summaryrefslogtreecommitdiff
path: root/drivers/infiniband/sw/rxe/rxe_icrc.c
blob: e03af3012590447756d98bde325b9d4f599d2db1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB
/*
 * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
 * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved.
 */

#include <linux/crc32.h>

#include "rxe.h"
#include "rxe_loc.h"

/**
 * rxe_icrc_init() - Initialize crypto function for computing crc32
 * @rxe: rdma_rxe device object
 *
 * Return: 0 on success else an error
 */
int rxe_icrc_init(struct rxe_dev *rxe)
{
	struct crypto_shash *tfm;

	tfm = crypto_alloc_shash("crc32", 0, 0);
	if (IS_ERR(tfm)) {
		pr_warn("failed to init crc32 algorithm err:%ld\n",
			       PTR_ERR(tfm));
		return PTR_ERR(tfm);
	}

	rxe->tfm = tfm;

	return 0;
}

/**
 * rxe_crc32() - Compute cumulative crc32 for a contiguous segment
 * @rxe: rdma_rxe device object
 * @crc: starting crc32 value from previous segments
 * @next: starting address of current segment
 * @len: length of current segment
 *
 * Return: the cumulative crc32 checksum
 */
static __be32 rxe_crc32(struct rxe_dev *rxe, __be32 crc, void *next, size_t len)
{
	__be32 icrc;
	int err;

	SHASH_DESC_ON_STACK(shash, rxe->tfm);

	shash->tfm = rxe->tfm;
	*(__be32 *)shash_desc_ctx(shash) = crc;
	err = crypto_shash_update(shash, next, len);
	if (unlikely(err)) {
		pr_warn_ratelimited("failed crc calculation, err: %d\n", err);
		return (__force __be32)crc32_le((__force u32)crc, next, len);
	}

	icrc = *(__be32 *)shash_desc_ctx(shash);
	barrier_data(shash_desc_ctx(shash));

	return icrc;
}

/**
 * rxe_icrc_hdr() - Compute the partial ICRC for the network and transport
 *		  headers of a packet.
 * @skb: packet buffer
 * @pkt: packet information
 *
 * Return: the partial ICRC
 */
static __be32 rxe_icrc_hdr(struct sk_buff *skb, struct rxe_pkt_info *pkt)
{
	unsigned int bth_offset = 0;
	struct iphdr *ip4h = NULL;
	struct ipv6hdr *ip6h = NULL;
	struct udphdr *udph;
	struct rxe_bth *bth;
	__be32 crc;
	int length;
	int hdr_size = sizeof(struct udphdr) +
		(skb->protocol == htons(ETH_P_IP) ?
		sizeof(struct iphdr) : sizeof(struct ipv6hdr));
	/* pseudo header buffer size is calculate using ipv6 header size since
	 * it is bigger than ipv4
	 */
	u8 pshdr[sizeof(struct udphdr) +
		sizeof(struct ipv6hdr) +
		RXE_BTH_BYTES];

	/* This seed is the result of computing a CRC with a seed of
	 * 0xfffffff and 8 bytes of 0xff representing a masked LRH.
	 */
	crc = (__force __be32)0xdebb20e3;

	if (skb->protocol == htons(ETH_P_IP)) { /* IPv4 */
		memcpy(pshdr, ip_hdr(skb), hdr_size);
		ip4h = (struct iphdr *)pshdr;
		udph = (struct udphdr *)(ip4h + 1);

		ip4h->ttl = 0xff;
		ip4h->check = CSUM_MANGLED_0;
		ip4h->tos = 0xff;
	} else {				/* IPv6 */
		memcpy(pshdr, ipv6_hdr(skb), hdr_size);
		ip6h = (struct ipv6hdr *)pshdr;
		udph = (struct udphdr *)(ip6h + 1);

		memset(ip6h->flow_lbl, 0xff, sizeof(ip6h->flow_lbl));
		ip6h->priority = 0xf;
		ip6h->hop_limit = 0xff;
	}
	udph->check = CSUM_MANGLED_0;

	bth_offset += hdr_size;

	memcpy(&pshdr[bth_offset], pkt->hdr, RXE_BTH_BYTES);
	bth = (struct rxe_bth *)&pshdr[bth_offset];

	/* exclude bth.resv8a */
	bth->qpn |= cpu_to_be32(~BTH_QPN_MASK);

	length = hdr_size + RXE_BTH_BYTES;
	crc = rxe_crc32(pkt->rxe, crc, pshdr, length);

	/* And finish to compute the CRC on the remainder of the headers. */
	crc = rxe_crc32(pkt->rxe, crc, pkt->hdr + RXE_BTH_BYTES,
			rxe_opcode[pkt->opcode].length - RXE_BTH_BYTES);
	return crc;
}

/**
 * rxe_icrc_check() - Compute ICRC for a packet and compare to the ICRC
 *		      delivered in the packet.
 * @skb: packet buffer
 * @pkt: packet information
 *
 * Return: 0 if the values match else an error
 */
int rxe_icrc_check(struct sk_buff *skb, struct rxe_pkt_info *pkt)
{
	__be32 *icrcp;
	__be32 pkt_icrc;
	__be32 icrc;

	icrcp = (__be32 *)(pkt->hdr + pkt->paylen - RXE_ICRC_SIZE);
	pkt_icrc = *icrcp;

	icrc = rxe_icrc_hdr(skb, pkt);
	icrc = rxe_crc32(pkt->rxe, icrc, (u8 *)payload_addr(pkt),
				payload_size(pkt) + bth_pad(pkt));
	icrc = ~icrc;

	if (unlikely(icrc != pkt_icrc)) {
		if (skb->protocol == htons(ETH_P_IPV6))
			pr_warn_ratelimited("bad ICRC from %pI6c\n",
					    &ipv6_hdr(skb)->saddr);
		else if (skb->protocol == htons(ETH_P_IP))
			pr_warn_ratelimited("bad ICRC from %pI4\n",
					    &ip_hdr(skb)->saddr);
		else
			pr_warn_ratelimited("bad ICRC from unknown\n");

		return -EINVAL;
	}

	return 0;
}

/**
 * rxe_icrc_generate() - compute ICRC for a packet.
 * @skb: packet buffer
 * @pkt: packet information
 */
void rxe_icrc_generate(struct sk_buff *skb, struct rxe_pkt_info *pkt)
{
	__be32 *icrcp;
	__be32 icrc;

	icrcp = (__be32 *)(pkt->hdr + pkt->paylen - RXE_ICRC_SIZE);
	icrc = rxe_icrc_hdr(skb, pkt);
	icrc = rxe_crc32(pkt->rxe, icrc, (u8 *)payload_addr(pkt),
				payload_size(pkt) + bth_pad(pkt));
	*icrcp = ~icrc;
}