
	struct slab_journal *journal =
		container_of(waiter, struct slab_journal, resource_waiter);
	struct slab_journal_block_header *header = &journal->tail_header;
	int unused_entries = journal->entries_per_block - header->entry_count;
	physical_block_number_t block_number;
	const struct admin_state_code *operation;

	header->head = journal->head;
	list_add_tail(&pooled->list_entry, &journal->uncommitted_blocks);
	vdo_pack_slab_journal_block_header(header, &journal->block->header);

	/* Copy the tail block into the vio. */
	memcpy(pooled->vio.data, journal->block, VDO_BLOCK_SIZE);

	ASSERT_LOG_ONLY(unused_entries >= 0, "vdo_slab journal block is not overfull");
	if (unused_entries > 0) {
		/*
		 * Release the per-entry locks for any unused entries in the block we are about to
		 * write.
		 */
		adjust_slab_journal_block_reference(journal, header->sequence_number,
						    -unused_entries);
		journal->partial_write_in_progress = !block_is_full(journal);
	}

	block_number = journal->slab->journal_origin +
		(header->sequence_number % journal->size);
	vio->completion.parent = journal;

	/*
	 * This block won't be read in recovery until the slab summary is updated to refer to it.
	 * The slab summary update does a flush which is sufficient to protect us from corruption
	 * due to out of order slab journal, reference block, or block map writes.
	 */
	vdo_submit_metadata_vio(vdo_forget(vio), block_number, write_slab_journal_endio,
				complete_write, REQ_OP_WRITE);

	/* Since the write is submitted, the tail block structure can be reused. */
	journal->tail++;
	initialize_tail_block(journal);
	journal->waiting_to_commit = false;

	operation = vdo_get_admin_state_code(&journal->slab->state);
	if (operation == VDO_ADMIN_STATE_WAITING_FOR_RECOVERY) {
		vdo_finish_operation(&journal->slab->state,
				     (vdo_is_read_only(journal->slab->allocator->depot->vdo) ?
				      VDO_READ_ONLY : VDO_SUCCESS));
		return;
	}

	add_entries(journal);
}

/**
 * commit_tail() - Commit the tail block of the slab journal.
 * @journal: The journal whose tail block should be committed.
 */
static void commit_tail(struct slab_journal *journal)
{
	if ((journal->tail_header.entry_count == 0) && must_make_entries_to_flush(journal)) {
		/*
		 * There are no entries at the moment, but there are some waiters, so defer
		 * initiating the flush until those entries are ready to write.
		 */
		return;
	}

	if (vdo_is_read_only(journal->slab->allocator->depot->vdo) ||
	    journal->waiting_to_commit ||
	    (journal->tail_header.entry_count == 0)) {
		/*
		 * There is nothing to do since the tail block is empty, or writing, or the journal
		 * is in read-only mode.
		 */
		return;
	}

	/*
	 * Since we are about to commit the tail block, this journal no longer needs to be on the
	 * ring of journals which the recovery journal might ask to commit.
	 */
	mark_slab_journal_clean(journal);

	journal->waiting_to_commit = true;

	journal->resource_waiter.callback = write_slab_journal_block;
	acquire_vio_from_pool(journal->slab->allocator->vio_pool,
			      &journal->resource_waiter);
}

/**
 * encode_slab_journal_entry() - Encode a slab journal entry.
 * @tail_header: The unpacked header for the block.
 * @payload: The journal block payload to hold the entry.
 * @sbn: The slab block number of the entry to encode.
 * @operation: The type of the entry.
 * @increment: True if this is an increment.
 *
 * Exposed for unit tests.
 */
static void encode_slab_journal_entry(struct slab_journal_block_header *tail_header,
				      slab_journal_payload *payload,
				      slab_block_number sbn,
				      enum journal_operation operation,
				      bool increment)
{
	journal_entry_count_t entry_number = tail_header->entry_count++;

	if (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) {
		if (!tail_header->has_block_map_increments) {
			memset(payload->full_entries.entry_types, 0,
			       VDO_SLAB_JOURNAL_ENTRY_TYPES_SIZE);
			tail_header->has_block_map_increments = true;
		}

		payload->full_entries.entry_types[entry_number / 8] |=
			((u8)1 << (entry_number % 8));
	}

	vdo_pack_slab_journal_entry(&payload->entries[entry_number], sbn, increment);
}

/**
 * expand_journal_point() - Convert a recovery journal journal_point which refers to both an
 *                          increment and a decrement to a single point which refers to one or the
 *                          other.
 * @recovery_point: The journal point to convert.
 * @increment: Whether the current entry is an increment.
 *
 * Return: The expanded journal point
 *
 * Because each data_vio has but a single recovery journal point, but may need to make both
 * increment and decrement entries in the same slab journal. In order to distinguish the two
 * entries, the entry count of the expanded journal point is twice the actual recovery journal
 * entry count for increments, and one more than that for decrements.
 */
static struct journal_point expand_journal_point(struct journal_point recovery_point,
						 bool increment)
{
	recovery_point.entry_count *= 2;
	if (!increment)
		recovery_point.entry_count++;

	return recovery_point;
}

/**
 * add_entry() - Actually add an entry to the slab journal, potentially firing off a write if a
 *               block becomes full.
 * @journal: The slab journal to append to.
 * @pbn: The pbn being adjusted.
 * @operation: The type of entry to make.
 * @increment: True if this is an increment.
 * @recovery_point: The expanded recovery point.
 *
 * This function is synchronous.
 */
static void add_entry(struct slab_journal *journal, physical_block_number_t pbn,
		      enum journal_operation operation, bool increment,
		      struct journal_point recovery_point)
{
	struct packed_slab_journal_block *block = journal->block;
	int result;

	result = ASSERT(vdo_before_journal_point(&journal->tail_header.recovery_point,
						 &recovery_point),
			"recovery journal point is monotonically increasing, recovery point: %llu.%u, block recovery point: %llu.%u",
			(unsigned long long) recovery_point.sequence_number,
			recovery_point.entry_count,
			(unsigned long long) journal->tail_header.recovery_point.sequence_number,
			journal->tail_header.recovery_point.entry_count);
	if (result != VDO_SUCCESS) {
		vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo, result);
		return;
	}

	if (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING) {
		result = ASSERT((journal->tail_header.entry_count <
				 journal->full_entries_per_block),
				"block has room for full entries");
		if (result != VDO_SUCCESS) {
			vdo_enter_read_only_mode(journal->slab->allocator->depot->vdo,
						 result);
			return;
		}
	}

	encode_slab_journal_entry(&journal->tail_header, &block->payload,
				  pbn - journal->slab->start, operation, increment);
	journal->tail_header.recovery_point = recovery_point;
	if (block_is_full(journal))
		commit_tail(journal);
}

static inline block_count_t journal_length(const struct slab_journal *journal)
{
	return journal->tail - journal->head;
}

/**
 * vdo_attempt_replay_into_slab() - Replay a recovery journal entry into a slab's journal.
 * @slab: The slab to play into.
 * @pbn: The PBN for the entry.
 * @operation: The type of entry to add.
 * @increment: True if this entry is an increment.
 * @recovery_point: The recovery journal point corresponding to this entry.
 * @parent: The completion to notify when there is space to add the entry if the entry could not be
 *          added immediately.
 *
 * Return: true if the entry was added immediately.
 */
bool vdo_attempt_replay_into_slab(struct vdo_slab *slab, physical_block_number_t pbn,
				  enum journal_operation operation, bool increment,
				  struct journal_point *recovery_point,
				  struct vdo_completion *parent)
{
	struct slab_journal *journal = &slab->journal;
	struct slab_journal_block_header *header = &journal->tail_header;
	struct journal_point expanded = expand_journal_point(*recovery_point, increment);

	/* Only accept entries after the current recovery point. */
	if (!vdo_before_journal_point(&journal->tail_header.recovery_point, &expanded))
		return true;

	if ((header->entry_count >= journal->full_entries_per_block) &&
	    (header->has_block_map_increments || (operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING))) {
		/*
		 * The tail block does not have room for the entry we are attempting to add so
		 * commit the tail block now.
		 */
		commit_tail(journal);
	}

	if (journal->waiting_to_commit) {
		vdo_start_operation_with_waiter(&journal->slab->state,
						VDO_ADMIN_STATE_WAITING_FOR_RECOVERY,
						parent, NULL);
		return false;
	}

	if (journal_length(journal) >= journal->size) {
		/*
		 * We must have reaped the current head before the crash, since the blocked
		 * threshold keeps us from having more entries than fit in a slab journal; hence we
		 * can just advance the head (and unreapable block), as needed.
		 */
		journal->head++;
		journal->unreapable++;
	}

	if (journal->slab->status == VDO_SLAB_REBUILT)
		journal->slab->status = VDO_SLAB_REPLAYING;

	add_entry(journal, pbn, operation, increment, expanded);
	return true;
}

/**
 * requires_reaping() - Check whether the journal must be reaped before adding new entries.
 * @journal: The journal to check.
 *
 * Return: true if the journal must be reaped.
 */
static bool requires_reaping(const struct slab_journal *journal)
{
	return (journal_length(journal) >= journal->blocking_threshold);
}

/** finish_summary_update() - A waiter callback that resets the writing state of a slab. */
static void finish_summary_update(struct vdo_waiter *waiter, void *context)
{
	struct vdo_slab *slab = container_of(waiter, struct vdo_slab, summary_waiter);
	int result = *((int *) context);

	slab->active_count--;

	if ((result != VDO_SUCCESS) && (result != VDO_READ_ONLY)) {
		uds_log_error_strerror(result, "failed to update slab summary");
		vdo_enter_read_only_mode(slab->allocator->depot->vdo, result);
	}

	check_if_slab_drained(slab);
}

static void write_reference_block(struct vdo_waiter *waiter, void *context);

/**
 * launch_reference_block_write() - Launch the write of a dirty reference block by first acquiring
 *                                  a VIO for it from the pool.
 * @waiter: The waiter of the block which is starting to write.
 * @context: The parent slab of the block.
 *
 * This can be asynchronous since the writer will have to wait if all VIOs in the pool are
 * currently in use.
 */
static void launch_reference_block_write(struct vdo_waiter *waiter, void *context)
{
	struct vdo_slab *slab = context;

	if (vdo_is_read_only(slab->allocator->depot->vdo))
		return;

	slab->active_count++;
	container_of(waiter, struct reference_block, waiter)->is_writing = true;
	waiter->callback = write_reference_block;
	acquire_vio_from_pool(slab->allocator->vio_pool, waiter);
}

static void save_dirty_reference_blocks(struct vdo_slab *slab)
{
	vdo_waitq_notify_all_waiters(&slab->dirty_blocks,
				     launch_reference_block_write, slab);
	check_if_slab_drained(slab);
}

/**
 * finish_reference_block_write() - After a reference block has written, clean it, release its
 *                                  locks, and return its VIO to the pool.
 * @completion: The VIO that just finished writing.
 */
static void finish_reference_block_write(struct vdo_completion *completion)
{
	struct vio *vio = as_vio(completion);
	struct pooled_vio *pooled = vio_as_pooled_vio(vio);
	struct reference_block *block = completion->parent;
	struct vdo_slab *slab = block->slab;
	tail_block_offset_t offset;

	slab->active_count--;

	/* Release the slab journal lock. */
	adjust_slab_journal_block_reference(&slab->journal,
					    block->slab_journal_lock_to_release, -1);
	return_vio_to_pool(slab->allocator->vio_pool, pooled);

	/*
	 * We can't clear the is_writing flag earlier as releasing the slab journal lock may cause
	 * us to be dirtied again, but we don't want to double enqueue.
	 */
	block->is_writing = false;

	if (vdo_is_read_only(completion->vdo)) {
		check_if_slab_drained(slab);
		return;
	}

	/* Re-queue the block if it was re-dirtied while it was writing. */
	if (block->is_dirty) {
		vdo_waitq_enqueue_waiter(&block->slab->dirty_blocks, &block->waiter);
		if (vdo_is_state_draining(&slab->state)) {
			/* We must be saving, and this block will otherwise not be relaunched. */
			save_dirty_reference_blocks(slab);
		}

		return;
	}

	/*
	 * Mark the slab as clean in the slab summary if there are no dirty or writing blocks
	 * and no summary update in progress.
	 */
	if ((slab->active_count > 0) || vdo_waitq_has_waiters(&slab->dirty_blocks)) {
		check_if_slab_drained(slab);
		return;
	}

	offset = slab->allocator->summary_entries[slab->slab_number].tail_block_offset;
	slab->active_count++;
	slab->summary_waiter.callback = finish_summary_update;
	update_slab_summary_entry(slab, &slab->summary_waiter, offset,
				  true, true, slab->free_blocks);
}

/**
 * get_reference_counters_for_block() - Find the reference counters for a given block.
 * @block: The reference_block in question.
 *
 * Return: A pointer to the reference counters for this block.
 */
static vdo_refcount_t * __must_check get_reference_counters_for_block(struct reference_block *block)
{
	size_t block_index = block - block->slab->reference_blocks;

	return &block->slab->counters[block_index * COUNTS_PER_BLOCK];
}

/**
 * pack_reference_block() - Copy data from a reference block to a buffer ready to be written out.
 * @block: The block to copy.
 * @buffer: The char buffer to fill with the packed block.
 */
static void pack_reference_block(struct reference_block *block, void *buffer)
{
	struct packed_reference_block *packed = buffer;
	vdo_refcount_t *counters = get_reference_counters_for_block(block);
	sector_count_t i;
	struct packed_journal_point commit_point;

	vdo_pack_journal_point(&block->slab->slab_journal_point, &commit_point);

	for (i = 0; i < VDO_SECTORS_PER_BLOCK; i++) {
		packed->sectors[i].commit_point = commit_point;
		memcpy(packed->sectors[i].counts, counters + (i * COUNTS_PER_SECTOR),
		       (sizeof(vdo_refcount_t) * COUNTS_PER_SECTOR));
	}
}

static void write_reference_block_endio(struct bio *bio)
{
	struct vio *vio = bio->bi_private;
	struct reference_block *block = vio->completion.parent;
	thread_id_t thread_id = block->slab->allocator->thread_id;

	continue_vio_after_io(vio, finish_reference_block_write, thread_id);
}

/**
 * handle_io_error() - Handle an I/O error reading or writing a reference count block.
 * @completion: The VIO doing the I/O as a completion.
 */
static void handle_io_error(struct vdo_completion *completion)
{
	int result = completion->result;
	struct vio *vio = as_vio(completion);
	struct vdo_slab *slab = ((struct reference_block *) completion->parent)->slab;

	vio_record_metadata_io_error(vio);
	return_vio_to_pool(slab->allocator->vio_pool, vio_as_pooled_vio(vio));
	slab->active_count--;
	vdo_enter_read_only_mode(slab->allocator->depot->vdo, result);
	check_if_slab_drained(slab);
}

/**
 * write_reference_block() - After a dirty block waiter has gotten a VIO from the VIO pool, copy
 *                           its counters and associated data into the VIO, and launch the write.
 * @waiter: The waiter of the dirty block.
 * @context: The VIO returned by the pool.
 */
static void write_reference_block(struct vdo_waiter *waiter, void *context)
{
	size_t block_offset;
	physical_block_number_t pbn;
	struct pooled_vio *pooled = context;
	struct vdo_completion *completion = &pooled->vio.completion;
	struct reference_block *block = container_of(waiter, struct reference_block,
						     waiter);

	pack_reference_block(block, pooled->vio.data);
	block_offset = (block - block->slab->reference_blocks);
	pbn = (block->slab->ref_counts_origin + block_offset);
	block->slab_journal_lock_to_release = block->slab_journal_lock;
	completion->parent = block;

	/*
	 * Mark the block as clean, since we won't be committing any updates that happen after this
	 * moment. As long as VIO order is preserved, two VIOs updating this block at once will not
	 * cause complications.
	 */
	block->is_dirty = false;

	/*
	 * Flush before writing to ensure that the recovery journal and slab journal entries which
	 * cover this reference update are stable. This prevents data corruption that can be caused
	 * by out of order writes.
	 */
	WRITE_ONCE(block->slab->allocator->ref_counts_statistics.blocks_written,
		   block->slab->allocator->ref_counts_statistics.blocks_written + 1);

	completion->callback_thread_id = ((struct block_allocator *) pooled->context)->thread_id;
	vdo_submit_metadata_vio(&pooled->vio, pbn, write_reference_block_endio,
				handle_io_error, REQ_OP_WRITE | REQ_PREFLUSH);
}

static void reclaim_journal_space(struct slab_journal *journal)
{
	block_count_t length = journal_length(journal);
	struct vdo_slab *slab = journal->slab;
	block_count_t write_count = vdo_waitq_num_waiters(&slab->dirty_blocks);
	block_count_t written;

	if ((length < journal->flushing_threshold) || (write_count == 0))
		return;

	/* The slab journal is over the first threshold, schedule some reference block writes. */
	WRITE_ONCE(journal->events->flush_count, journal->events->flush_count + 1);
	if (length < journal->flushing_deadline) {
		/* Schedule more writes the closer to the deadline we get. */
		write_count /= journal->flushing_deadline - length + 1;
		write_count = max_t(block_count_t, write_count, 1);
	}

	for (written = 0; written < write_count; written++) {
		vdo_waitq_notify_next_waiter(&slab->dirty_blocks,
					     launch_reference_block_write, slab);
	}
}

/**
 * reference_count_to_status() - Convert a reference count to a reference status.
 * @count: The count to convert.
 *
 * Return: The appropriate reference status.
 */
static enum reference_status __must_check reference_count_to_status(vdo_refcount_t count)
{
	if (count == EMPTY_REFERENCE_COUNT)
		return RS_FREE;
	else if (count == 1)
		return RS_SINGLE;
	else if (count == PROVISIONAL_REFERENCE_COUNT)
		return RS_PROVISIONAL;
	else
		return RS_SHARED;
}

/**
 * dirty_block() - Mark a reference count block as dirty, potentially adding it to the dirty queue
 *                 if it wasn't already dirty.
 * @block: The reference block to mark as dirty.
 */
static void dirty_block(struct reference_block *block)
{
	if (block->is_dirty)
		return;

	block->is_dirty = true;
	if (!block->is_writing)
		vdo_waitq_enqueue_waiter(&block->slab->dirty_blocks, &block->waiter);
}

/**
 * get_reference_block() - Get the reference block that covers the given block index.
 */
static struct reference_block * __must_check get_reference_block(struct vdo_slab *slab,
								 slab_block_number index)
{
	return &slab->reference_blocks[index / COUNTS_PER_BLOCK];
}

/**
 * slab_block_number_from_pbn() - Determine the index within the slab of a particular physical
 *                                block number.
 * @slab: The slab.
 * @physical_block_number: The physical block number.
 * @slab_block_number_ptr: A pointer to the slab block number.
 *
 * Return: VDO_SUCCESS or an error code.
 */
static int __must_check slab_block_number_from_pbn(struct vdo_slab *slab,
						   physical_block_number_t pbn,
						   slab_block_number *slab_block_number_ptr)
{
	u64 slab_block_number;

	if (pbn < slab->start)
		return VDO_OUT_OF_RANGE;

	slab_block_number = pbn - slab->start;
	if (slab_block_number >= slab->allocator->depot->slab_config.data_blocks)
		return VDO_OUT_OF_RANGE;

	*slab_block_number_ptr = slab_block_number;
	return VDO_SUCCESS;
}

/**
 * get_reference_counter() - Get the reference counter that covers the given physical block number.
 * @slab: The slab to query.
 * @pbn: The physical block number.
 * @counter_ptr: A pointer to the reference counter.
 */
static int __must_check get_reference_counter(struct vdo_slab *slab,
					      physical_block_number_t pbn,
					      vdo_refcount_t **counter_ptr)
{
	slab_block_number index;
	int result = slab_block_number_from_pbn(slab, pbn, &index);

	if (result != VDO_SUCCESS)
		return result;

	*counter_ptr = &slab->counters[index];

	return VDO_SUCCESS;
}

static unsigned int calculate_slab_priority(struct vdo_slab *slab)
{
	block_count_t free_blocks = slab->free_blocks;
	unsigned int unopened_slab_priority = slab->allocator->unopened_slab_priority;
	unsigned int priority;

	/*
	 * Wholly full slabs must be the only ones with lowest priority, 0.
	 *
	 * Slabs that have never been opened (empty, newly initialized, and never been written to)
	 * have lower priority than previously opened slabs that have a significant number of free
	 * blocks. This ranking causes VDO to avoid writing physical blocks for the first time
	 * unless there are very few free blocks that have been previously written to.
	 *
	 * Since VDO doesn't discard blocks currently, reusing previously written blocks makes VDO
	 * a better client of any underlying storage that is thinly-provisioned (though discarding
	 * would be better).
	 *
	 * For all other slabs, the priority is derived from the logarithm of the number of free
	 * blocks. Slabs with the same order of magnitude of free blocks have the same priority.
	 * With 2^23 blocks, the priority will range from 1 to 25. The reserved
	 * unopened_slab_priority divides the range and is skipped by the logarithmic mapping.
	 */

	if (free_blocks == 0)
		return 0;

	if (is_slab_journal_blank(slab))
		return unopened_slab_priority;

	priority = (1 + ilog2(free_blocks));
	return ((priority < unopened_slab_priority) ? priority : priority + 1);
}

/*
 * Slabs are essentially prioritized by an approximation of the number of free blocks in the slab
 * so slabs with lots of free blocks will be opened for allocation before slabs that have few free
 * blocks.
 */
static void prioritize_slab(struct vdo_slab *slab)
{
	ASSERT_LOG_ONLY(list_empty(&slab->allocq_entry),
			"a slab must not already be on a ring when prioritizing");
	slab->priority = calculate_slab_priority(slab);
	vdo_priority_table_enqueue(slab->allocator->prioritized_slabs,
				   slab->priority, &slab->allocq_entry);
}

/**
 * adjust_free_block_count() - Adjust the free block count and (if needed) reprioritize the slab.
 * @incremented: true if the free block count went up.
 */
static void adjust_free_block_count(struct vdo_slab *slab, bool incremented)
{
	struct block_allocator *allocator = slab->allocator;

	WRITE_ONCE(allocator->allocated_blocks,
		   allocator->allocated_blocks + (incremented ? -1 : 1));

	/* The open slab doesn't need to be reprioritized until it is closed. */
	if (slab == allocator->open_slab)
		return;

	/* Don't bother adjusting the priority table if unneeded. */
	if (slab->priority == calculate_slab_priority(slab))
		return;

	/*
	 * Reprioritize the slab to reflect the new free block count by removing it from the table
	 * and re-enqueuing it with the new priority.
	 */
	vdo_priority_table_remove(allocator->prioritized_slabs, &slab->allocq_entry);
	prioritize_slab(slab);
}

/**
 * increment_for_data() - Increment the reference count for a data block.
 * @slab: The slab which owns the block.
 * @block: The reference block which contains the block being updated.
 * @block_number: The block to update.
 * @old_status: The reference status of the data block before this increment.
 * @lock: The pbn_lock associated with this increment (may be NULL).
 * @counter_ptr: A pointer to the count for the data block (in, out).
 * @adjust_block_count: Whether to update the allocator's free block count.
 *
 * Return: VDO_SUCCESS or an error.
 */
static int increment_for_data(struct vdo_slab *slab, struct reference_block *block,
			      slab_block_number block_number,
			      enum reference_status old_status,
			      struct pbn_lock *lock, vdo_refcount_t *counter_ptr,
			      bool adjust_block_count)
{
	switch (old_status) {
	case RS_FREE:
		*counter_ptr = 1;
		block->allocated_count++;
		slab->free_blocks--;
		if (adjust_block_count)
			adjust_free_block_count(slab, false);

		break;

	case RS_PROVISIONAL:
		*counter_ptr = 1;
		break;

	default:
		/* Single or shared */
		if (*counter_ptr >= MAXIMUM_REFERENCE_COUNT) {
			return uds_log_error_strerror(VDO_REF_COUNT_INVALID,
						      "Incrementing a block already having 254 references (slab %u, offset %u)",
						      slab->slab_number, block_number);
		}
		(*counter_ptr)++;
	}

	if (lock != NULL)
		vdo_unassign_pbn_lock_provisional_reference(lock);
	return VDO_SUCCESS;
}

/**
 * decrement_for_data() - Decrement the reference count for a data block.
 * @slab: The slab which owns the block.
 * @block: The reference block which contains the block being updated.
 * @block_number: The block to update.
 * @old_status: The reference status of the data block before this decrement.
 * @updater: The reference updater doing this operation in case we need to look up the pbn lock.
 * @lock: The pbn_lock associated with the block being decremented (may be NULL).
 * @counter_ptr: A pointer to the count for the data block (in, out).
 * @adjust_block_count: Whether to update the allocator's free block count.
 *
 * Return: VDO_SUCCESS or an error.
 */
static int decrement_for_data(struct vdo_slab *slab, struct reference_block *block,
			      slab_block_number block_number,
			      enum reference_status old_status,
			      struct reference_updater *updater,
			      vdo_refcount_t *counter_ptr, bool adjust_block_count)
{
	switch (old_status) {
	case RS_FREE:
		return uds_log_error_strerror(VDO_REF_COUNT_INVALID,
					      "Decrementing free block at offset %u in slab %u",
					      block_number, slab->slab_number);

	case RS_PROVISIONAL:
	case RS_SINGLE:
		if (updater->zpbn.zone != NULL) {
			struct pbn_lock *lock = vdo_get_physical_zone_pbn_lock(updater->zpbn.zone,
									       updater->zpbn.pbn);

			if (lock != NULL) {
				/*
				 * There is a read lock on this block, so the block must not become
				 * unreferenced.
				 */
				*counter_ptr = PROVISIONAL_REFERENCE_COUNT;
				vdo_assign_pbn_lock_provisional_reference(lock);
				break;
			}
		}

		*counter_ptr = EMPTY_REFERENCE_COUNT;
		block->allocated_count--;
		slab->free_blocks++;
		if (adjust_block_count)
			adjust_free_block_count(slab, true);

		break;

	default:
		/* Shared */
		(*counter_ptr)--;
	}

	return VDO_SUCCESS;
}

/**
 * increment_for_block_map() - Increment the reference count for a block map page.
 * @slab: The slab which owns the block.
 * @block: The reference block which contains the block being updated.
 * @block_number: The block to update.
 * @old_status: The reference status of the block before this increment.
 * @lock: The pbn_lock associated with this increment (may be NULL).
 * @normal_operation: Whether we are in normal operation vs. recovery or rebuild.
 * @counter_ptr: A pointer to the count for the block (in, out).
 * @adjust_block_count: Whether to update the allocator's free block count.
 *
 * All block map increments should be from provisional to MAXIMUM_REFERENCE_COUNT. Since block map
 * blocks never dedupe they should never be adjusted from any other state. The adjustment always
 * results in MAXIMUM_REFERENCE_COUNT as this value is used to prevent dedupe against block map
 * blocks.
 *
 * Return: VDO_SUCCESS or an error.
 */
static int increment_for_block_map(struct vdo_slab *slab, struct reference_block *block,
				   slab_block_number block_number,
				   enum reference_status old_status,
				   struct pbn_lock *lock, bool normal_operation,
				   vdo_refcount_t *counter_ptr, bool adjust_block_count)
{
	switch (old_status) {
	case RS_FREE:
		if (normal_operation) {
			return uds_log_error_strerror(VDO_REF_COUNT_INVALID,
						      "Incrementing unallocated block map block (slab %u, offset %u)",
						      slab->slab_number, block_number);
		}

		*counter_ptr = MAXIMUM_REFERENCE_COUNT;
		block->allocated_count++;
		slab->free_blocks--;
		if (adjust_block_count)
			adjust_free_block_count(slab, false);

		return VDO_SUCCESS;

	case RS_PROVISIONAL:
		if (!normal_operation)
			return uds_log_error_strerror(VDO_REF_COUNT_INVALID,
						      "Block map block had provisional reference during replay (slab %u, offset %u)",
						      slab->slab_number, block_number);

		*counter_ptr = MAXIMUM_REFERENCE_COUNT;
		if (lock != NULL)
			vdo_unassign_pbn_lock_provisional_reference(lock);
		return VDO_SUCCESS;

	default:
		return uds_log_error_strerror(VDO_REF_COUNT_INVALID,
					      "Incrementing a block map block which is already referenced %u times (slab %u, offset %u)",
					      *counter_ptr, slab->slab_number,
					      block_number);
	}
}

static bool __must_check is_valid_journal_point(const struct journal_point *point)
{
	return ((point != NULL) && (point->sequence_number > 0));
}

/**
 * update_reference_count() - Update the reference count of a block.
 * @slab: The slab which owns the block.
 * @block: The reference block which contains the block being updated.
 * @block_number: The block to update.
 * @slab_journal_point: The slab journal point at which this update is journaled.
 * @updater: The reference updater.
 * @normal_operation: Whether we are in normal operation vs. recovery or rebuild.
 * @adjust_block_count: Whether to update the slab's free block count.
 * @provisional_decrement_ptr: A pointer which will be set to true if this update was a decrement
 *                             of a provisional reference.
 *
 * Return: VDO_SUCCESS or an error.
 */
static int update_reference_count(struct vdo_slab *slab, struct reference_block *block,
				  slab_block_number block_number,
				  const struct journal_point *slab_journal_point,
				  struct reference_updater *updater,
				  bool normal_operation, bool adjust_block_count,
				  bool *provisional_decrement_ptr)
{
	vdo_refcount_t *counter_ptr = &slab->counters[block_number];
	enum reference_status old_status = reference_count_to_status(*counter_ptr);
	int result;

	if (!updater->increment) {
		result = decrement_for_data(slab, block, block_number, old_status,
					    updater, counter_ptr, adjust_block_count);
		if ((result == VDO_SUCCESS) && (old_status == RS_PROVISIONAL)) {
			if (provisional_decrement_ptr != NULL)
				*provisional_decrement_ptr = true;
			return VDO_SUCCESS;
		}
	} else if (updater->operation == VDO_JOURNAL_DATA_REMAPPING) {
		result = increment_for_data(slab, block, block_number, old_status,
					    updater->lock, counter_ptr, adjust_block_count);
	} else {
		result = increment_for_block_map(slab, block, block_number, old_status,
						 updater->lock, normal_operation,
						 counter_ptr, adjust_block_count);
	}

	if (result != VDO_SUCCESS)
		return result;

	if (is_valid_journal_point(slab_journal_point))
		slab->slab_journal_point = *slab_journal_point;

	return VDO_SUCCESS;
}

static int __must_check adjust_reference_count(struct vdo_slab *slab,
					       struct reference_updater *updater,
					       const struct journal_point *slab_journal_point)
{
	slab_block_number block_number;
	int result;
	struct reference_block *block;
	bool provisional_decrement = false;

	if (!is_slab_open(slab))
		return VDO_INVALID_ADMIN_STATE;

	result = slab_block_number_from_pbn(slab, updater->zpbn.pbn, &block_number);
	if (result != VDO_SUCCESS)
		return result;

	block = get_reference_block(slab, block_number);
	result = update_reference_count(slab, block, block_number, slab_journal_point,
					updater, NORMAL_OPERATION, true,
					&provisional_decrement);
	if ((result != VDO_SUCCESS) || provisional_decrement)
		return result;

	if (block->is_dirty && (block->slab_journal_lock > 0)) {
		sequence_number_t entry_lock = slab_journal_point->sequence_number;
		/*
		 * This block is already dirty and a slab journal entry has been made for it since
		 * the last time it was clean. We must release the per-entry slab journal lock for
		 * the entry associated with the update we are now doing.
		 */
		result = ASSERT(is_valid_journal_point(slab_journal_point),
				"Reference count adjustments need slab journal points.");
		if (result != VDO_SUCCESS)
			return result;

		adjust_slab_journal_block_reference(&slab->journal, entry_lock, -1);
		return VDO_SUCCESS;
	}

	/*
	 * This may be the first time we are applying an update for which there is a slab journal
	 * entry to this block since the block was cleaned. Therefore, we convert the per-entry
	 * slab journal lock to an uncommitted reference block lock, if there is a per-entry lock.
	 */
	if (is_valid_journal_point(slab_journal_point))
		block->slab_journal_lock = slab_journal_point->sequence_number;
	else
		block->slab_journal_lock = 0;

	dirty_block(block);
	return VDO_SUCCESS;
}

/**
 * add_entry_from_waiter() - Add an entry to the slab journal.
 * @waiter: The vio which should make an entry now.
 * @context: The slab journal to make an entry in.
 *
 * This callback is invoked by add_entries() once it has determined that we are ready to make
 * another entry in the slab journal. Implements waiter_callback_fn.
 */
static void add_entry_from_waiter(struct vdo_waiter *waiter, void *context)
{
	int result;
	struct reference_updater *updater =
		container_of(waiter, struct reference_updater, waiter);
	struct data_vio *data_vio = data_vio_from_reference_updater(updater);
	struct slab_journal *journal = context;
	struct slab_journal_block_header *header = &journal->tail_header;
	struct journal_point slab_journal_point = {
		.sequence_number = header->sequence_number,
		.entry_count = header->entry_count,
	};
	sequence_number_t recovery_block = data_vio->recovery_journal_point.sequence_number;

	if (header->entry_count == 0) {
		/*
		 * This is the first entry in the current tail block, so get a lock on the recovery
		 * journal which we will hold until this tail block is committed.
		 */
		get_lock(journal, header->sequence_number)->recovery_start = recovery_block;
		if (journal->recovery_journal != NULL) {
			zone_count_t zone_number = journal->slab->allocator->zone_number;

			vdo_acquire_recovery_journal_block_reference(journal->recovery_journal,
								     recovery_block,
								     VDO_ZONE_TYPE_PHYSICAL,
								     zone_number);
		}

		mark_slab_journal_dirty(journal, recovery_block);
		reclaim_journal_space(journal);
	}

	add_entry(journal, updater->zpbn.pbn, updater->operation, updater->increment,
		  expand_journal_point(data_vio->recovery_journal_point,
				       updater->increment));

	if (journal->slab->status != VDO_SLAB_REBUILT) {
		/*
		 * If the slab is unrecovered, scrubbing will take care of the count since the
		 * update is now recorded in the journal.
		 */
		adjust_slab_journal_block_reference(journal,
						    slab_journal_point.sequence_number, -1);
		result = VDO_SUCCESS;
	} else {
		/* Now that an entry has been made in the slab journal, update the counter. */
		result = adjust_reference_count(journal->slab, updater,
						&slab_journal_point);
	}

	if (updater->increment)
		continue_data_vio_with_error(data_vio, result);
	else
		vdo_continue_completion(&data_vio->decrement_completion, result);
}

/**
 * is_next_entry_a_block_map_increment() - Check whether the next entry to be made is a block map
 *                                         increment.
 * @journal: The journal.
 *
 * Return: true if the first entry waiter's operation is a block map increment.
 */
static inline bool is_next_entry_a_block_map_increment(struct slab_journal *journal)
{
	struct vdo_waiter *waiter = vdo_waitq_get_first_waiter(&journal->entry_waiters);
	struct reference_updater *updater =
		container_of(waiter, struct reference_updater, waiter);

	return (updater->operation == VDO_JOURNAL_BLOCK_MAP_REMAPPING);
}

/**
 * add_entries() - Add as many entries as possible from the queue of vios waiting to make entries.
 * @journal: The journal to which entries may be added.
 *
 * By processing the queue in order, we ensure that slab journal entries are made in the same order
 * as recovery journal entries for the same increment or decrement.
 */
static void add_entries(struct slab_journal *journal)
{
	if (journal->adding_entries) {
		/* Protect against re-entrancy. */
		return;
	}

	journal->adding_entries = true;
	while (vdo_waitq_has_waiters(&journal->entry_waiters)) {
		struct slab_journal_block_header *header = &journal->tail_header;

		if (journal->partial_write_in_progress ||
		    (journal->slab->status == VDO_SLAB_REBUILDING)) {
			/*
			 * Don't add entries while rebuilding or while a partial write is
			 * outstanding, as it could result in reference count corruption.
			 */
			break;
		}

		if (journal->waiting_to_commit) {
			/*
			 * If we are waiting for resources to write the tail block, and the tail
			 * block is full, we can't make another entry.
			 */
			WRITE_ONCE(journal->events->tail_busy_count,
				   journal->events->tail_busy_count + 1);
			break;
		} else if (is_next_entry_a_block_map_increment(journal) &&
			   (header->entry_count >= journal->full_entries_per_block)) {
			/*
			 * The tail block does not have room for a block map increment, so commit
			 * it now.
			 */
			commit_tail(journal);
			if (journal->waiting_to_commit) {
				WRITE_ONCE(journal->events->tail_busy_count,
					   journal->events->tail_busy_count + 1);
				break;
			}
		}

		/* If the slab is over the blocking threshold, make the vio wait. */
		if (requires_reaping(journal)) {
			WRITE_ONCE(journal->events->blocked_count,
				   journal->events->blocked_count + 1);
			save_dirty_reference_blocks(journal->slab);
			break;
		}

		if (header->entry_count == 0) {
			struct journal_lock *lock =
				get_lock(journal, header->sequence_number);

			/*
			 * Check if the on disk slab journal is full. Because of the blocking and
			 * scrubbing thresholds, this should never happen.
			 */
			if (lock->count > 0) {
				ASSERT_LOG_ONLY((journal->head + journal->size) == journal->tail,
						"New block has locks, but journal is not full");

				/*
				 * The blocking threshold must let the journal fill up if the new
				 * block has locks; if the blocking threshold is smaller than the
				 * journal size, the new block cannot possibly have locks already.
				 */
				ASSERT_LOG_ONLY((journal->blocking_threshold >= journal->size),
						"New block can have locks already iff blocking threshold is at the end of the journal");

				WRITE_ONCE(journal->events->disk_full_count,
					   journal->events->disk_full_count + 1);
				save_dirty_reference_blocks(journal->slab);
				break;
			}

			/*
			 * Don't allow the new block to be reaped until all of the reference count
			 * blocks are written and the journal block has been fully committed as
			 * well.
			 */
			lock->count = journal->entries_per_block + 1;

			if (header->sequence_number == 1) {
				struct vdo_slab *slab = journal->slab;
				block_count_t i;

				/*
				 * This is the first entry in this slab journal, ever. Dirty all of
				 * the reference count blocks. Each will acquire a lock on the tail
				 * block so that the journal won't be reaped until the reference
				 * counts are initialized. The lock acquisition must be done by the
				 * ref_counts since here we don't know how many reference blocks
				 * the ref_counts has.
				 */
				for (i = 0; i < slab->reference_block_count; i++) {
					slab->reference_blocks[i].slab_journal_lock = 1;
					dirty_block(&slab->reference_blocks[i]);
				}

				adjust_slab_journal_block_reference(journal, 1,
								    slab->reference_block_count);
			}
		}

		vdo_waitq_notify_next_waiter(&journal->entry_waiters,
					     add_entry_from_waiter, journal);
	}

	journal->adding_entries = false;

	/* If there are no waiters, and we are flushing or saving, commit the tail block. */
	if (vdo_is_state_draining(&journal->slab->state) &&
	    !vdo_is_state_suspending(&journal->slab->state) &&
	    !vdo_waitq_has_waiters(&journal->entry_waiters))
		commit_tail(journal);
}

/**
 * reset_search_cursor() - Reset the free block search back to the first reference counter in the
 *                         first reference block of a slab.
 */
static void reset_search_cursor(struct vdo_slab *slab)
{
	struct search_cursor *cursor = &slab->search_cursor;

	cursor->block = cursor->first_block;
	cursor->index = 0;
	/* Unit tests have slabs with only one reference block (and it's a runt). */
	cursor->end_index = min_t(u32, COUNTS_PER_BLOCK, slab->block_count);
}

/**
 * advance_search_cursor() - Advance the search cursor to the start of the next reference block in
 *                           a slab,
 *
 * Wraps around to the first reference block if the current block is the last reference block.
 *
 * Return: true unless the cursor was at the last reference block.
 */
static bool advance_search_cursor(struct vdo_slab *slab)
{
	struct search_cursor *cursor = &slab->search_cursor;

	/*
	 * If we just finished searching the last reference block, then wrap back around to the
	 * start of the array.
	 */
	if (cursor->block == cursor->last_block) {
		reset_search_cursor(slab);
		return false;
	}

	/* We're not already at the end, so advance to cursor to the next block. */
	cursor->block++;
	cursor->index = cursor->end_index;

	if (cursor->block == cursor->last_block) {
		/* The last reference block will usually be a runt. */
		cursor->end_index = slab->block_count;
	} else {
		cursor->end_index += COUNTS_PER_BLOCK;
	}

	return true;
}

/**
 * vdo_adjust_reference_count_for_rebuild() - Adjust the reference count of a block during rebuild.
 *
 * Return: VDO_SUCCESS or an error.
 */
int vdo_adjust_reference_count_for_rebuild(struct slab_depot *depot,
					   physical_block_number_t pbn,
					   enum journal_operation operation)
{
	int result;
	slab_block_number block_number;
	struct reference_block *block;
	struct vdo_slab *slab = vdo_get_slab(depot, pbn);
	struct reference_updater updater = {
		.operation = operation,
		.increment = true,
	};

	result = slab_block_number_from_pbn(slab, pbn, &block_number);
	if (result != VDO_SUCCESS)
		return result;

	block = get_reference_block(slab, block_number);
	result = update_reference_count(slab, block, block_number, NULL,
					&updater, !NORMAL_OPERATION, false, NULL);
	if (result != VDO_SUCCESS)
		return result;

	dirty_block(block);
	return VDO_SUCCESS;
}

/**
 * replay_reference_count_change() - Replay the reference count adjustment from a slab journal
 *                                   entry into the reference count for a block.
 * @slab: The slab.
 * @entry_point: The slab journal point for the entry.
 * @entry: The slab journal entry being replayed.
 *
 * The adjustment will be ignored if it was already recorded in the reference count.
 *
 * Return: VDO_SUCCESS or an error code.
 */
static int replay_reference_count_change(struct vdo_slab *slab,
					 const struct journal_point *entry_point,
					 struct slab_journal_entry entry)
{
	int result;
	struct reference_block *block = get_reference_block(slab, entry.sbn);
	sector_count_t sector = (entry.sbn % COUNTS_PER_BLOCK) / COUNTS_PER_SECTOR;
	struct reference_updater updater = {
		.operation = entry.operation,
		.increment = entry.increment,
	};

	if (!vdo_before_journal_point(&block->commit_points[sector], entry_point)) {
		/* This entry is already reflected in the existing counts, so do nothing. */
		return VDO_SUCCESS;
	}

	/* This entry is not yet counted in the reference counts. */
	result = update_reference_count(slab, block, entry.sbn, entry_point,
					&updater, !NORMAL_OPERATION, false, NULL);
	if (result != VDO_SUCCESS)
		return result;

	dirty_block(block);
	return VDO_SUCCESS;
}

/**
 * find_zero_byte_in_word() - Find the array index of the first zero byte in word-sized range of
 *                            reference counters.
 * @word_ptr: A pointer to the eight counter bytes to check.
 * @start_index: The array index corresponding to word_ptr[0].
 * @fail_index: The array index to return if no zero byte is found.
 *
 * The search does no bounds checking; the function relies on the array being sufficiently padded.
 *
 * Return: The array index of the first zero byte in the word, or the value passed as fail_index if
 *         no zero byte was found.
 */
static inline slab_block_number find_zero_byte_in_word(const u8 *word_ptr,
						       slab_block_number start_index,
						       slab_block_number fail_index)
{
	u64 word = get_unaligned_le64(word_ptr);

	/* This looks like a loop, but GCC will unroll the eight iterations for us. */
	unsigned int offset;

	for (offset = 0; offset < BYTES_PER_WORD; offset++) {
		/* Assumes little-endian byte order, which we have on X86. */
		if ((word & 0xFF) == 0)
			return (start_index + offset);
		word >>= 8;
	}

	return fail_index;
}

/**
 * find_free_block() - Find the first block with a reference count of zero in the specified
 *                     range of reference counter indexes.
 * @slab: The slab counters to scan.
 * @index_ptr: A pointer to hold the array index of the free block.
 *
 * Exposed for unit testing.
 *
 * Return: true if a free block was found in the specified range.
 */
static bool find_free_block(const struct vdo_slab *slab, slab_block_number *index_ptr)
{
	slab_block_number zero_index;
	slab_block_number next_index = slab->search_cursor.index;
	slab_block_number end_index = slab->search_cursor.end_index;
	u8 *next_counter = &slab->counters[next_index];
	u8 *end_counter = &slab->counters[end_index];

	/*
	 * Search every byte of the first unaligned word. (Array is padded so reading past end is
	 * safe.)
	 */
	zero_index = find_zero_byte_in_word(next_counter, next_index, end_index);
	if (zero_index < end_index) {
		*index_ptr = zero_index;
		return true;
	}

	/*
	 * On architectures where unaligned word access is expensive, this would be a good place to
	 * advance to an alignment boundary.
	 */
	next_index += BYTES_PER_WORD;
	next_counter += BYTES_PER_WORD;

	/*
	 * Now we're word-aligned; check an word at a time until we find a word containing a zero.
	 * (Array is padded so reading past end is safe.)
	 */
	while (next_counter < end_counter) {
		/*
		 * The following code is currently an exact copy of the code preceding the loop,
		 * but if you try to merge them by using a do loop, it runs slower because a jump
		 * instruction gets added at the start of the iteration.
		 */
		zero_index = find_zero_byte_in_word(next_counter, next_index, end_index);
		if (zero_index < end_index) {
			*index_ptr = zero_index;
			return true;
		}

		next_index += BYTES_PER_WORD;
		next_counter += BYTES_PER_WORD;
	}

	return false;
}

/**
 * search_current_reference_block() - Search the reference block currently saved in the search
 *                                    cursor for a reference count of zero, starting at the saved
 *                                    counter index.
 * @slab: The slab to search.
 * @free_index_ptr: A pointer to receive the array index of the zero reference count.
 *
 * Return: true if an unreferenced counter was found.
 */
static bool search_current_reference_block(const struct vdo_slab *slab,
					   slab_block_number *free_index_ptr)
{
	/* Don't bother searching if the current block is known to be full. */
	return ((slab->search_cursor.block->allocated_count < COUNTS_PER_BLOCK) &&
		find_free_block(slab, free_index_ptr));
}

/**
 * search_reference_blocks() - Search each reference block for a reference count of zero.
 * @slab: The slab to search.
 * @free_index_ptr: A pointer to receive the array index of the zero reference count.
 *
 * Searches each reference block for a reference count of zero, starting at the reference block and
 * counter index saved in the search cursor and searching up to the end of the last reference
 * block. The search does not wrap.
 *
 * Return: true if an unreferenced counter was found.
 */
static bool search_reference_blocks(struct vdo_slab *slab,
				    slab_block_number *free_index_ptr)
{
	/* Start searching at the saved search position in the current block. */
	if (search_current_reference_block(slab, free_index_ptr))
		return true;

	/* Search each reference block up to the end of the slab. */
	while (advance_search_cursor(slab)) {
		if (search_current_reference_block(slab, free_index_ptr))
			return true;
	}

	return false;
}

/**
 * make_provisional_reference() - Do the bookkeeping for making a provisional reference.
 */
static void make_provisional_reference(struct vdo_slab *slab,
				       slab_block_number block_number)
{
	struct reference_block *block = get_reference_block(slab, block_number);

	/*
	 * Make the initial transition from an unreferenced block to a
	 * provisionally allocated block.
	 */
	slab->counters[block_number] = PROVISIONAL_REFERENCE_COUNT;

	/* Account for the allocation. */
	block->allocated_count++;
	slab->free_blocks--;
}

/**
 * dirty_all_reference_blocks() - Mark all reference count blocks in a slab as dirty.
 */
static void dirty_all_reference_blocks(struct vdo_slab *slab)
{
	block_count_t i;

	for (i = 0; i < slab->reference_block_count; i++)
		dirty_block(&slab->reference_blocks[i]);
}

/**
 * clear_provisional_references() - Clear the provisional reference counts from a reference block.
 * @block: The block to clear.
 */
static void clear_provisional_references(struct reference_block *block)
{
	vdo_refcount_t *counters = get_reference_counters_for_block(block);
	block_count_t j;

	for (j = 0; j < COUNTS_PER_BLOCK; j++) {
		if (counters[j] == PROVISIONAL_REFERENCE_COUNT) {
			counters[j] = EMPTY_REFERENCE_COUNT;
			block->allocated_count--;
		}
	}
}

static inline bool journal_points_equal(struct journal_point first,
					struct journal_point second)
{
	return ((first.sequence_number == second.sequence_number) &&
		(first.entry_count == second.entry_count));
}

/**
 * unpack_reference_block() - Unpack reference counts blocks into the internal memory structure.
 * @packed: The written reference block to be unpacked.
 * @block: The internal reference block to be loaded.
 */
static void unpack_reference_block(struct packed_reference_block *packed,
				   struct reference_block *block)
{
	block_count_t index;
	sector_count_t i;
	struct vdo_slab *slab = block->slab;
	vdo_refcount_t *counters = get_reference_counters_for_block(block);

	for (i = 0; i < VDO_SECTORS_PER_BLOCK; i++) {
		struct packed_reference_sector *sector = &packed->sectors[i];

		vdo_unpack_journal_point(&sector->commit_point, &block->commit_points[i]);
		memcpy(counters + (i * COUNTS_PER_SECTOR), sector->counts,
		       (sizeof(vdo_refcount_t) * COUNTS_PER_SECTOR));
		/* The slab_journal_point must be the latest point found in any sector. */
		if (vdo_before_journal_point(&slab->slab_journal_point,
					     &block->commit_points[i]))
			slab->slab_journal_point = block->commit_points[i];

		if ((i > 0) &&
		    !journal_points_equal(block->commit_points[0],
					  block->commit_points[i])) {
			size_t block_index = block - block->slab->reference_blocks;

			uds_log_warning("Torn write detected in sector %u of reference block %zu of slab %u",
					i, block_index, block->slab->slab_number);
		}
	}

	block->allocated_count = 0;
	for (index = 0; index < COUNTS_PER_BLOCK; index++) {
		if (counters[index] != EMPTY_REFERENCE_COUNT)
			block->allocated_count++;
	}
}

/**
 * finish_reference_block_load() - After a reference block has been read, unpack it.
 * @completion: The VIO that just finished reading.
 */
static void finish_reference_block_load(struct vdo_completion *completion)
{
	struct vio *vio = as_vio(completion);
	struct pooled_vio *pooled = vio_as_pooled_vio(vio);
	struct reference_block *block = completion->parent;
	struct vdo_slab *slab = block->slab;

	unpack_reference_block((struct packed_reference_block *) vio->data, block);
	return_vio_to_pool(slab->allocator->vio_pool, pooled);
	slab->active_count--;
	clear_provisional_references(block);

	slab->free_blocks -= block->allocated_count;
	check_if_slab_drained(slab);
}

static void load_reference_block_endio(struct bio *bio)
{
	struct vio *vio = bio->bi_private;
	struct reference_block *block = vio->completion.parent;

	continue_vio_after_io(vio, finish_reference_block_load,
			      block->slab->allocator->thread_id);
}

/**
 * load_reference_block() - After a block waiter has gotten a VIO from the VIO pool, load the
 *                          block.
 * @waiter: The waiter of the block to load.
 * @context: The VIO returned by the pool.
 */
static void load_reference_block(struct vdo_waiter *waiter, void *context)
{
	struct pooled_vio *pooled = context;
	struct vio *vio = &pooled->vio;
	struct reference_block *block =
		container_of(waiter, struct reference_block, waiter);
	size_t block_offset = (block - block->slab->reference_blocks);

	vio->completion.parent = block;
	vdo_submit_metadata_vio(vio, block->slab->ref_counts_origin + block_offset,
				load_reference_block_endio, handle_io_error,
				REQ_OP_READ);
}

/**
 * load_reference_blocks() - Load a slab's reference blocks from the underlying storage into a
 *                           pre-allocated reference counter.
 */
static void load_reference_blocks(struct vdo_slab *slab)
{
	block_count_t i;

	slab->free_blocks = slab->block_count;
	slab->active_count = slab->reference_block_count;
	for (i = 0; i < slab->reference_block_count; i++) {
		struct vdo_waiter *waiter = &slab->reference_blocks[i].waiter;

		waiter->callback = load_reference_block;
		acquire_vio_from_pool(slab->allocator->vio_pool, waiter);
	}
}

/**
 * drain_slab() - Drain all reference count I/O.
 *
 * Depending upon the type of drain being performed (as recorded in the ref_count's vdo_slab), the
 * reference blocks may be loaded from disk or dirty reference blocks may be written out.
 */
static void drain_slab(struct vdo_slab *slab)
{
	bool save;
	bool load;
	const struct admin_state_code *state = vdo_get_admin_state_code(&slab->state);

	if (state == VDO_ADMIN_STATE_SUSPENDING)
		return;

	if ((state != VDO_ADMIN_STATE_REBUILDING) &&
	    (state != VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING))
		commit_tail(&slab->journal);

	if ((state == VDO_ADMIN_STATE_RECOVERING) || (slab->counters == NULL))
		return;

	save = false;
	load = slab->allocator->summary_entries[slab->slab_number].load_ref_counts;
	if (state == VDO_ADMIN_STATE_SCRUBBING) {
		if (load) {
			load_reference_blocks(slab);
			return;
		}
	} else if (state == VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING) {
		if (!load) {
			/* These reference counts were never written, so mark them all dirty. */
			dirty_all_reference_blocks(slab);
		}
		save = true;
	} else if (state == VDO_ADMIN_STATE_REBUILDING) {
		/*
		 * Write out the counters if the slab has written them before, or it has any
		 * non-zero reference counts, or there are any slab journal blocks.
		 */
		block_count_t data_blocks = slab->allocator->depot->slab_config.data_blocks;

		if (load || (slab->free_blocks != data_blocks) ||
		    !is_slab_journal_blank(slab)) {
			dirty_all_reference_blocks(slab);
			save = true;
		}
	} else if (state == VDO_ADMIN_STATE_SAVING) {
		save = (slab->status == VDO_SLAB_REBUILT);
	} else {
		vdo_finish_draining_with_result(&slab->state, VDO_SUCCESS);
		return;
	}

	if (save)
		save_dirty_reference_blocks(slab);
}

static int allocate_slab_counters(struct vdo_slab *slab)
{
	int result;
	size_t index, bytes;

	result = ASSERT(slab->reference_blocks == NULL,
			"vdo_slab %u doesn't allocate refcounts twice",
			slab->slab_number);
	if (result != VDO_SUCCESS)
		return result;

	result = vdo_allocate(slab->reference_block_count, struct reference_block,
			      __func__, &slab->reference_blocks);
	if (result != VDO_SUCCESS)
		return result;

	/*
	 * Allocate such that the runt slab has a full-length memory array, plus a little padding
	 * so we can word-search even at the very end.
	 */
	bytes = (slab->reference_block_count * COUNTS_PER_BLOCK) + (2 * BYTES_PER_WORD);
	result = vdo_allocate(bytes, vdo_refcount_t, "ref counts array",
			      &slab->counters);
	if (result != UDS_SUCCESS) {
		vdo_free(vdo_forget(slab->reference_blocks));
		return result;
	}

	slab->search_cursor.first_block = slab->reference_blocks;
	slab->search_cursor.last_block = &slab->reference_blocks[slab->reference_block_count - 1];
	reset_search_cursor(slab);

	for (index = 0; index < slab->reference_block_count; index++) {
		slab->reference_blocks[index] = (struct reference_block) {
			.slab = slab,
		};
	}

	return VDO_SUCCESS;
}

static int allocate_counters_if_clean(struct vdo_slab *slab)
{
	if (vdo_is_state_clean_load(&slab->state))
		return allocate_slab_counters(slab);

	return VDO_SUCCESS;
}

static void finish_loading_journal(struct vdo_completion *completion)
{
	struct vio *vio = as_vio(completion);
	struct slab_journal *journal = completion->parent;
	struct vdo_slab *slab = journal->slab;
	struct packed_slab_journal_block *block = (struct packed_slab_journal_block *) vio->data;
	struct slab_journal_block_header header;

	vdo_unpack_slab_journal_block_header(&block->header, &header);

	/* FIXME: should it be an error if the following conditional fails? */
	if ((header.metadata_type == VDO_METADATA_SLAB_JOURNAL) &&
	    (header.nonce == slab->allocator->nonce)) {
		journal->tail = header.sequence_number + 1;

		/*
		 * If the slab is clean, this implies the slab journal is empty, so advance the
		 * head appropriately.
		 */
		journal->head = (slab->allocator->summary_entries[slab->slab_number].is_dirty ?
				 header.head : journal->tail);
		journal->tail_header = header;
		initialize_journal_state(journal);
	}

	return_vio_to_pool(slab->allocator->vio_pool, vio_as_pooled_vio(vio));
	vdo_finish_loading_with_result(&slab->state, allocate_counters_if_clean(slab));
}

static void read_slab_journal_tail_endio(struct bio *bio)
{
	struct vio *vio = bio->bi_private;
	struct slab_journal *journal = vio->completion.parent;

	continue_vio_after_io(vio, finish_loading_journal,
			      journal->slab->allocator->thread_id);
}

static void handle_load_error(struct vdo_completion *completion)
{
	int result = completion->result;
	struct slab_journal *journal = completion->parent;
	struct vio *vio = as_vio(completion);

	vio_record_metadata_io_error(vio);
	return_vio_to_pool(journal->slab->allocator->vio_pool, vio_as_pooled_vio(vio));
	vdo_finish_loading_with_result(&journal->slab->state, result);
}

/**
 * read_slab_journal_tail() - Read the slab journal tail block by using a vio acquired from the vio
 *                            pool.
 * @waiter: The vio pool waiter which has just been notified.
 * @context: The vio pool entry given to the waiter.
 *
 * This is the success callback from acquire_vio_from_pool() when loading a slab journal.
 */
static void read_slab_journal_tail(struct vdo_waiter *waiter, void *context)
{
	struct slab_journal *journal =
		container_of(waiter, struct slab_journal, resource_waiter);
	struct vdo_slab *slab = journal->slab;
	struct pooled_vio *pooled = context;
	struct vio *vio = &pooled->vio;
	tail_block_offset_t last_commit_point =
		slab->allocator->summary_entries[slab->slab_number].tail_block_offset;

	/*
	 * Slab summary keeps the commit point offset, so the tail block is the block before that.
	 * Calculation supports small journals in unit tests.
	 */
	tail_block_offset_t tail_block = ((last_commit_point == 0) ?
					  (tail_block_offset_t)(journal->size - 1) :
					  (last_commit_point - 1));

	vio->completion.parent = journal;
	vio->completion.callback_thread_id = slab->allocator->thread_id;
	vdo_submit_metadata_vio(vio, slab->journal_origin + tail_block,
				read_slab_journal_tail_endio, handle_load_error,
				REQ_OP_READ);
}

/**
 * load_slab_journal() - Load a slab's journal by reading the journal's tail.
 */
static void load_slab_journal(struct vdo_slab *slab)
{
	struct slab_journal *journal = &slab->journal;
	tail_block_offset_t last_commit_point;

	last_commit_point = slab->allocator->summary_entries[slab->slab_number].tail_block_offset;
	if ((last_commit_point == 0) &&
	    !slab->allocator->summary_entries[slab->slab_number].load_ref_counts) {
		/*
		 * This slab claims that it has a tail block at (journal->size - 1), but a head of
		 * 1. This is impossible, due to the scrubbing threshold, on a real system, so
		 * don't bother reading the (bogus) data off disk.
		 */
		ASSERT_LOG_ONLY(((journal->size < 16) ||
				 (journal->scrubbing_threshold < (journal->size - 1))),
				"Scrubbing threshold protects against reads of unwritten slab journal blocks");
		vdo_finish_loading_with_result(&slab->state,
					       allocate_counters_if_clean(slab));
		return;
	}

	journal->resource_waiter.callback = read_slab_journal_tail;
	acquire_vio_from_pool(slab->allocator->vio_pool, &journal->resource_waiter);
}

static void register_slab_for_scrubbing(struct vdo_slab *slab, bool high_priority)
{
	struct slab_scrubber *scrubber = &slab->allocator->scrubber;

	ASSERT_LOG_ONLY((slab->status != VDO_SLAB_REBUILT),
			"slab to be scrubbed is unrecovered");

	if (slab->status != VDO_SLAB_REQUIRES_SCRUBBING)
		return;

	list_del_init(&slab->allocq_entry);
	if (!slab->was_queued_for_scrubbing) {
		WRITE_ONCE(scrubber->slab_count, scrubber->slab_count + 1);
		slab->was_queued_for_scrubbing = true;
	}

	if (high_priority) {
		slab->status = VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING;
		list_add_tail(&slab->allocq_entry, &scrubber->high_priority_slabs);
		return;
	}

	list_add_tail(&slab->allocq_entry, &scrubber->slabs);
}

/* Queue a slab for allocation or scrubbing. */
static void queue_slab(struct vdo_slab *slab)
{
	struct block_allocator *allocator = slab->allocator;
	block_count_t free_blocks;
	int result;

	ASSERT_LOG_ONLY(list_empty(&slab->allocq_entry),
			"a requeued slab must not already be on a ring");

	if (vdo_is_read_only(allocator->depot->vdo))
		return;

	free_blocks = slab->free_blocks;
	result = ASSERT((free_blocks <= allocator->depot->slab_config.data_blocks),
			"rebuilt slab %u must have a valid free block count (has %llu, expected maximum %llu)",
			slab->slab_number, (unsigned long long) free_blocks,
			(unsigned long long) allocator->depot->slab_config.data_blocks);
	if (result != VDO_SUCCESS) {
		vdo_enter_read_only_mode(allocator->depot->vdo, result);
		return;
	}

	if (slab->status != VDO_SLAB_REBUILT) {
		register_slab_for_scrubbing(slab, false);
		return;
	}

	if (!vdo_is_state_resuming(&slab->state)) {
		/*
		 * If the slab is resuming, we've already accounted for it here, so don't do it
		 * again.
		 * FIXME: under what situation would the slab be resuming here?
		 */
		WRITE_ONCE(allocator->allocated_blocks,
			   allocator->allocated_blocks - free_blocks);
		if (!is_slab_journal_blank(slab)) {
			WRITE_ONCE(allocator->statistics.slabs_opened,
				   allocator->statistics.slabs_opened + 1);
		}
	}

	if (allocator->depot->vdo->suspend_type == VDO_ADMIN_STATE_SAVING)
		reopen_slab_journal(slab);

	prioritize_slab(slab);
}

/**
 * initiate_slab_action() - Initiate a slab action.
 *
 * Implements vdo_admin_initiator_fn.
 */
static void initiate_slab_action(struct admin_state *state)
{
	struct vdo_slab *slab = container_of(state, struct vdo_slab, state);

	if (vdo_is_state_draining(state)) {
		const struct admin_state_code *operation = vdo_get_admin_state_code(state);

		if (operation == VDO_ADMIN_STATE_SCRUBBING)
			slab->status = VDO_SLAB_REBUILDING;

		drain_slab(slab);
		check_if_slab_drained(slab);
		return;
	}

	if (vdo_is_state_loading(state)) {
		load_slab_journal(slab);
		return;
	}

	if (vdo_is_state_resuming(state)) {
		queue_slab(slab);
		vdo_finish_resuming(state);
		return;
	}

	vdo_finish_operation(state, VDO_INVALID_ADMIN_STATE);
}

/**
 * get_next_slab() - Get the next slab to scrub.
 * @scrubber: The slab scrubber.
 *
 * Return: The next slab to scrub or NULL if there are none.
 */
static struct vdo_slab *get_next_slab(struct slab_scrubber *scrubber)
{
	struct vdo_slab *slab;

	slab = list_first_entry_or_null(&scrubber->high_priority_slabs,
					struct vdo_slab, allocq_entry);
	if (slab != NULL)
		return slab;

	return list_first_entry_or_null(&scrubber->slabs, struct vdo_slab,
					allocq_entry);
}

/**
 * has_slabs_to_scrub() - Check whether a scrubber has slabs to scrub.
 * @scrubber: The scrubber to check.
 *
 * Return: true if the scrubber has slabs to scrub.
 */
static inline bool __must_check has_slabs_to_scrub(struct slab_scrubber *scrubber)
{
	return (get_next_slab(scrubber) != NULL);
}

/**
 * uninitialize_scrubber_vio() - Clean up the slab_scrubber's vio.
 * @scrubber: The scrubber.
 */
static void uninitialize_scrubber_vio(struct slab_scrubber *scrubber)
{
	vdo_free(vdo_forget(scrubber->vio.data));
	free_vio_components(&scrubber->vio);
}

/**
 * finish_scrubbing() - Stop scrubbing, either because there are no more slabs to scrub or because
 *                      there's been an error.
 * @scrubber: The scrubber.
 */
static void finish_scrubbing(struct slab_scrubber *scrubber, int result)
{
	bool notify = vdo_waitq_has_waiters(&scrubber->waiters);
	bool done = !has_slabs_to_scrub(scrubber);
	struct block_allocator *allocator =
		container_of(scrubber, struct block_allocator, scrubber);

	if (done)
		uninitialize_scrubber_vio(scrubber);

	if (scrubber->high_priority_only) {
		scrubber->high_priority_only = false;
		vdo_fail_completion(vdo_forget(scrubber->vio.completion.parent), result);
	} else if (done && (atomic_add_return(-1, &allocator->depot->zones_to_scrub) == 0)) {
		/* All of our slabs were scrubbed, and we're the last allocator to finish. */
		enum vdo_state prior_state =
			atomic_cmpxchg(&allocator->depot->vdo->state, VDO_RECOVERING,
				       VDO_DIRTY);

		/*
		 * To be safe, even if the CAS failed, ensure anything that follows is ordered with
		 * respect to whatever state change did happen.
		 */
		smp_mb__after_atomic();

		/*
		 * We must check the VDO state here and not the depot's read_only_notifier since
		 * the compare-swap-above could have failed due to a read-only entry which our own
		 * thread does not yet know about.
		 */
		if (prior_state == VDO_DIRTY)
			uds_log_info("VDO commencing normal operation");
		else if (prior_state == VDO_RECOVERING)
			uds_log_info("Exiting recovery mode");
	}

	/*
	 * Note that the scrubber has stopped, and inform anyone who might be waiting for that to
	 * happen.
	 */
	if (!vdo_finish_draining(&scrubber->admin_state))
		WRITE_ONCE(scrubber->admin_state.current_state,
			   VDO_ADMIN_STATE_SUSPENDED);

	/*
	 * We can't notify waiters until after we've finished draining or they'll just requeue.
	 * Fortunately if there were waiters, we can't have been freed yet.
	 */
	if (notify)
		vdo_waitq_notify_all_waiters(&scrubber->waiters, NULL, NULL);
}

static void scrub_next_slab(struct slab_scrubber *scrubber);

/**
 * slab_scrubbed() - Notify the scrubber that a slab has been scrubbed.
 * @completion: The slab rebuild completion.
 *
 * This callback is registered in apply_journal_entries().
 */
static void slab_scrubbed(struct vdo_completion *completion)
{
	struct slab_scrubber *scrubber =
		container_of(as_vio(completion), struct slab_scrubber, vio);
	struct vdo_slab *slab = scrubber->slab;

	slab->status = VDO_SLAB_REBUILT;
	queue_slab(slab);
	reopen_slab_journal(slab);
	WRITE_ONCE(scrubber->slab_count, scrubber->slab_count - 1);
	scrub_next_slab(scrubber);
}

/**
 * abort_scrubbing() - Abort scrubbing due to an error.
 * @scrubber: The slab scrubber.
 * @result: The error.
 */
static void abort_scrubbing(struct slab_scrubber *scrubber, int result)
{
	vdo_enter_read_only_mode(scrubber->vio.completion.vdo, result);
	finish_scrubbing(scrubber, result);
}

/**
 * handle_scrubber_error() - Handle errors while rebuilding a slab.
 * @completion: The slab rebuild completion.
 */
static void handle_scrubber_error(struct vdo_completion *completion)
{
	struct vio *vio = as_vio(completion);

	vio_record_metadata_io_error(vio);
	abort_scrubbing(container_of(vio, struct slab_scrubber, vio),
			completion->result);
}

/**
 * apply_block_entries() - Apply all the entries in a block to the reference counts.
 * @block: A block with entries to apply.
 * @entry_count: The number of entries to apply.
 * @block_number: The sequence number of the block.
 * @slab: The slab to apply the entries to.
 *
 * Return: VDO_SUCCESS or an error code.
 */
static int apply_block_entries(struct packed_slab_journal_block *block,
			       journal_entry_count_t entry_count,
			       sequence_number_t block_number, struct vdo_slab *slab)
{
	struct journal_point entry_point = {
		.sequence_number = block_number,
		.entry_count = 0,
	};
	int result;
	slab_block_number max_sbn = slab->end - slab->start;

	while (entry_point.entry_count < entry_count) {
		struct slab_journal_entry entry =
			vdo_decode_slab_journal_entry(block, entry_point.entry_count);

		if (entry.sbn > max_sbn) {
			/* This entry is out of bounds. */
			return uds_log_error_strerror(VDO_CORRUPT_JOURNAL,
						      "vdo_slab journal entry (%llu, %u) had invalid offset %u in slab (size %u blocks)",
						      (unsigned long long) block_number,
						      entry_point.entry_count,
						      entry.sbn, max_sbn);
		}

		result = replay_reference_count_change(slab, &entry_point, entry);
		if (result != VDO_SUCCESS) {
			uds_log_error_strerror(result,
					       "vdo_slab journal entry (%llu, %u) (%s of offset %u) could not be applied in slab %u",
					       (unsigned long long) block_number,
					       entry_point.entry_count,
					       vdo_get_journal_operation_name(entry.operation),
					       entry.sbn, slab->slab_number);
			return result;
		}
		entry_point.entry_count++;
	}

	return VDO_SUCCESS;
}

/**
 * apply_journal_entries() - Find the relevant vio of the slab journal and apply all valid entries.
 * @completion: The metadata read vio completion.
 *
 * This is a callback registered in start_scrubbing().
 */
static void apply_journal_entries(struct vdo_completion *completion)
{
	int result;
	struct slab_scrubber *scrubber =
		container_of(as_vio(completion), struct slab_scrubber, vio);
	struct vdo_slab *slab = scrubber->slab;
	struct slab_journal *journal = &slab->journal;

	/* Find the boundaries of the useful part of the journal. */
	sequence_number_t tail = journal->tail;
	tail_block_offset_t end_index = (tail - 1) % journal->size;
	char *end_data = scrubber->vio.data + (end_index * VDO_BLOCK_SIZE);
	struct packed_slab_journal_block *end_block =
		(struct packed_slab_journal_block *) end_data;

	sequence_number_t head = __le64_to_cpu(end_block->header.head);
	tail_block_offset_t head_index = head % journal->size;
	block_count_t index = head_index;

	struct journal_point ref_counts_point = slab->slab_journal_point;
	struct journal_point last_entry_applied = ref_counts_point;
	sequence_number_t sequence;

	for (sequence = head; sequence < tail; sequence++) {
		char *block_data = scrubber->vio.data + (index * VDO_BLOCK_SIZE);
		struct packed_slab_journal_block *block =
			(struct packed_slab_journal_block *) block_data;
		struct slab_journal_block_header header;

		vdo_unpack_slab_journal_block_header(&block->header, &header);

		if ((header.nonce != slab->allocator->nonce) ||
		    (header.metadata_type != VDO_METADATA_SLAB_JOURNAL) ||
		    (header.sequence_number != sequence) ||
		    (header.entry_count > journal->entries_per_block) ||
		    (header.has_block_map_increments &&
		     (header.entry_count > journal->full_entries_per_block))) {
			/* The block is not what we expect it to be. */
			uds_log_error("vdo_slab journal block for slab %u was invalid",
				      slab->slab_number);
			abort_scrubbing(scrubber, VDO_CORRUPT_JOURNAL);
			return;
		}

		result = apply_block_entries(block, header.entry_count, sequence, slab);
		if (result != VDO_SUCCESS) {
			abort_scrubbing(scrubber, result);
			return;
		}

		last_entry_applied.sequence_number = sequence;
		last_entry_applied.entry_count = header.entry_count - 1;
		index++;
		if (index == journal->size)
			index = 0;
	}

	/*
	 * At the end of rebuild, the reference counters should be accurate to the end of the
	 * journal we just applied.
	 */
	result = ASSERT(!vdo_before_journal_point(&last_entry_applied,
						  &ref_counts_point),
			"Refcounts are not more accurate than the slab journal");
	if (result != VDO_SUCCESS) {
		abort_scrubbing(scrubber, result);
		return;
	}

	/* Save out the rebuilt reference blocks. */
	vdo_prepare_completion(completion, slab_scrubbed, handle_scrubber_error,
			       slab->allocator->thread_id, completion->parent);
	vdo_start_operation_with_waiter(&slab->state,
					VDO_ADMIN_STATE_SAVE_FOR_SCRUBBING,
					completion, initiate_slab_action);
}

static void read_slab_journal_endio(struct bio *bio)
{
	struct vio *vio = bio->bi_private;
	struct slab_scrubber *scrubber = container_of(vio, struct slab_scrubber, vio);

	continue_vio_after_io(bio->bi_private, apply_journal_entries,
			      scrubber->slab->allocator->thread_id);
}

/**
 * start_scrubbing() - Read the current slab's journal from disk now that it has been flushed.
 * @completion: The scrubber's vio completion.
 *
 * This callback is registered in scrub_next_slab().
 */
static void start_scrubbing(struct vdo_completion *completion)
{
	struct slab_scrubber *scrubber =
		container_of(as_vio(completion), struct slab_scrubber, vio);
	struct vdo_slab *slab = scrubber->slab;

	if (!slab->allocator->summary_entries[slab->slab_number].is_dirty) {
		slab_scrubbed(completion);
		return;
	}

	vdo_submit_metadata_vio(&scrubber->vio, slab->journal_origin,
				read_slab_journal_endio, handle_scrubber_error,
				REQ_OP_READ);
}

/**
 * scrub_next_slab() - Scrub the next slab if there is one.
 * @scrubber: The scrubber.
 */
static void scrub_next_slab(struct slab_scrubber *scrubber)
{
	struct vdo_completion *completion = &scrubber->vio.completion;
	struct vdo_slab *slab;

	/*
	 * Note: this notify call is always safe only because scrubbing can only be started when
	 * the VDO is quiescent.
	 */
	vdo_waitq_notify_all_waiters(&scrubber->waiters, NULL, NULL);

	if (vdo_is_read_only(completion->vdo)) {
		finish_scrubbing(scrubber, VDO_READ_ONLY);
		return;
	}

	slab = get_next_slab(scrubber);
	if ((slab == NULL) ||
	    (scrubber->high_priority_only && list_empty(&scrubber->high_priority_slabs))) {
		finish_scrubbing(scrubber, VDO_SUCCESS);
		return;
	}

	if (vdo_finish_draining(&scrubber->admin_state))
		return;

	list_del_init(&slab->allocq_entry);
	scrubber->slab = slab;
	vdo_prepare_completion(completion, start_scrubbing, handle_scrubber_error,
			       slab->allocator->thread_id, completion->parent);
	vdo_start_operation_with_waiter(&slab->state, VDO_ADMIN_STATE_SCRUBBING,
					completion, initiate_slab_action);
}

/**
 * scrub_slabs() - Scrub all of an allocator's slabs that are eligible for scrubbing.
 * @allocator: The block_allocator to scrub.
 * @parent: The completion to notify when scrubbing is done, implies high_priority, may be NULL.
 */
static void scrub_slabs(struct block_allocator *allocator, struct vdo_completion *parent)
{
	struct slab_scrubber *scrubber = &allocator->scrubber;

	scrubber->vio.completion.parent = parent;
	scrubber->high_priority_only = (parent != NULL);
	if (!has_slabs_to_scrub(scrubber)) {
		finish_scrubbing(scrubber, VDO_SUCCESS);
		return;
	}

	if (scrubber->high_priority_only &&
	    vdo_is_priority_table_empty(allocator->prioritized_slabs) &&
	    list_empty(&scrubber->high_priority_slabs))
		register_slab_for_scrubbing(get_next_slab(scrubber), true);

	vdo_resume_if_quiescent(&scrubber->admin_state);
	scrub_next_slab(scrubber);
}

static inline void assert_on_allocator_thread(thread_id_t thread_id,
					      const char *function_name)
{
	ASSERT_LOG_ONLY((vdo_get_callback_thread_id() == thread_id),
			"%s called on correct thread", function_name);
}

static void register_slab_with_allocator(struct block_allocator *allocator,
					 struct vdo_slab *slab)
{
	allocator->slab_count++;
	allocator->last_slab = slab->slab_number;
}

/**
 * get_depot_slab_iterator() - Return a slab_iterator over the slabs in a slab_depot.
 * @depot: The depot over which to iterate.
 * @start: The number of the slab to start iterating from.
 * @end: The number of the last slab which may be returned.
 * @stride: The difference in slab number between successive slabs.
 *
 * Iteration always occurs from higher to lower numbered slabs.
 *
 * Return: An initialized iterator structure.
 */
static struct slab_iterator get_depot_slab_iterator(struct slab_depot *depot,
						    slab_count_t start, slab_count_t end,
						    slab_count_t stride)
{
	struct vdo_slab **slabs = depot->slabs;

	return (struct slab_iterator) {
		.slabs = slabs,
		.next = (((slabs == NULL) || (start < end)) ? NULL : slabs[start]),
		.end = end,
		.stride = stride,
	};
}

static struct slab_iterator get_slab_iterator(const struct block_allocator *allocator)
{
	return get_depot_slab_iterator(allocator->depot, allocator->last_slab,
				       allocator->zone_number,
				       allocator->depot->zone_count);
}

/**
 * next_slab() - Get the next slab from a slab_iterator and advance the iterator
 * @iterator: The slab_iterator.
 *
 * Return: The next slab or NULL if the iterator is exhausted.
 */
static struct vdo_slab *next_slab(struct slab_iterator *iterator)
{
	struct vdo_slab *slab = iterator->next;

	if ((slab == NULL) || (slab->slab_number < iterator->end + iterator->stride))
		iterator->next = NULL;
	else
		iterator->next = iterator->slabs[slab->slab_number - iterator->stride];

	return slab;
}

/**
 * abort_waiter() - Abort vios waiting to make journal entries when read-only.
 *
 * This callback is invoked on all vios waiting to make slab journal entries after the VDO has gone
 * into read-only mode. Implements waiter_callback_fn.
 */
static void abort_waiter(struct vdo_waiter *waiter, void *context __always_unused)
{
	struct reference_updater *updater =
		container_of(waiter, struct reference_updater, waiter);
	struct data_vio *data_vio = data_vio_from_reference_updater(updater);

	if (updater->increment) {
		continue_data_vio_with_error(data_vio, VDO_READ_ONLY);
		return;
	}

	vdo_continue_completion(&data_vio->decrement_completion, VDO_READ_ONLY);
}

/* Implements vdo_read_only_notification_fn. */
static void notify_block_allocator_of_read_only_mode(void *listener,
						     struct vdo_completion *parent)
{
	struct block_allocator *allocator = listener;
	struct slab_iterator iterator;

	assert_on_allocator_thread(allocator->thread_id, __func__);
	iterator = get_slab_iterator(allocator);
	while (iterator.next != NULL) {
		struct vdo_slab *slab = next_slab(&iterator);

		vdo_waitq_notify_all_waiters(&slab->journal.entry_waiters,
					     abort_waiter, &slab->journal);
		check_if_slab_drained(slab);
	}

	vdo_finish_completion(parent);
}

/**
 * vdo_acquire_provisional_reference() - Acquire a provisional reference on behalf of a PBN lock if
 *                                       the block it locks is unreferenced.
 * @slab: The slab which contains the block.
 * @pbn: The physical block to reference.
 * @lock: The lock.
 *
 * Return: VDO_SUCCESS or an error.
 */
int vdo_acquire_provisional_reference(struct vdo_slab *slab, physical_block_number_t pbn,
				      struct pbn_lock *lock)
{
	slab_block_number block_number;
	int result;

	if (vdo_pbn_lock_has_provisional_reference(lock))
		return VDO_SUCCESS;

	if (!is_slab_open(slab))
		return VDO_INVALID_ADMIN_STATE;

	result = slab_block_number_from_pbn(slab, pbn, &block_number);
	if (result != VDO_SUCCESS)
		return result;

	if (slab->counters[block_number] == EMPTY_REFERENCE_COUNT) {
		make_provisional_reference(slab, block_number);
		if (lock != NULL)
			vdo_assign_pbn_lock_provisional_reference(lock);
	}

	if (vdo_pbn_lock_has_provisional_reference(lock))
		adjust_free_block_count(slab, false);

	return VDO_SUCCESS;
}

static int __must_check allocate_slab_block(struct vdo_slab *slab,
					    physical_block_number_t *block_number_ptr)
{
	slab_block_number free_index;

	if (!is_slab_open(slab))
		return VDO_INVALID_ADMIN_STATE;

	if (!search_reference_blocks(slab, &free_index))
		return VDO_NO_SPACE;

	ASSERT_LOG_ONLY((slab->counters[free_index] == EMPTY_REFERENCE_COUNT),
			"free block must have ref count of zero");
	make_provisional_reference(slab, free_index);
	adjust_free_block_count(slab, false);

	/*
	 * Update the search hint so the next search will start at the array index just past the
	 * free block we just found.
	 */
	slab->search_cursor.index = (free_index + 1);

	*block_number_ptr = slab->start + free_index;
	return VDO_SUCCESS;
}

/**
 * open_slab() - Prepare a slab to be allocated from.
 * @slab: The slab.
 */
static void open_slab(struct vdo_slab *slab)
{
	reset_search_cursor(slab);
	if (is_slab_journal_blank(slab)) {
		WRITE_ONCE(slab->allocator->statistics.slabs_opened,
			   slab->allocator->statistics.slabs_opened + 1);
		dirty_all_reference_blocks(slab);
	} else {
		WRITE_ONCE(slab->allocator->statistics.slabs_reopened,
			   slab->allocator->statistics.slabs_reopened + 1);
	}

	slab->allocator->open_slab = slab;
}


/*
 * The block allocated will have a provisional reference and the reference must be either confirmed
 * with a subsequent increment or vacated with a subsequent decrement via
 * vdo_release_block_reference().
 */
int vdo_allocate_block(struct block_allocator *allocator,
		       physical_block_number_t *block_number_ptr)
{
	int result;

	if (allocator->open_slab != NULL) {
		/* Try to allocate the next block in the currently open slab. */
		result = allocate_slab_block(allocator->open_slab, block_number_ptr);
		if ((result == VDO_SUCCESS) || (result != VDO_NO_SPACE))
			return result;

		/* Put the exhausted open slab back into the priority table. */
		prioritize_slab(allocator->open_slab);
	}

	/* Remove the highest priority slab from the priority table and make it the open slab. */
	open_slab(list_entry(vdo_priority_table_dequeue(allocator->prioritized_slabs),
			     struct vdo_slab, allocq_entry));

	/*
	 * Try allocating again. If we're out of space immediately after opening a slab, then every
	 * slab must be fully allocated.
	 */
	return allocate_slab_block(allocator->open_slab, block_number_ptr);
}

/**
 * vdo_enqueue_clean_slab_waiter() - Wait for a clean slab.
 * @allocator: The block_allocator on which to wait.
 * @waiter: The waiter.
 *
 * Return: VDO_SUCCESS if the waiter was queued, VDO_NO_SPACE if there are no slabs to scrub, and
 *         some other error otherwise.
 */
int vdo_enqueue_clean_slab_waiter(struct block_allocator *allocator,
				  struct vdo_waiter *waiter)
{
	if (vdo_is_read_only(allocator->depot->vdo))
		return VDO_READ_ONLY;

	if (vdo_is_state_quiescent(&allocator->scrubber.admin_state))
		return VDO_NO_SPACE;

	vdo_waitq_enqueue_waiter(&allocator->scrubber.waiters, waiter);
	return VDO_SUCCESS;
}

/**
 * vdo_modify_reference_count() - Modify the reference count of a block by first making a slab
 *                                journal entry and then updating the reference counter.
 *
 * @data_vio: The data_vio for which to add the entry.
 * @updater: Which of the data_vio's reference updaters is being submitted.
 */
void vdo_modify_reference_count(struct vdo_completion *completion,
				struct reference_updater *updater)
{
	struct vdo_slab *slab = vdo_get_slab(completion->vdo->depot, updater->zpbn.pbn);

	if (!is_slab_open(slab)) {
		vdo_continue_completion(completion, VDO_INVALID_ADMIN_STATE);
		return;
	}

	if (vdo_is_read_only(completion->vdo)) {
		vdo_continue_completion(completion, VDO_READ_ONLY);
		return;
	}

	vdo_waitq_enqueue_waiter(&slab->journal.entry_waiters, &updater->waiter);
	if ((slab->status != VDO_SLAB_REBUILT) && requires_reaping(&slab->journal))
		register_slab_for_scrubbing(slab, true);

	add_entries(&slab->journal);
}

/* Release an unused provisional reference. */
int vdo_release_block_reference(struct block_allocator *allocator,
				physical_block_number_t pbn)
{
	struct reference_updater updater;

	if (pbn == VDO_ZERO_BLOCK)
		return VDO_SUCCESS;

	updater = (struct reference_updater) {
		.operation = VDO_JOURNAL_DATA_REMAPPING,
		.increment = false,
		.zpbn = {
			.pbn = pbn,
		},
	};

	return adjust_reference_count(vdo_get_slab(allocator->depot, pbn),
				      &updater, NULL);
}

/*
 * This is a min_heap callback function orders slab_status structures using the 'is_clean' field as
 * the primary key and the 'emptiness' field as the secondary key.
 *
 * Slabs need to be pushed onto the rings in the same order they are to be popped off. Popping
 * should always get the most empty first, so pushing should be from most empty to least empty.
 * Thus, the ordering is reversed from the usual sense since min_heap returns smaller elements
 * before larger ones.
 */
static bool slab_status_is_less_than(const void *item1, const void *item2)
{
	const struct slab_status *info1 = item1;
	const struct slab_status *info2 = item2;

	if (info1->is_clean != info2->is_clean)
		return info1->is_clean;
	if (info1->emptiness != info2->emptiness)
		return info1->emptiness > info2->emptiness;
	return info1->slab_number < info2->slab_number;
}

static void swap_slab_statuses(void *item1, void *item2)
{
	struct slab_status *info1 = item1;
	struct slab_status *info2 = item2;

	swap(*info1, *info2);
}

static const struct min_heap_callbacks slab_status_min_heap = {
	.elem_size = sizeof(struct slab_status),
	.less = slab_status_is_less_than,
	.swp = swap_slab_statuses,
};

/* Inform the slab actor that a action has finished on some slab; used by apply_to_slabs(). */
static void slab_action_callback(struct vdo_completion *completion)
{
	struct block_allocator *allocator = vdo_as_block_allocator(completion);
	struct slab_actor *actor = &allocator->slab_actor;

	if (--actor->slab_action_count == 0) {
		actor->callback(completion);
		return;
	}

	vdo_reset_completion(completion);
}

/* Preserve the error from part of an action and continue. */
static void handle_operation_error(struct vdo_completion *completion)
{
	struct block_allocator *allocator = vdo_as_block_allocator(completion);

	if (allocator->state.waiter != NULL)
		vdo_set_completion_result(allocator->state.waiter, completion->result);
	completion->callback(completion);
}

/* Perform an action on each of an allocator's slabs in parallel. */
static void apply_to_slabs(struct block_allocator *allocator, vdo_action_fn callback)
{
	struct slab_iterator iterator;

	vdo_prepare_completion(&allocator->completion, slab_action_callback,
			       handle_operation_error, allocator->thread_id, NULL);
	allocator->completion.requeue = false;

	/*
	 * Since we are going to dequeue all of the slabs, the open slab will become invalid, so
	 * clear it.
	 */
	allocator->open_slab = NULL;

	/* Ensure that we don't finish before we're done starting. */
	allocator->slab_actor = (struct slab_actor) {
		.slab_action_count = 1,
		.callback = callback,
	};

	iterator = get_slab_iterator(allocator);
	while (iterator.next != NULL) {
		const struct admin_state_code *operation =
			vdo_get_admin_state_code(&allocator->state);
		struct vdo_slab *slab = next_slab(&iterator);

		list_del_init(&slab->allocq_entry);
		allocator->slab_actor.slab_action_count++;
		vdo_start_operation_with_waiter(&slab->state, operation,
						&allocator->completion,
						initiate_slab_action);
	}

	slab_action_callback(&allocator->completion);
}

static void finish_loading_allocator(struct vdo_completion *completion)
{
	struct block_allocator *allocator = vdo_as_block_allocator(completion);
	const struct admin_state_code *operation =
		vdo_get_admin_state_code(&allocator->state);

	if (allocator->eraser != NULL)
		dm_kcopyd_client_destroy(vdo_forget(allocator->eraser));

	if (operation == VDO_ADMIN_STATE_LOADING_FOR_RECOVERY) {
		void *context =
			vdo_get_current_action_context(allocator->depot->action_manager);

		vdo_replay_into_slab_journals(allocator, context);
		return;
	}

	vdo_finish_loading(&allocator->state);
}

static void erase_next_slab_journal(struct block_allocator *allocator);

static void copy_callback(int read_err, unsigned long write_err, void *context)
{
	struct block_allocator *allocator = context;
	int result = (((read_err == 0) && (write_err == 0)) ? VDO_SUCCESS : -EIO);

	if (result != VDO_SUCCESS) {
		vdo_fail_completion(&allocator->completion, result);
		return;
	}

	erase_next_slab_journal(allocator);
}

/* erase_next_slab_journal() - Erase the next slab journal. */
static void erase_next_slab_journal(struct block_allocator *allocator)
{
	struct vdo_slab *slab;
	physical_block_number_t pbn;
	struct dm_io_region regions[1];
	struct slab_depot *depot = allocator->depot;
	block_count_t blocks = depot->slab_config.slab_journal_blocks;

	if (allocator->slabs_to_erase.next == NULL) {
		vdo_finish_completion(&allocator->completion);
		return;
	}

	slab = next_slab(&allocator->slabs_to_erase);
	pbn = slab->journal_origin - depot->vdo->geometry.bio_offset;
	regions[0] = (struct dm_io_region) {
		.bdev = vdo_get_backing_device(depot->vdo),
		.sector = pbn * VDO_SECTORS_PER_BLOCK,
		.count = blocks * VDO_SECTORS_PER_BLOCK,
	};
	dm_kcopyd_zero(allocator->eraser, 1, regions, 0, copy_callback, allocator);
}

/* Implements vdo_admin_initiator_fn. */
static void initiate_load(struct admin_state *state)
{
	struct block_allocator *allocator =
		container_of(state, struct block_allocator, state);
	const struct admin_state_code *operation = vdo_get_admin_state_code(state);

	if (operation == VDO_ADMIN_STATE_LOADING_FOR_REBUILD) {
		/*
		 * Must requeue because the kcopyd client cannot be freed in the same stack frame
		 * as the kcopyd callback, lest it deadlock.
		 */
		vdo_prepare_completion_for_requeue(&allocator->completion,
						   finish_loading_allocator,
						   handle_operation_error,
						   allocator->thread_id, NULL);
		allocator->eraser = dm_kcopyd_client_create(NULL);
		if (IS_ERR(allocator->eraser)) {
			vdo_fail_completion(&allocator->completion,
					    PTR_ERR(allocator->eraser));
			allocator->eraser = NULL;
			return;
		}
		allocator->slabs_to_erase = get_slab_iterator(allocator);

		erase_next_slab_journal(allocator);
		return;
	}

	apply_to_slabs(allocator, finish_loading_allocator);
}

/**
 * vdo_notify_slab_journals_are_recovered() - Inform a block allocator that its slab journals have
 *                                            been recovered from the recovery journal.
 * @completion The allocator completion
 */
void vdo_notify_slab_journals_are_recovered(struct vdo_completion *completion)
{
	struct block_allocator *allocator = vdo_as_block_allocator(completion);

	vdo_finish_loading_with_result(&allocator->state, completion->result);
}

static int get_slab_statuses(struct block_allocator *allocator,
			     struct slab_status **statuses_ptr)
{
	int result;
	struct slab_status *statuses;
	struct slab_iterator iterator = get_slab_iterator(allocator);

	result = vdo_allocate(allocator->slab_count, struct slab_status, __func__,
			      &statuses);
	if (result != VDO_SUCCESS)
		return result;

	*statuses_ptr = statuses;

	while (iterator.next != NULL)  {
		slab_count_t slab_number = next_slab(&iterator)->slab_number;

		*statuses++ = (struct slab_status) {
			.slab_number = slab_number,
			.is_clean = !allocator->summary_entries[slab_number].is_dirty,
			.emptiness = allocator->summary_entries[slab_number].fullness_hint,
		};
	}

	return VDO_SUCCESS;
}

/* Prepare slabs for allocation or scrubbing. */
static int __must_check vdo_prepare_slabs_for_allocation(struct block_allocator *allocator)
{
	struct slab_status current_slab_status;
	struct min_heap heap;
	int result;
	struct slab_status *slab_statuses;
	struct slab_depot *depot = allocator->depot;

	WRITE_ONCE(allocator->allocated_blocks,
		   allocator->slab_count * depot->slab_config.data_blocks);
	result = get_slab_statuses(allocator, &slab_statuses);
	if (result != VDO_SUCCESS)
		return result;

	/* Sort the slabs by cleanliness, then by emptiness hint. */
	heap = (struct min_heap) {
		.data = slab_statuses,
		.nr = allocator->slab_count,
		.size = allocator->slab_count,
	};
	min_heapify_all(&heap, &slab_status_min_heap);

	while (heap.nr > 0) {
		bool high_priority;
		struct vdo_slab *slab;
		struct slab_journal *journal;

		current_slab_status = slab_statuses[0];
		min_heap_pop(&heap, &slab_status_min_heap);
		slab = depot->slabs[current_slab_status.slab_number];

		if ((depot->load_type == VDO_SLAB_DEPOT_REBUILD_LOAD) ||
		    (!allocator->summary_entries[slab->slab_number].load_ref_counts &&
		     current_slab_status.is_clean)) {
			queue_slab(slab);
			continue;
		}

		slab->status = VDO_SLAB_REQUIRES_SCRUBBING;
		journal = &slab->journal;
		high_priority = ((current_slab_status.is_clean &&
				 (depot->load_type == VDO_SLAB_DEPOT_NORMAL_LOAD)) ||
				 (journal_length(journal) >= journal->scrubbing_threshold));
		register_slab_for_scrubbing(slab, high_priority);
	}

	vdo_free(slab_statuses);
	return VDO_SUCCESS;
}

static const char *status_to_string(enum slab_rebuild_status status)
{
	switch (status) {
	case VDO_SLAB_REBUILT:
		return "REBUILT";
	case VDO_SLAB_REQUIRES_SCRUBBING:
		return "SCRUBBING";
	case VDO_SLAB_REQUIRES_HIGH_PRIORITY_SCRUBBING:
		return "PRIORITY_SCRUBBING";
	case VDO_SLAB_REBUILDING:
		return "REBUILDING";
	case VDO_SLAB_REPLAYING:
		return "REPLAYING";
	default:
		return "UNKNOWN";
	}
}

void vdo_dump_block_allocator(const struct block_allocator *allocator)
{
	unsigned int pause_counter = 0;
	struct slab_iterator iterator = get_slab_iterator(allocator);
	const struct slab_scrubber *scrubber = &allocator->scrubber;

	uds_log_info("block_allocator zone %u", allocator->zone_number);
	while (iterator.next != NULL) {
		struct vdo_slab *slab = next_slab(&iterator);
		struct slab_journal *journal = &slab->journal;

		if (slab->reference_blocks != NULL) {
			/* Terse because there are a lot of slabs to dump and syslog is lossy. */
			uds_log_info("slab %u: P%u, %llu free", slab->slab_number,
				     slab->priority,
				     (unsigned long long) slab->free_blocks);
		} else {
			uds_log_info("slab %u: status %s", slab->slab_number,
				     status_to_string(slab->status));
		}

		uds_log_info("  slab journal: entry_waiters=%zu waiting_to_commit=%s updating_slab_summary=%s head=%llu unreapable=%llu tail=%llu next_commit=%llu summarized=%llu last_summarized=%llu recovery_lock=%llu dirty=%s",
			     vdo_waitq_num_waiters(&journal->entry_waiters),
			     uds_bool_to_string(journal->waiting_to_commit),
			     uds_bool_to_string(journal->updating_slab_summary),
			     (unsigned long long) journal->head,
			     (unsigned long long) journal->unreapable,
			     (unsigned long long) journal->tail,
			     (unsigned long long) journal->next_commit,
			     (unsigned long long) journal->summarized,
			     (unsigned long long) journal->last_summarized,
			     (unsigned long long) journal->recovery_lock,
			     uds_bool_to_string(journal->recovery_lock != 0));
		/*
		 * Given the frequency with which the locks are just a tiny bit off, it might be
		 * worth dumping all the locks, but that might be too much logging.
		 */

		if (slab->counters != NULL) {
			/* Terse because there are a lot of slabs to dump and syslog is lossy. */
			uds_log_info("  slab: free=%u/%u blocks=%u dirty=%zu active=%zu journal@(%llu,%u)",
				     slab->free_blocks, slab->block_count,
				     slab->reference_block_count,
				     vdo_waitq_num_waiters(&slab->dirty_blocks),
				     slab->active_count,
				     (unsigned long long) slab->slab_journal_point.sequence_number,
				     slab->slab_journal_point.entry_count);
		} else {
			uds_log_info("  no counters");
		}

		/*
		 * Wait for a while after each batch of 32 slabs dumped, an arbitrary number,
		 * allowing the kernel log a chance to be flushed instead of being overrun.
		 */
		if (pause_counter++ == 31) {
			pause_counter = 0;
			uds_pause_for_logger();
		}
	}

	uds_log_info("slab_scrubber slab_count %u waiters %zu %s%s",
		     READ_ONCE(scrubber->slab_count),
		     vdo_waitq_num_waiters(&scrubber->waiters),
		     vdo_get_admin_state_code(&scrubber->admin_state)->name,
		     scrubber->high_priority_only ? ", high_priority_only " : "");
}

static void free_slab(struct vdo_slab *slab)
{
	if (slab == NULL)
		return;

	list_del(&slab->allocq_entry);
	vdo_free(vdo_forget(slab->journal.block));
	vdo_free(vdo_forget(slab->journal.locks));
	vdo_free(vdo_forget(slab->counters));
	vdo_free(vdo_forget(slab->reference_blocks));
	vdo_free(slab);
}

static int initialize_slab_journal(struct vdo_slab *slab)
{
	struct slab_journal *journal = &slab->journal;
	const struct slab_config *slab_config = &slab->allocator->depot->slab_config;
	int result;

	result = vdo_allocate(slab_config->slab_journal_blocks, struct journal_lock,
			      __func__, &journal->locks);
	if (result != VDO_SUCCESS)
		return result;

	result = vdo_allocate(VDO_BLOCK_SIZE, char, "struct packed_slab_journal_block",
			      (char **) &journal->block);
	if (result != VDO_SUCCESS)
		return result;

	journal->slab = slab;
	journal->size = slab_config->slab_journal_blocks;
	journal->flushing_threshold = slab_config->slab_journal_flushing_threshold;
	journal->blocking_threshold = slab_config->slab_journal_blocking_threshold;
	journal->scrubbing_threshold = slab_config->slab_journal_scrubbing_threshold;
	journal->entries_per_block = VDO_SLAB_JOURNAL_ENTRIES_PER_BLOCK;
	journal->full_entries_per_block = VDO_SLAB_JOURNAL_FULL_ENTRIES_PER_BLOCK;
	journal->events = &slab->allocator->slab_journal_statistics;
	journal->recovery_journal = slab->allocator->depot->vdo->recovery_journal;
	journal->tail = 1;
	journal->head = 1;

	journal->flushing_deadline = journal->flushing_threshold;
	/*
	 * Set there to be some time between the deadline and the blocking threshold, so that
	 * hopefully all are done before blocking.
	 */
	if ((journal->blocking_threshold - journal->flushing_threshold) > 5)
		journal->flushing_deadline = journal->blocking_threshold - 5;

	journal->slab_summary_waiter.callback = release_journal_locks;

	INIT_LIST_HEAD(&journal->dirty_entry);
	INIT_LIST_HEAD(&journal->uncommitted_blocks);

	journal->tail_header.nonce = slab->allocator->nonce;
	journal->tail_header.metadata_type = VDO_METADATA_SLAB_JOURNAL;
	initialize_journal_state(journal);
	return VDO_SUCCESS;
}

/**
 * make_slab() - Construct a new, empty slab.
 * @slab_origin: The physical block number within the block allocator partition of the first block
 *               in the slab.
 * @allocator: The block allocator to which the slab belongs.
 * @slab_number: The slab number of the slab.
 * @is_new: true if this slab is being allocated as part of a resize.
 * @slab_ptr: A pointer to receive the new slab.
 *
 * Return: VDO_SUCCESS or an error code.
 */
static int __must_check make_slab(physical_block_number_t slab_origin,
				  struct block_allocator *allocator,
				  slab_count_t slab_number, bool is_new,
				  struct vdo_slab **slab_ptr)
{
	const struct slab_config *slab_config = &allocator->depot->slab_config;
	struct vdo_slab *slab;
	int result;

	result = vdo_allocate(1, struct vdo_slab, __func__, &slab);
	if (result != VDO_SUCCESS)
		return result;

	*slab = (struct vdo_slab) {
		.allocator = allocator,
		.start = slab_origin,
		.end = slab_origin + slab_config->slab_blocks,
		.slab_number = slab_number,
		.ref_counts_origin = slab_origin + slab_config->data_blocks,
		.journal_origin =
			vdo_get_slab_journal_start_block(slab_config, slab_origin),
		.block_count = slab_config->data_blocks,
		.free_blocks = slab_config->data_blocks,
		.reference_block_count =
			vdo_get_saved_reference_count_size(slab_config->data_blocks),
	};
	INIT_LIST_HEAD(&slab->allocq_entry);

	result = initialize_slab_journal(slab);
	if (result != VDO_SUCCESS) {
		free_slab(slab);
		return result;
	}

	if (is_new) {
		vdo_set_admin_state_code(&slab->state, VDO_ADMIN_STATE_NEW);
		result = allocate_slab_counters(slab);
		if (result != VDO_SUCCESS) {
			free_slab(slab);
			return result;
		}
	} else {
		vdo_set_admin_state_code(&slab->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
	}

	*slab_ptr = slab;
	return VDO_SUCCESS;
}

/**
 * allocate_slabs() - Allocate a new slab pointer array.
 * @depot: The depot.
 * @slab_count: The number of slabs the depot should have in the new array.
 *
 * Any existing slab pointers will be copied into the new array, and slabs will be allocated as
 * needed. The newly allocated slabs will not be distributed for use by the block allocators.
 *
 * Return: VDO_SUCCESS or an error code.
 */
static int allocate_slabs(struct slab_depot *depot, slab_count_t slab_count)
{
	block_count_t slab_size;
	bool resizing = false;
	physical_block_number_t slab_origin;
	int result;

	result = vdo_allocate(slab_count, struct vdo_slab *,
			      "slab pointer array", &depot->new_slabs);
	if (result != VDO_SUCCESS)
		return result;

	if (depot->slabs != NULL) {
		memcpy(depot->new_slabs, depot->slabs,
		       depot->slab_count * sizeof(struct vdo_slab *));
		resizing = true;
	}

	slab_size = depot->slab_config.slab_blocks;
	slab_origin = depot->first_block + (depot->slab_count * slab_size);

	for (depot->new_slab_count = depot->slab_count;
	     depot->new_slab_count < slab_count;
	     depot->new_slab_count++, slab_origin += slab_size) {
		struct block_allocator *allocator =
			&depot->allocators[depot->new_slab_count % depot->zone_count];
		struct vdo_slab **slab_ptr = &depot->new_slabs[depot->new_slab_count];

		result = make_slab(slab_origin, allocator, depot->new_slab_count,
				   resizing, slab_ptr);
		if (result != VDO_SUCCESS)
			return result;
	}

	return VDO_SUCCESS;
}

/**
 * vdo_abandon_new_slabs() - Abandon any new slabs in this depot, freeing them as needed.
 * @depot: The depot.
 */
void vdo_abandon_new_slabs(struct slab_depot *depot)
{
	slab_count_t i;

	if (depot->new_slabs == NULL)
		return;

	for (i = depot->slab_count; i < depot->new_slab_count; i++)
		free_slab(vdo_forget(depot->new_slabs[i]));
	depot->new_slab_count = 0;
	depot->new_size = 0;
	vdo_free(vdo_forget(depot->new_slabs));
}

/**
 * get_allocator_thread_id() - Get the ID of the thread on which a given allocator operates.
 *
 * Implements vdo_zone_thread_getter_fn.
 */
static thread_id_t get_allocator_thread_id(void *context, zone_count_t zone_number)
{
	return ((struct slab_depot *) context)->allocators[zone_number].thread_id;
}

/**
 * release_recovery_journal_lock() - Request the slab journal to release the recovery journal lock
 *                                   it may hold on a specified recovery journal block.
 * @journal: The slab journal.
 * @recovery_lock: The sequence number of the recovery journal block whose locks should be
 *                 released.
 *
 * Return: true if the journal does hold a lock on the specified block (which it will release).
 */
static bool __must_check release_recovery_journal_lock(struct slab_journal *journal,
						       sequence_number_t recovery_lock)
{
	if (recovery_lock > journal->recovery_lock) {
		ASSERT_LOG_ONLY((recovery_lock < journal->recovery_lock),
				"slab journal recovery lock is not older than the recovery journal head");
		return false;
	}

	if ((recovery_lock < journal->recovery_lock) ||
	    vdo_is_read_only(journal->slab->allocator->depot->vdo))
		return false;

	/* All locks are held by the block which is in progress; write it. */
	commit_tail(journal);
	return true;
}

/*
 * Request a commit of all dirty tail blocks which are locking the recovery journal block the depot
 * is seeking to release.
 *
 * Implements vdo_zone_action_fn.
 */
static void release_tail_block_locks(void *context, zone_count_t zone_number,
				     struct vdo_completion *parent)
{
	struct slab_journal *journal, *tmp;
	struct slab_depot *depot = context;
	struct list_head *list = &depot->allocators[zone_number].dirty_slab_journals;

	list_for_each_entry_safe(journal, tmp, list, dirty_entry) {
		if (!release_recovery_journal_lock(journal,
						   depot->active_release_request))
			break;
	}

	vdo_finish_completion(parent);
}

/**
 * prepare_for_tail_block_commit() - Prepare to commit oldest tail blocks.
 *
 * Implements vdo_action_preamble_fn.
 */
static void prepare_for_tail_block_commit(void *context, struct vdo_completion *parent)
{
	struct slab_depot *depot = context;

	depot->active_release_request = depot->new_release_request;
	vdo_finish_completion(parent);
}

/**
 * schedule_tail_block_commit() - Schedule a tail block commit if necessary.
 *
 * This method should not be called directly. Rather, call vdo_schedule_default_action() on the
 * depot's action manager.
 *
 * Implements vdo_action_scheduler_fn.
 */
static bool schedule_tail_block_commit(void *context)
{
	struct slab_depot *depot = context;

	if (depot->new_release_request == depot->active_release_request)
		return false;

	return vdo_schedule_action(depot->action_manager,
				   prepare_for_tail_block_commit,
				   release_tail_block_locks,
				   NULL, NULL);
}

/**
 * initialize_slab_scrubber() - Initialize an allocator's slab scrubber.
 * @allocator: The allocator being initialized
 *
 * Return: VDO_SUCCESS or an error.
 */
static int initialize_slab_scrubber(struct block_allocator *allocator)
{
	struct slab_scrubber *scrubber = &allocator->scrubber;
	block_count_t slab_journal_size =
		allocator->depot->slab_config.slab_journal_blocks;
	char *journal_data;
	int result;

	result = vdo_allocate(VDO_BLOCK_SIZE * slab_journal_size,
			      char, __func__, &journal_data);
	if (result != VDO_SUCCESS)
		return result;

	result = allocate_vio_components(allocator->completion.vdo,
					 VIO_TYPE_SLAB_JOURNAL,
					 VIO_PRIORITY_METADATA,
					 allocator, slab_journal_size,
					 journal_data, &scrubber->vio);
	if (result != VDO_SUCCESS) {
		vdo_free(journal_data);
		return result;
	}

	INIT_LIST_HEAD(&scrubber->high_priority_slabs);
	INIT_LIST_HEAD(&scrubber->slabs);
	vdo_set_admin_state_code(&scrubber->admin_state, VDO_ADMIN_STATE_SUSPENDED);
	return VDO_SUCCESS;
}

/**
 * initialize_slab_summary_block() - Initialize a slab_summary_block.
 * @allocator: The allocator which owns the block.
 * @index: The index of this block in its zone's summary.
 *
 * Return: VDO_SUCCESS or an error.
 */
static int __must_check initialize_slab_summary_block(struct block_allocator *allocator,
						      block_count_t index)
{
	struct slab_summary_block *block = &allocator->summary_blocks[index];
	int result;

	result = vdo_allocate(VDO_BLOCK_SIZE, char, __func__, &block->outgoing_entries);
	if (result != VDO_SUCCESS)
		return result;

	result = allocate_vio_components(allocator->depot->vdo, VIO_TYPE_SLAB_SUMMARY,
					 VIO_PRIORITY_METADATA, NULL, 1,
					 block->outgoing_entries, &block->vio);
	if (result != VDO_SUCCESS)
		return result;

	block->allocator = allocator;
	block->entries = &allocator->summary_entries[VDO_SLAB_SUMMARY_ENTRIES_PER_BLOCK * index];
	block->index = index;
	return VDO_SUCCESS;
}

static int __must_check initialize_block_allocator(struct slab_depot *depot,
						   zone_count_t zone)
{
	int result;
	block_count_t i;
	struct block_allocator *allocator = &depot->allocators[zone];
	struct vdo *vdo = depot->vdo;
	block_count_t max_free_blocks = depot->slab_config.data_blocks;
	unsigned int max_priority = (2 + ilog2(max_free_blocks));

	*allocator = (struct block_allocator) {
		.depot = depot,
		.zone_number = zone,
		.thread_id = vdo->thread_config.physical_threads[zone],
		.nonce = vdo->states.vdo.nonce,
	};

	INIT_LIST_HEAD(&allocator->dirty_slab_journals);
	vdo_set_admin_state_code(&allocator->state, VDO_ADMIN_STATE_NORMAL_OPERATION);
	result = vdo_register_read_only_listener(vdo, allocator,
						 notify_block_allocator_of_read_only_mode,
						 allocator->thread_id);
	if (result != VDO_SUCCESS)
		return result;

	vdo_initialize_completion(&allocator->completion, vdo, VDO_BLOCK_ALLOCATOR_COMPLETION);
	result = make_vio_pool(vdo, BLOCK_ALLOCATOR_VIO_POOL_SIZE, allocator->thread_id,
			       VIO_TYPE_SLAB_JOURNAL, VIO_PRIORITY_METADATA,
			       allocator, &allocator->vio_pool);
	if (result != VDO_SUCCESS)
		return result;

	result = initialize_slab_scrubber(allocator);
	if (result != VDO_SUCCESS)
		return result;

	result = vdo_make_priority_table(max_priority, &allocator->prioritized_slabs);
	if (result != VDO_SUCCESS)
		return result;

	result = vdo_allocate(VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE,
			      struct slab_summary_block, __func__,
			      &allocator->summary_blocks);
	if (result != VDO_SUCCESS)
		return result;

	vdo_set_admin_state_code(&allocator->summary_state,
				 VDO_ADMIN_STATE_NORMAL_OPERATION);
	allocator->summary_entries = depot->summary_entries + (MAX_VDO_SLABS * zone);

	/* Initialize each summary block. */
	for (i = 0; i < VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE; i++) {
		result = initialize_slab_summary_block(allocator, i);
		if (result != VDO_SUCCESS)
			return result;
	}

	/*
	 * Performing well atop thin provisioned storage requires either that VDO discards freed
	 * blocks, or that the block allocator try to use slabs that already have allocated blocks
	 * in preference to slabs that have never been opened. For reasons we have not been able to
	 * fully understand, some SSD machines have been have been very sensitive (50% reduction in
	 * test throughput) to very slight differences in the timing and locality of block
	 * allocation. Assigning a low priority to unopened slabs (max_priority/2, say) would be
	 * ideal for the story, but anything less than a very high threshold (max_priority - 1)
	 * hurts on these machines.
	 *
	 * This sets the free block threshold for preferring to open an unopened slab to the binary
	 * floor of 3/4ths the total number of data blocks in a slab, which will generally evaluate
	 * to about half the slab size.
	 */
	allocator->unopened_slab_priority = (1 + ilog2((max_free_blocks * 3) / 4));

	return VDO_SUCCESS;
}

static int allocate_components(struct slab_depot *depot,
			       struct partition *summary_partition)
{
	int result;
	zone_count_t zone;
	slab_count_t slab_count;
	u8 hint;
	u32 i;
	const struct thread_config *thread_config = &depot->vdo->thread_config;

	result = vdo_make_action_manager(depot->zone_count, get_allocator_thread_id,
					 thread_config->journal_thread, depot,
					 schedule_tail_block_commit,
					 depot->vdo, &depot->action_manager);
	if (result != VDO_SUCCESS)
		return result;

	depot->origin = depot->first_block;

	/* block size must be a multiple of entry size */
	BUILD_BUG_ON((VDO_BLOCK_SIZE % sizeof(struct slab_summary_entry)) != 0);

	depot->summary_origin = summary_partition->offset;
	depot->hint_shift = vdo_get_slab_summary_hint_shift(depot->slab_size_shift);
	result = vdo_allocate(MAXIMUM_VDO_SLAB_SUMMARY_ENTRIES,
			      struct slab_summary_entry, __func__,
			      &depot->summary_entries);
	if (result != VDO_SUCCESS)
		return result;


	/* Initialize all the entries. */
	hint = compute_fullness_hint(depot, depot->slab_config.data_blocks);
	for (i = 0; i < MAXIMUM_VDO_SLAB_SUMMARY_ENTRIES; i++) {
		/*
		 * This default tail block offset must be reflected in
		 * slabJournal.c::read_slab_journal_tail().
		 */
		depot->summary_entries[i] = (struct slab_summary_entry) {
			.tail_block_offset = 0,
			.fullness_hint = hint,
			.load_ref_counts = false,
			.is_dirty = false,
		};
	}

	slab_count = vdo_compute_slab_count(depot->first_block, depot->last_block,
					    depot->slab_size_shift);
	if (thread_config->physical_zone_count > slab_count) {
		return uds_log_error_strerror(VDO_BAD_CONFIGURATION,
					      "%u physical zones exceeds slab count %u",
					      thread_config->physical_zone_count,
					      slab_count);
	}

	/* Initialize the block allocators. */
	for (zone = 0; zone < depot->zone_count; zone++) {
		result = initialize_block_allocator(depot, zone);
		if (result != VDO_SUCCESS)
			return result;
	}

	/* Allocate slabs. */
	result = allocate_slabs(depot, slab_count);
	if (result != VDO_SUCCESS)
		return result;

	/* Use the new slabs. */
	for (i = depot->slab_count; i < depot->new_slab_count; i++) {
		struct vdo_slab *slab = depot->new_slabs[i];

		register_slab_with_allocator(slab->allocator, slab);
		WRITE_ONCE(depot->slab_count, depot->slab_count + 1);
	}

	depot->slabs = depot->new_slabs;
	depot->new_slabs = NULL;
	depot->new_slab_count = 0;

	return VDO_SUCCESS;
}

/**
 * vdo_decode_slab_depot() - Make a slab depot and configure it with the state read from the super
 *                           block.
 * @state: The slab depot state from the super block.
 * @vdo: The VDO which will own the depot.
 * @summary_partition: The partition which holds the slab summary.
 * @depot_ptr: A pointer to hold the depot.
 *
 * Return: A success or error code.
 */
int vdo_decode_slab_depot(struct slab_depot_state_2_0 state, struct vdo *vdo,
			  struct partition *summary_partition,
			  struct slab_depot **depot_ptr)
{
	unsigned int slab_size_shift;
	struct slab_depot *depot;
	int result;

	/*
	 * Calculate the bit shift for efficiently mapping block numbers to slabs. Using a shift
	 * requires that the slab size be a power of two.
	 */
	block_count_t slab_size = state.slab_config.slab_blocks;

	if (!is_power_of_2(slab_size)) {
		return uds_log_error_strerror(UDS_INVALID_ARGUMENT,
					      "slab size must be a power of two");
	}
	slab_size_shift = ilog2(slab_size);

	result = vdo_allocate_extended(struct slab_depot,
				       vdo->thread_config.physical_zone_count,
				       struct block_allocator, __func__, &depot);
	if (result != VDO_SUCCESS)
		return result;

	depot->vdo = vdo;
	depot->old_zone_count = state.zone_count;
	depot->zone_count = vdo->thread_config.physical_zone_count;
	depot->slab_config = state.slab_config;
	depot->first_block = state.first_block;
	depot->last_block = state.last_block;
	depot->slab_size_shift = slab_size_shift;

	result = allocate_components(depot, summary_partition);
	if (result != VDO_SUCCESS) {
		vdo_free_slab_depot(depot);
		return result;
	}

	*depot_ptr = depot;
	return VDO_SUCCESS;
}

static void uninitialize_allocator_summary(struct block_allocator *allocator)
{
	block_count_t i;

	if (allocator->summary_blocks == NULL)
		return;

	for (i = 0; i < VDO_SLAB_SUMMARY_BLOCKS_PER_ZONE; i++) {
		free_vio_components(&allocator->summary_blocks[i].vio);
		vdo_free(vdo_forget(allocator->summary_blocks[i].outgoing_entries));
	}

	vdo_free(vdo_forget(allocator->summary_blocks));
}

/**
 * vdo_free_slab_depot() - Destroy a slab depot.
 * @depot: The depot to destroy.
 */
void vdo_free_slab_depot(struct slab_depot *depot)
{
	zone_count_t zone = 0;

	if (depot == NULL)
		return;

	vdo_abandon_new_slabs(depot);

	for (zone = 0; zone < depot->zone_count; zone++) {
		struct block_allocator *allocator = &depot->allocators[zone];

		if (allocator->eraser != NULL)
			dm_kcopyd_client_destroy(vdo_forget(allocator->eraser));

		uninitialize_allocator_summary(allocator);
		uninitialize_scrubber_vio(&allocator->scrubber);
		free_vio_pool(vdo_forget(allocator->vio_pool));
		vdo_free_priority_table(vdo_forget(allocator->prioritized_slabs));
	}

	if (depot->slabs != NULL) {
		slab_count_t i;

		for (i = 0; i < depot->slab_count; i++)
			free_slab(vdo_forget(depot->slabs[i]));
	}

	vdo_free(vdo_forget(depot->slabs));
	vdo_free(vdo_forget(depot->action_manager));
	vdo_free(vdo_forget(depot->summary_entries));
	vdo_free(depot);
}

/**
 * vdo_record_slab_depot() - Record the state of a slab depot for encoding into the super block.
 * @depot: The depot to encode.
 *
 * Return: The depot state.
 */
struct slab_depot_state_2_0 vdo_record_slab_depot(const struct slab_depot *depot)
{
	/*
	 * If this depot is currently using 0 zones, it must have been synchronously loaded by a
	 * tool and is now being saved. We did not load and combine the slab summary, so we still
	 * need to do that next time we load with the old zone count rather than 0.
	 */
	struct slab_depot_state_2_0 state;
	zone_count_t zones_to_record = depot->zone_count;

	if (depot->zone_count == 0)
		zones_to_record = depot->old_zone_count;

	state = (struct slab_depot_state_2_0) {
		.slab_config = depot->slab_config,
		.first_block = depot->first_block,
		.last_block = depot->last_block,
		.zone_count = zones_to_record,
	};

	return state;
}

/**
 * vdo_allocate_reference_counters() - Allocate the reference counters for all slabs in the depot.
 *
 * Context: This method may be called only before entering normal operation from the load thread.
 *
 * Return: VDO_SUCCESS or an error.
 */
int vdo_allocate_reference_counters(struct slab_depot *depot)
{
	struct slab_iterator iterator =
		get_depot_slab_iterator(depot, depot->slab_count - 1, 0, 1);

	while (iterator.next != NULL) {
		int result = allocate_slab_counters(next_slab(&iterator));

		if (result != VDO_SUCCESS)
			return result;
	}

	return VDO_SUCCESS;
}

/**
 * get_slab_number() - Get the number of the slab that contains a specified block.
 * @depot: The slab depot.
 * @pbn: The physical block number.
 * @slab_number_ptr: A pointer to hold the slab number.
 *
 * Return: VDO_SUCCESS or an error.
 */
static int __must_check get_slab_number(const struct slab_depot *depot,
					physical_block_number_t pbn,
					slab_count_t *slab_number_ptr)
{
	slab_count_t slab_number;

	if (pbn < depot->first_block)
		return VDO_OUT_OF_RANGE;

	slab_number = (pbn - depot->first_block) >> depot->slab_size_shift;
	if (slab_number >= depot->slab_count)
		return VDO_OUT_OF_RANGE;

	*slab_number_ptr = slab_number;
	return VDO_SUCCESS;
}

/**
 * vdo_get_slab() - Get the slab object for the slab that contains a specified block.
 * @depot: The slab depot.
 * @pbn: The physical block number.
 *
 * Will put the VDO in read-only mode if the PBN is not a valid data block nor the zero block.
 *
 * Return: The slab containing the block, or NULL if the block number is the zero block or
 * otherwise out of range.
 */
struct vdo_slab *vdo_get_slab(const struct slab_depot *depot,
			      physical_block_number_t pbn)
{
	slab_count_t slab_number;
	int result;

	if (pbn == VDO_ZERO_BLOCK)
		return NULL;

	result = get_slab_number(depot, pbn, &slab_number);
	if (result != VDO_SUCCESS) {
		vdo_enter_read_only_mode(depot->vdo, result);
		return NULL;
	}

	return depot->slabs[slab_number];
}

/**
 * vdo_get_increment_limit() - Determine how many new references a block can acquire.
 * @depot: The slab depot.
 * @pbn: The physical block number that is being queried.
 *
 * Context: This method must be called from the physical zone thread of the PBN.
 *
 * Return: The number of available references.
 */
u8 vdo_get_increment_limit(struct slab_depot *depot, physical_block_number_t pbn)
{
	struct vdo_slab *slab = vdo_get_slab(depot, pbn);
	vdo_refcount_t *counter_ptr = NULL;
	int result;

	if ((slab == NULL) || (slab->status != VDO_SLAB_REBUILT))
		return 0;

	result = get_reference_counter(slab, pbn, &counter_ptr);
	if (result != VDO_SUCCESS)
		return 0;

	if (*counter_ptr == PROVISIONAL_REFERENCE_COUNT)
		return (MAXIMUM_REFERENCE_COUNT - 1);

	return (MAXIMUM_REFERENCE_COUNT - *counter_ptr);
}

/**
 * vdo_is_physical_data_block() - Determine whether the given PBN refers to a data block.
 * @depot: The depot.
 * @pbn: The physical block number to ask about.
 *
 * Return: True if the PBN corresponds to a data block.
 */
bool vdo_is_physical_data_block(const struct slab_depot *depot,
				physical_block_number_t pbn)
{
	slab_count_t slab_number;
	slab_block_number sbn;

	return ((pbn == VDO_ZERO_BLOCK) ||
		((get_slab_number(depot, pbn, &slab_number) == VDO_SUCCESS) &&
		 (slab_block_number_from_pbn(depot->slabs[slab_number], pbn, &sbn) ==
		  VDO_SUCCESS)));
}

/**
 * vdo_get_slab_depot_allocated_blocks() - Get the total number of data blocks allocated across all
 * the slabs in the depot.
 * @depot: The slab depot.
 *
 * This is the total number of blocks with a non-zero reference count.
 *
 * Context: This may be called from any thread.
 *
 * Return: The total number of blocks with a non-zero reference count.
 */
block_count_t vdo_get_slab_depot_allocated_blocks(const struct slab_depot *depot)
{
	block_count_t total = 0;
	zone_count_t zone;

	for (zone = 0; zone < depot->zone_count; zone++) {
		/* The allocators are responsible for thread safety. */
		total += READ_ONCE(depot->allocators[zone].allocated_blocks);
	}

	return total;
}

/**
 * vdo_get_slab_depot_data_blocks() - Get the total number of data blocks in all the slabs in the
 *                                    depot.
 * @depot: The slab depot.
 *
 * Context: This may be called from any thread.
 *
 * Return: The total number of data blocks in all slabs.
 */
block_count_t vdo_get_slab_depot_data_blocks(const struct slab_depot *depot)
{
	return (READ_ONCE(depot->slab_count) * depot->slab_config.data_blocks);
}

/**
 * finish_combining_zones() - Clean up after saving out the combined slab summary.
 * @completion: The vio which was used to write the summary data.
 */
static void finish_combining_zones(struct vdo_completion *completion)
{
	int result = completion->result;
	struct vdo_completion *parent = completion->parent;

	free_vio(as_vio(vdo_forget(completion)));
	vdo_fail_completion(parent, result);
}

static void handle_combining_error(struct vdo_completion *completion)
{
	vio_record_metadata_io_error(as_vio(completion));
	finish_combining_zones(completion);
}

static void write_summary_endio(struct bio *bio)
{
	struct vio *vio = bio->bi_private;
	struct vdo *vdo = vio->completion.vdo;

	continue_vio_after_io(vio, finish_combining_zones,
			      vdo->thread_config.admin_thread);
}

/**
 * combine_summaries() - Treating the current entries buffer as the on-disk value of all zones,
 *                       update every zone to the correct values for every slab.
 * @depot: The depot whose summary entries should be combined.
 */
static void combine_summaries(struct slab_depot *depot)
{
	/*
	 * Combine all the old summary data into the portion of the buffer corresponding to the
	 * first zone.
	 */
	zone_count_t zone = 0;
	struct slab_summary_entry *entries = depot->summary_entries;

	if (depot->old_zone_count > 1) {
		slab_count_t entry_number;

		for (entry_number = 0; entry_number < MAX_VDO_SLABS; entry_number++) {
			if (zone != 0) {
				memcpy(entries + entry_number,
				       entries + (zone * MAX_VDO_SLABS) + entry_number,
				       sizeof(struct slab_summary_entry));
			}

			zone++;
			if (zone == depot->old_zone_count)
				zone = 0;
		}
	}

	/* Copy the combined data to each zones's region of the buffer. */
	for (zone = 1; zone < MAX_VDO_PHYSICAL_ZONES; zone++) {
		memcpy(entries + (zone * MAX_VDO_SLABS), entries,
		       MAX_VDO_SLABS * sizeof(struct slab_summary_entry));
	}
}

/**
 * finish_loading_summary() - Finish loading slab summary data.
 * @completion: The vio which was used to read the summary data.
 *
 * Combines the slab summary data from all the previously written zones and copies the combined
 * summary to each partition's data region. Then writes the combined summary back out to disk. This
 * callback is registered in load_summary_endio().
 */
static void finish_loading_summary(struct vdo_completion *completion)
{
	struct slab_depot *depot = completion->vdo->depot;

	/* Combine the summary from each zone so each zone is correct for all slabs. */
	combine_summaries(depot);

	/* Write the combined summary back out. */
	vdo_submit_metadata_vio(as_vio(completion), depot->summary_origin,
				write_summary_endio, handle_combining_error,
				REQ_OP_WRITE);
}

static void load_summary_endio(struct bio *bio)
{
	struct vio *vio = bio->bi_private;
	struct vdo *vdo = vio->completion.vdo;

	continue_vio_after_io(vio, finish_loading_summary,
			      vdo->thread_config.admin_thread);
}

/**
 * load_slab_summary() - The preamble of a load operation.
 *
 * Implements vdo_action_preamble_fn.
 */
static void load_slab_summary(void *context, struct vdo_completion *parent)
{
	int result;
	struct vio *vio;
	struct slab_depot *depot = context;
	const struct admin_state_code *operation =
		vdo_get_current_manager_operation(depot->action_manager);

	result = create_multi_block_metadata_vio(depot->vdo, VIO_TYPE_SLAB_SUMMARY,
						 VIO_PRIORITY_METADATA, parent,
						 VDO_SLAB_SUMMARY_BLOCKS,
						 (char *) depot->summary_entries, &vio);
	if (result != VDO_SUCCESS) {
		vdo_fail_completion(parent, result);
		return;
	}

	if ((operation == VDO_ADMIN_STATE_FORMATTING) ||
	    (operation == VDO_ADMIN_STATE_LOADING_FOR_REBUILD)) {
		finish_loading_summary(&vio->completion);
		return;
	}

	vdo_submit_metadata_vio(vio, depot->summary_origin, load_summary_endio,
				handle_combining_error, REQ_OP_READ);
}

/* Implements vdo_zone_action_fn. */
static void load_allocator(void *context, zone_count_t zone_number,
			   struct vdo_completion *parent)
{
	struct slab_depot *depot = context;

	vdo_start_loading(&depot->allocators[zone_number].state,
			  vdo_get_current_manager_operation(depot->action_manager),
			  parent, initiate_load);
}

/**
 * vdo_load_slab_depot() - Asynchronously load any slab depot state that isn't included in the
 *                         super_block component.
 * @depot: The depot to load.
 * @operation: The type of load to perform.
 * @parent: The completion to notify when the load is complete.
 * @context: Additional context for the load operation; may be NULL.
 *
 * This method may be called only before entering normal operation from the load thread.
 */
void vdo_load_slab_depot(struct slab_depot *depot,
			 const struct admin_state_code *operation,
			 struct vdo_completion *parent, void *context)
{
	if (!vdo_assert_load_operation(operation, parent))
		return;

	vdo_schedule_operation_with_context(depot->action_manager, operation,
					    load_slab_summary, load_allocator,
					    NULL, context, parent);
}

/* Implements vdo_zone_action_fn. */
static void prepare_to_allocate(void *context, zone_count_t zone_number,
				struct vdo_completion *parent)
{
	struct slab_depot *depot = context;
	struct block_allocator *allocator = &depot->allocators[zone_number];
	int result;

	result = vdo_prepare_slabs_for_allocation(allocator);
	if (result != VDO_SUCCESS) {
		vdo_fail_completion(parent, result);
		return;
	}

	scrub_slabs(allocator, parent);
}

/**
 * vdo_prepare_slab_depot_to_allocate() - Prepare the slab depot to come online and start
 *                                        allocating blocks.
 * @depot: The depot to prepare.
 * @load_type: The load type.
 * @parent: The completion to notify when the operation is complete.
 *
 * This method may be called only before entering normal operation from the load thread. It must be
 * called before allocation may proceed.
 */
void vdo_prepare_slab_depot_to_allocate(struct slab_depot *depot,
					enum slab_depot_load_type load_type,
					struct vdo_completion *parent)
{
	depot->load_type = load_type;
	atomic_set(&depot->zones_to_scrub, depot->zone_count);
	vdo_schedule_action(depot->action_manager, NULL,
			    prepare_to_allocate, NULL, parent);
}

/**
 * vdo_update_slab_depot_size() - Update the slab depot to reflect its new size in memory.
 * @depot: The depot to update.
 *
 * This size is saved to disk as part of the super block.
 */
void vdo_update_slab_depot_size(struct slab_depot *depot)
{
	depot->last_block = depot->new_last_block;
}

/**
 * vdo_prepare_to_grow_slab_depot() - Allocate new memory needed for a resize of a slab depot to
 *                                    the given size.
 * @depot: The depot to prepare to resize.
 * @partition: The new depot partition
 *
 * Return: VDO_SUCCESS or an error.
 */
int vdo_prepare_to_grow_slab_depot(struct slab_depot *depot,
				   const struct partition *partition)
{
	struct slab_depot_state_2_0 new_state;
	int result;
	slab_count_t new_slab_count;

	if ((partition->count >> depot->slab_size_shift) <= depot->slab_count)
		return VDO_INCREMENT_TOO_SMALL;

	/* Generate the depot configuration for the new block count. */
	ASSERT_LOG_ONLY(depot->first_block == partition->offset,
			"New slab depot partition doesn't change origin");
	result = vdo_configure_slab_depot(partition, depot->slab_config,
					  depot->zone_count, &new_state);
	if (result != VDO_SUCCESS)
		return result;

	new_slab_count = vdo_compute_slab_count(depot->first_block,
						new_state.last_block,
						depot->slab_size_shift);
	if (new_slab_count <= depot->slab_count)
		return uds_log_error_strerror(VDO_INCREMENT_TOO_SMALL,
					      "Depot can only grow");
	if (new_slab_count == depot->new_slab_count) {
		/* Check it out, we've already got all the new slabs allocated! */
		return VDO_SUCCESS;
	}

	vdo_abandon_new_slabs(depot);
	result = allocate_slabs(depot, new_slab_count);
	if (result != VDO_SUCCESS) {
		vdo_abandon_new_slabs(depot);
		return result;
	}

	depot->new_size = partition->count;
	depot->old_last_block = depot->last_block;
	depot->new_last_block = new_state.last_block;

	return VDO_SUCCESS;
}

/**
 * finish_registration() - Finish registering new slabs now that all of the allocators have
 *                         received their new slabs.
 *
 * Implements vdo_action_conclusion_fn.
 */
static int finish_registration(void *context)
{
	struct slab_depot *depot = context;

	WRITE_ONCE(depot->slab_count, depot->new_slab_count);
	vdo_free(depot->slabs);
	depot->slabs = depot->new_slabs;
	depot->new_slabs = NULL;
	depot->new_slab_count = 0;
	return VDO_SUCCESS;
}

/* Implements vdo_zone_action_fn. */
static void register_new_slabs(void *context, zone_count_t zone_number,
			       struct vdo_completion *parent)
{
	struct slab_depot *depot = context;
	struct block_allocator *allocator = &depot->allocators[zone_number];
	slab_count_t i;

	for (i = depot->slab_count; i < depot->new_slab_count; i++) {
		struct vdo_slab *slab = depot->new_slabs[i];

		if (slab->allocator == allocator)
			register_slab_with_allocator(allocator, slab);
	}

	vdo_finish_completion(parent);
}

/**
 * vdo_use_new_slabs() - Use the new slabs allocated for resize.
 * @depot: The depot.
 * @parent: The object to notify when complete.
 */
void vdo_use_new_slabs(struct slab_depot *depot, struct vdo_completion *parent)
{
	ASSERT_LOG_ONLY(depot->new_slabs != NULL, "Must have new slabs to use");
	vdo_schedule_operation(depot->action_manager,
			       VDO_ADMIN_STATE_SUSPENDED_OPERATION,
			       NULL, register_new_slabs,
			       finish_registration, parent);
}

/**
 * stop_scrubbing() - Tell the scrubber to stop scrubbing after it finishes the slab it is
 *                    currently working on.
 * @scrubber: The scrubber to stop.
 * @parent: The completion to notify when scrubbing has stopped.
 */
static void stop_scrubbing(struct block_allocator *allocator)
{
	struct slab_scrubber *scrubber = &allocator->scrubber;

	if (vdo_is_state_quiescent(&scrubber->admin_state)) {
		vdo_finish_completion(&allocator->completion);
	} else {
		vdo_start_draining(&scrubber->admin_state,
				   VDO_ADMIN_STATE_SUSPENDING,
				   &allocator->completion, NULL);
	}
}

/* Implements vdo_admin_initiator_fn. */
static void initiate_summary_drain(struct admin_state *state)
{
	check_summary_drain_complete(container_of(state, struct block_allocator,
						  summary_state));
}

static void do_drain_step(struct vdo_completion *completion)
{
	struct block_allocator *allocator = vdo_as_block_allocator(completion);

	vdo_prepare_completion_for_requeue(&allocator->completion, do_drain_step,
					   handle_operation_error, allocator->thread_id,
					   NULL);
	switch (++allocator->drain_step) {
	case VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER:
		stop_scrubbing(allocator);
		return;

	case VDO_DRAIN_ALLOCATOR_STEP_SLABS:
		apply_to_slabs(allocator, do_drain_step);
		return;

	case VDO_DRAIN_ALLOCATOR_STEP_SUMMARY:
		vdo_start_draining(&allocator->summary_state,
				   vdo_get_admin_state_code(&allocator->state),
				   completion, initiate_summary_drain);
		return;

	case VDO_DRAIN_ALLOCATOR_STEP_FINISHED:
		ASSERT_LOG_ONLY(!is_vio_pool_busy(allocator->vio_pool),
				"vio pool not busy");
		vdo_finish_draining_with_result(&allocator->state, completion->result);
		return;

	default:
		vdo_finish_draining_with_result(&allocator->state, UDS_BAD_STATE);
	}
}

/* Implements vdo_admin_initiator_fn. */
static void initiate_drain(struct admin_state *state)
{
	struct block_allocator *allocator =
		container_of(state, struct block_allocator, state);

	allocator->drain_step = VDO_DRAIN_ALLOCATOR_START;
	do_drain_step(&allocator->completion);
}

/*
 * Drain all allocator I/O. Depending upon the type of drain, some or all dirty metadata may be
 * written to disk. The type of drain will be determined from the state of the allocator's depot.
 *
 * Implements vdo_zone_action_fn.
 */
static void drain_allocator(void *context, zone_count_t zone_number,
			    struct vdo_completion *parent)
{
	struct slab_depot *depot = context;

	vdo_start_draining(&depot->allocators[zone_number].state,
			   vdo_get_current_manager_operation(depot->action_manager),
			   parent, initiate_drain);
}

/**
 * vdo_drain_slab_depot() - Drain all slab depot I/O.
 * @depot: The depot to drain.
 * @operation: The drain operation (flush, rebuild, suspend, or save).
 * @parent: The completion to finish when the drain is complete.
 *
 * If saving, or flushing, all dirty depot metadata will be written out. If saving or suspending,
 * the depot will be left in a suspended state.
 */
void vdo_drain_slab_depot(struct slab_depot *depot,
			  const struct admin_state_code *operation,
			  struct vdo_completion *parent)
{
	vdo_schedule_operation(depot->action_manager, operation,
			       NULL, drain_allocator, NULL, parent);
}

/**
 * resume_scrubbing() - Tell the scrubber to resume scrubbing if it has been stopped.
 * @allocator: The allocator being resumed.
 */
static void resume_scrubbing(struct block_allocator *allocator)
{
	int result;
	struct slab_scrubber *scrubber = &allocator->scrubber;

	if (!has_slabs_to_scrub(scrubber)) {
		vdo_finish_completion(&allocator->completion);
		return;
	}

	result = vdo_resume_if_quiescent(&scrubber->admin_state);
	if (result != VDO_SUCCESS) {
		vdo_fail_completion(&allocator->completion, result);
		return;
	}

	scrub_next_slab(scrubber);
	vdo_finish_completion(&allocator->completion);
}

static void do_resume_step(struct vdo_completion *completion)
{
	struct block_allocator *allocator = vdo_as_block_allocator(completion);

	vdo_prepare_completion_for_requeue(&allocator->completion, do_resume_step,
					   handle_operation_error,
					   allocator->thread_id, NULL);
	switch (--allocator->drain_step) {
	case VDO_DRAIN_ALLOCATOR_STEP_SUMMARY:
		vdo_fail_completion(completion,
				    vdo_resume_if_quiescent(&allocator->summary_state));
		return;

	case VDO_DRAIN_ALLOCATOR_STEP_SLABS:
		apply_to_slabs(allocator, do_resume_step);
		return;

	case VDO_DRAIN_ALLOCATOR_STEP_SCRUBBER:
		resume_scrubbing(allocator);
		return;

	case VDO_DRAIN_ALLOCATOR_START:
		vdo_finish_resuming_with_result(&allocator->state, completion->result);
		return;

	default:
		vdo_finish_resuming_with_result(&allocator->state, UDS_BAD_STATE);
	}
}

/* Implements vdo_admin_initiator_fn. */
static void initiate_resume(struct admin_state *state)
{
	struct block_allocator *allocator =
		container_of(state, struct block_allocator, state);

	allocator->drain_step = VDO_DRAIN_ALLOCATOR_STEP_FINISHED;
	do_resume_step(&allocator->completion);
}

/* Implements vdo_zone_action_fn. */
static void resume_allocator(void *context, zone_count_t zone_number,
			     struct vdo_completion *parent)
{
	struct slab_depot *depot = context;

	vdo_start_resuming(&depot->allocators[zone_number].state,
			   vdo_get_current_manager_operation(depot->action_manager),
			   parent, initiate_resume);
}

/**
 * vdo_resume_slab_depot() - Resume a suspended slab depot.
 * @depot: The depot to resume.
 * @parent: The completion to finish when the depot has resumed.
 */
void vdo_resume_slab_depot(struct slab_depot *depot, struct vdo_completion *parent)
{
	if (vdo_is_read_only(depot->vdo)) {
		vdo_continue_completion(parent, VDO_READ_ONLY);
		return;
	}

	vdo_schedule_operation(depot->action_manager, VDO_ADMIN_STATE_RESUMING,
			       NULL, resume_allocator, NULL, parent);
}

/**
 * vdo_commit_oldest_slab_journal_tail_blocks() - Commit all dirty tail blocks which are locking a
 *                                                given recovery journal block.
 * @depot: The depot.
 * @recovery_block_number: The sequence number of the recovery journal block whose locks should be
 *                         released.
 *
 * Context: This method must be called from the journal zone thread.
 */
void vdo_commit_oldest_slab_journal_tail_blocks(struct slab_depot *depot,
						sequence_number_t recovery_block_number)
{
	if (depot == NULL)
		return;

	depot->new_release_request = recovery_block_number;
	vdo_schedule_default_action(depot->action_manager);
}

/* Implements vdo_zone_action_fn. */
static void scrub_all_unrecovered_slabs(void *context, zone_count_t zone_number,
					struct vdo_completion *parent)
{
	struct slab_depot *depot = context;

	scrub_slabs(&depot->allocators[zone_number], NULL);
	vdo_launch_completion(parent);
}

/**
 * vdo_scrub_all_unrecovered_slabs() - Scrub all unrecovered slabs.
 * @depot: The depot to scrub.
 * @parent: The object to notify when scrubbing has been launched for all zones.
 */
void vdo_scrub_all_unrecovered_slabs(struct slab_depot *depot,
				     struct vdo_completion *parent)
{
	vdo_schedule_action(depot->action_manager, NULL,
			    scrub_all_unrecovered_slabs,
			    NULL, parent);
}

/**
 * get_block_allocator_statistics() - Get the total of the statistics from all the block allocators
 *                                    in the depot.
 * @depot: The slab depot.
 *
 * Return: The statistics from all block allocators in the depot.
 */
static struct block_allocator_statistics __must_check
get_block_allocator_statistics(const struct slab_depot *depot)
{
	struct block_allocator_statistics totals;
	zone_count_t zone;

	memset(&totals, 0, sizeof(totals));

	for (zone = 0; zone < depot->zone_count; zone++) {
		const struct block_allocator *allocator = &depot->allocators[zone];
		const struct block_allocator_statistics *stats = &allocator->statistics;

		totals.slab_count += allocator->slab_count;
		totals.slabs_opened += READ_ONCE(stats->slabs_opened);
		totals.slabs_reopened += READ_ONCE(stats->slabs_reopened);
	}

	return totals;
}

/**
 * get_ref_counts_statistics() - Get the cumulative ref_counts statistics for the depot.
 * @depot: The slab depot.
 *
 * Return: The cumulative statistics for all ref_counts in the depot.
 */
static struct ref_counts_statistics __must_check
get_ref_counts_statistics(const struct slab_depot *depot)
{
	struct ref_counts_statistics totals;
	zone_count_t zone;

	memset(&totals, 0, sizeof(totals));

	for (zone = 0; zone < depot->zone_count; zone++) {
		totals.blocks_written +=
			READ_ONCE(depot->allocators[zone].ref_counts_statistics.blocks_written);
	}

	return totals;
}

/**
 * get_slab_journal_statistics() - Get the aggregated slab journal statistics for the depot.
 * @depot: The slab depot.
 *
 * Return: The aggregated statistics for all slab journals in the depot.
 */
static struct slab_journal_statistics __must_check
get_slab_journal_statistics(const struct slab_depot *depot)
{
	struct slab_journal_statistics totals;
	zone_count_t zone;

	memset(&totals, 0, sizeof(totals));

	for (zone = 0; zone < depot->zone_count; zone++) {
		const struct slab_journal_statistics *stats =
			&depot->allocators[zone].slab_journal_statistics;

		totals.disk_full_count += READ_ONCE(stats->disk_full_count);
		totals.flush_count += READ_ONCE(stats->flush_count);
		totals.blocked_count += READ_ONCE(stats->blocked_count);
		totals.blocks_written += READ_ONCE(stats->blocks_written);
		totals.tail_busy_count += READ_ONCE(stats->tail_busy_count);
	}

	return totals;
}

/**
 * vdo_get_slab_depot_statistics() - Get all the vdo_statistics fields that are properties of the
 *                                   slab depot.
 * @depot: The slab depot.
 * @stats: The vdo statistics structure to partially fill.
 */
void vdo_get_slab_depot_statistics(const struct slab_depot *depot,
				   struct vdo_statistics *stats)
{
	slab_count_t slab_count = READ_ONCE(depot->slab_count);
	slab_count_t unrecovered = 0;
	zone_count_t zone;

	for (zone = 0; zone < depot->zone_count; zone++) {
		/* The allocators are responsible for thread safety. */
		unrecovered += READ_ONCE(depot->allocators[zone].scrubber.slab_count);
	}

	stats->recovery_percentage = (slab_count - unrecovered) * 100 / slab_count;
	stats->allocator = get_block_allocator_statistics(depot);
	stats->ref_counts = get_ref_counts_statistics(depot);
	stats->slab_journal = get_slab_journal_statistics(depot);
	stats->slab_summary = (struct slab_summary_statistics) {
		.blocks_written = atomic64_read(&depot->summary_statistics.blocks_written),
	};
}

/**
 * vdo_dump_slab_depot() - Dump the slab depot, in a thread-unsafe fashion.
 * @depot: The slab depot.
 */
void vdo_dump_slab_depot(const struct slab_depot *depot)
{
	uds_log_info("vdo slab depot");
	uds_log_info("  zone_count=%u old_zone_count=%u slabCount=%u active_release_request=%llu new_release_request=%llu",
		     (unsigned int) depot->zone_count,
		     (unsigned int) depot->old_zone_count, READ_ONCE(depot->slab_count),
		     (unsigned long long) depot->active_release_request,
		     (unsigned long long) depot->new_release_request);
}