summaryrefslogtreecommitdiff
path: root/drivers/iio/proximity/irsd200.c
blob: bdff91f6b1a3731178605a9b1c84c43d33d23ecb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Driver for Murata IRS-D200 PIR sensor.
 *
 * Copyright (C) 2023 Axis Communications AB
 */

#include <asm/unaligned.h>
#include <linux/bitfield.h>
#include <linux/gpio.h>
#include <linux/i2c.h>
#include <linux/module.h>
#include <linux/regmap.h>

#include <linux/iio/buffer.h>
#include <linux/iio/events.h>
#include <linux/iio/iio.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/types.h>

#define IRS_DRV_NAME "irsd200"

/* Registers. */
#define IRS_REG_OP		0x00	/* Operation mode. */
#define IRS_REG_DATA_LO		0x02	/* Sensor data LSB. */
#define IRS_REG_DATA_HI		0x03	/* Sensor data MSB. */
#define IRS_REG_STATUS		0x04	/* Interrupt status. */
#define IRS_REG_COUNT		0x05	/* Count of exceeding threshold. */
#define IRS_REG_DATA_RATE	0x06	/* Output data rate. */
#define IRS_REG_FILTER		0x07	/* High-pass and low-pass filter. */
#define IRS_REG_INTR		0x09	/* Interrupt mode. */
#define IRS_REG_NR_COUNT	0x0a	/* Number of counts before interrupt. */
#define IRS_REG_THR_HI		0x0b	/* Upper threshold. */
#define IRS_REG_THR_LO		0x0c	/* Lower threshold. */
#define IRS_REG_TIMER_LO	0x0d	/* Timer setting LSB. */
#define IRS_REG_TIMER_HI	0x0e	/* Timer setting MSB. */

/* Interrupt status bits. */
#define IRS_INTR_DATA		0	/* Data update. */
#define IRS_INTR_TIMER		1	/* Timer expiration. */
#define IRS_INTR_COUNT_THR_AND	2	/* Count "AND" threshold. */
#define IRS_INTR_COUNT_THR_OR	3	/* Count "OR" threshold. */

/* Operation states. */
#define IRS_OP_ACTIVE		0x00
#define IRS_OP_SLEEP		0x01

/*
 * Quantization scale value for threshold. Used for conversion from/to register
 * value.
 */
#define IRS_THR_QUANT_SCALE	128

#define IRS_UPPER_COUNT(count)	FIELD_GET(GENMASK(7, 4), count)
#define IRS_LOWER_COUNT(count)	FIELD_GET(GENMASK(3, 0), count)

/* Index corresponds to the value of IRS_REG_DATA_RATE register. */
static const int irsd200_data_rates[] = {
	50,
	100,
};

/* Index corresponds to the (field) value of IRS_REG_FILTER register. */
static const unsigned int irsd200_lp_filter_freq[] = {
	10,
	7,
};

/*
 * Index corresponds to the (field) value of IRS_REG_FILTER register. Note that
 * this represents a fractional value (e.g the first value corresponds to 3 / 10
 * = 0.3 Hz).
 */
static const unsigned int irsd200_hp_filter_freq[][2] = {
	{ 3, 10 },
	{ 5, 10 },
};

/* Register fields. */
enum irsd200_regfield {
	/* Data interrupt. */
	IRS_REGF_INTR_DATA,
	/* Timer interrupt. */
	IRS_REGF_INTR_TIMER,
	/* AND count threshold interrupt. */
	IRS_REGF_INTR_COUNT_THR_AND,
	/* OR count threshold interrupt. */
	IRS_REGF_INTR_COUNT_THR_OR,

	/* Low-pass filter frequency. */
	IRS_REGF_LP_FILTER,
	/* High-pass filter frequency. */
	IRS_REGF_HP_FILTER,

	/* Sentinel value. */
	IRS_REGF_MAX
};

static const struct reg_field irsd200_regfields[] = {
	[IRS_REGF_INTR_DATA] =
		REG_FIELD(IRS_REG_INTR, IRS_INTR_DATA, IRS_INTR_DATA),
	[IRS_REGF_INTR_TIMER] =
		REG_FIELD(IRS_REG_INTR, IRS_INTR_TIMER, IRS_INTR_TIMER),
	[IRS_REGF_INTR_COUNT_THR_AND] = REG_FIELD(
		IRS_REG_INTR, IRS_INTR_COUNT_THR_AND, IRS_INTR_COUNT_THR_AND),
	[IRS_REGF_INTR_COUNT_THR_OR] = REG_FIELD(
		IRS_REG_INTR, IRS_INTR_COUNT_THR_OR, IRS_INTR_COUNT_THR_OR),

	[IRS_REGF_LP_FILTER] = REG_FIELD(IRS_REG_FILTER, 1, 1),
	[IRS_REGF_HP_FILTER] = REG_FIELD(IRS_REG_FILTER, 0, 0),
};

static const struct regmap_config irsd200_regmap_config = {
	.reg_bits = 8,
	.val_bits = 8,
	.max_register = IRS_REG_TIMER_HI,
};

struct irsd200_data {
	struct regmap *regmap;
	struct regmap_field *regfields[IRS_REGF_MAX];
	struct device *dev;
};

static int irsd200_setup(struct irsd200_data *data)
{
	unsigned int val;
	int ret;

	/* Disable all interrupt sources. */
	ret = regmap_write(data->regmap, IRS_REG_INTR, 0);
	if (ret) {
		dev_err(data->dev, "Could not set interrupt sources (%d)\n",
			ret);
		return ret;
	}

	/* Set operation to active. */
	ret = regmap_write(data->regmap, IRS_REG_OP, IRS_OP_ACTIVE);
	if (ret) {
		dev_err(data->dev, "Could not set operation mode (%d)\n", ret);
		return ret;
	}

	/* Clear threshold count. */
	ret = regmap_read(data->regmap, IRS_REG_COUNT, &val);
	if (ret) {
		dev_err(data->dev, "Could not clear threshold count (%d)\n",
			ret);
		return ret;
	}

	/* Clear status. */
	ret = regmap_write(data->regmap, IRS_REG_STATUS, 0x0f);
	if (ret) {
		dev_err(data->dev, "Could not clear status (%d)\n", ret);
		return ret;
	}

	return 0;
}

static int irsd200_read_threshold(struct irsd200_data *data,
				  enum iio_event_direction dir, int *val)
{
	unsigned int regval;
	unsigned int reg;
	int scale;
	int ret;

	/* Set quantization scale. */
	if (dir == IIO_EV_DIR_RISING) {
		scale = IRS_THR_QUANT_SCALE;
		reg = IRS_REG_THR_HI;
	} else if (dir == IIO_EV_DIR_FALLING) {
		scale = -IRS_THR_QUANT_SCALE;
		reg = IRS_REG_THR_LO;
	} else {
		return -EINVAL;
	}

	ret = regmap_read(data->regmap, reg, &regval);
	if (ret) {
		dev_err(data->dev, "Could not read threshold (%d)\n", ret);
		return ret;
	}

	*val = ((int)regval) * scale;

	return 0;
}

static int irsd200_write_threshold(struct irsd200_data *data,
				   enum iio_event_direction dir, int val)
{
	unsigned int regval;
	unsigned int reg;
	int scale;
	int ret;

	/* Set quantization scale. */
	if (dir == IIO_EV_DIR_RISING) {
		if (val < 0)
			return -ERANGE;

		scale = IRS_THR_QUANT_SCALE;
		reg = IRS_REG_THR_HI;
	} else if (dir == IIO_EV_DIR_FALLING) {
		if (val > 0)
			return -ERANGE;

		scale = -IRS_THR_QUANT_SCALE;
		reg = IRS_REG_THR_LO;
	} else {
		return -EINVAL;
	}

	regval = val / scale;

	if (regval >= BIT(8))
		return -ERANGE;

	ret = regmap_write(data->regmap, reg, regval);
	if (ret) {
		dev_err(data->dev, "Could not write threshold (%d)\n", ret);
		return ret;
	}

	return 0;
}

static int irsd200_read_data(struct irsd200_data *data, s16 *val)
{
	__le16 buf;
	int ret;

	ret = regmap_bulk_read(data->regmap, IRS_REG_DATA_LO, &buf,
			       sizeof(buf));
	if (ret) {
		dev_err(data->dev, "Could not bulk read data (%d)\n", ret);
		return ret;
	}

	*val = le16_to_cpu(buf);

	return 0;
}

static int irsd200_read_data_rate(struct irsd200_data *data, int *val)
{
	unsigned int regval;
	int ret;

	ret = regmap_read(data->regmap, IRS_REG_DATA_RATE, &regval);
	if (ret) {
		dev_err(data->dev, "Could not read data rate (%d)\n", ret);
		return ret;
	}

	if (regval >= ARRAY_SIZE(irsd200_data_rates))
		return -ERANGE;

	*val = irsd200_data_rates[regval];

	return 0;
}

static int irsd200_write_data_rate(struct irsd200_data *data, int val)
{
	size_t idx;
	int ret;

	for (idx = 0; idx < ARRAY_SIZE(irsd200_data_rates); ++idx) {
		if (irsd200_data_rates[idx] == val)
			break;
	}

	if (idx == ARRAY_SIZE(irsd200_data_rates))
		return -ERANGE;

	ret = regmap_write(data->regmap, IRS_REG_DATA_RATE, idx);
	if (ret) {
		dev_err(data->dev, "Could not write data rate (%d)\n", ret);
		return ret;
	}

	/*
	 * Data sheet says the device needs 3 seconds of settling time. The
	 * device operates normally during this period though. This is more of a
	 * "guarantee" than trying to prevent other user space reads/writes.
	 */
	ssleep(3);

	return 0;
}

static int irsd200_read_timer(struct irsd200_data *data, int *val, int *val2)
{
	__le16 buf;
	int ret;

	ret = regmap_bulk_read(data->regmap, IRS_REG_TIMER_LO, &buf,
			       sizeof(buf));
	if (ret) {
		dev_err(data->dev, "Could not bulk read timer (%d)\n", ret);
		return ret;
	}

	ret = irsd200_read_data_rate(data, val2);
	if (ret)
		return ret;

	*val = le16_to_cpu(buf);

	return 0;
}

static int irsd200_write_timer(struct irsd200_data *data, int val, int val2)
{
	unsigned int regval;
	int data_rate;
	__le16 buf;
	int ret;

	if (val < 0 || val2 < 0)
		return -ERANGE;

	ret = irsd200_read_data_rate(data, &data_rate);
	if (ret)
		return ret;

	/* Quantize from seconds. */
	regval = val * data_rate + (val2 * data_rate) / 1000000;

	/* Value is 10 bits. */
	if (regval >= BIT(10))
		return -ERANGE;

	buf = cpu_to_le16((u16)regval);

	ret = regmap_bulk_write(data->regmap, IRS_REG_TIMER_LO, &buf,
				sizeof(buf));
	if (ret) {
		dev_err(data->dev, "Could not bulk write timer (%d)\n", ret);
		return ret;
	}

	return 0;
}

static int irsd200_read_nr_count(struct irsd200_data *data, int *val)
{
	unsigned int regval;
	int ret;

	ret = regmap_read(data->regmap, IRS_REG_NR_COUNT, &regval);
	if (ret) {
		dev_err(data->dev, "Could not read nr count (%d)\n", ret);
		return ret;
	}

	*val = regval;

	return 0;
}

static int irsd200_write_nr_count(struct irsd200_data *data, int val)
{
	unsigned int regval;
	int ret;

	/* A value of zero means that IRS_REG_STATUS is never set. */
	if (val <= 0 || val >= 8)
		return -ERANGE;

	regval = val;

	if (regval >= 2) {
		/*
		 * According to the data sheet, timer must be also set in this
		 * case (i.e. be non-zero). Check and enforce that.
		 */
		ret = irsd200_read_timer(data, &val, &val);
		if (ret)
			return ret;

		if (val == 0) {
			dev_err(data->dev,
				"Timer must be non-zero when nr count is %u\n",
				regval);
			return -EPERM;
		}
	}

	ret = regmap_write(data->regmap, IRS_REG_NR_COUNT, regval);
	if (ret) {
		dev_err(data->dev, "Could not write nr count (%d)\n", ret);
		return ret;
	}

	return 0;
}

static int irsd200_read_lp_filter(struct irsd200_data *data, int *val)
{
	unsigned int regval;
	int ret;

	ret = regmap_field_read(data->regfields[IRS_REGF_LP_FILTER], &regval);
	if (ret) {
		dev_err(data->dev, "Could not read lp filter frequency (%d)\n",
			ret);
		return ret;
	}

	*val = irsd200_lp_filter_freq[regval];

	return 0;
}

static int irsd200_write_lp_filter(struct irsd200_data *data, int val)
{
	size_t idx;
	int ret;

	for (idx = 0; idx < ARRAY_SIZE(irsd200_lp_filter_freq); ++idx) {
		if (irsd200_lp_filter_freq[idx] == val)
			break;
	}

	if (idx == ARRAY_SIZE(irsd200_lp_filter_freq))
		return -ERANGE;

	ret = regmap_field_write(data->regfields[IRS_REGF_LP_FILTER], idx);
	if (ret) {
		dev_err(data->dev, "Could not write lp filter frequency (%d)\n",
			ret);
		return ret;
	}

	return 0;
}

static int irsd200_read_hp_filter(struct irsd200_data *data, int *val,
				  int *val2)
{
	unsigned int regval;
	int ret;

	ret = regmap_field_read(data->regfields[IRS_REGF_HP_FILTER], &regval);
	if (ret) {
		dev_err(data->dev, "Could not read hp filter frequency (%d)\n",
			ret);
		return ret;
	}

	*val = irsd200_hp_filter_freq[regval][0];
	*val2 = irsd200_hp_filter_freq[regval][1];

	return 0;
}

static int irsd200_write_hp_filter(struct irsd200_data *data, int val, int val2)
{
	size_t idx;
	int ret;

	/* Truncate fractional part to one digit. */
	val2 /= 100000;

	for (idx = 0; idx < ARRAY_SIZE(irsd200_hp_filter_freq); ++idx) {
		if (irsd200_hp_filter_freq[idx][0] == val2)
			break;
	}

	if (idx == ARRAY_SIZE(irsd200_hp_filter_freq) || val != 0)
		return -ERANGE;

	ret = regmap_field_write(data->regfields[IRS_REGF_HP_FILTER], idx);
	if (ret) {
		dev_err(data->dev, "Could not write hp filter frequency (%d)\n",
			ret);
		return ret;
	}

	return 0;
}

static int irsd200_read_raw(struct iio_dev *indio_dev,
			    struct iio_chan_spec const *chan, int *val,
			    int *val2, long mask)
{
	struct irsd200_data *data = iio_priv(indio_dev);
	int ret;
	s16 buf;

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		ret = irsd200_read_data(data, &buf);
		if (ret)
			return ret;

		*val = buf;
		return IIO_VAL_INT;
	case IIO_CHAN_INFO_SAMP_FREQ:
		ret = irsd200_read_data_rate(data, val);
		if (ret)
			return ret;

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
		ret = irsd200_read_lp_filter(data, val);
		if (ret)
			return ret;

		return IIO_VAL_INT;
	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
		ret = irsd200_read_hp_filter(data, val, val2);
		if (ret)
			return ret;

		return IIO_VAL_FRACTIONAL;
	default:
		return -EINVAL;
	}
}

static int irsd200_read_avail(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan,
			      const int **vals, int *type, int *length,
			      long mask)
{
	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		*vals = irsd200_data_rates;
		*type = IIO_VAL_INT;
		*length = ARRAY_SIZE(irsd200_data_rates);
		return IIO_AVAIL_LIST;
	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
		*vals = irsd200_lp_filter_freq;
		*type = IIO_VAL_INT;
		*length = ARRAY_SIZE(irsd200_lp_filter_freq);
		return IIO_AVAIL_LIST;
	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
		*vals = (int *)irsd200_hp_filter_freq;
		*type = IIO_VAL_FRACTIONAL;
		*length = 2 * ARRAY_SIZE(irsd200_hp_filter_freq);
		return IIO_AVAIL_LIST;
	default:
		return -EINVAL;
	}
}

static int irsd200_write_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan, int val,
			     int val2, long mask)
{
	struct irsd200_data *data = iio_priv(indio_dev);

	switch (mask) {
	case IIO_CHAN_INFO_SAMP_FREQ:
		return irsd200_write_data_rate(data, val);
	case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
		return irsd200_write_lp_filter(data, val);
	case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY:
		return irsd200_write_hp_filter(data, val, val2);
	default:
		return -EINVAL;
	}
}

static int irsd200_read_event(struct iio_dev *indio_dev,
			      const struct iio_chan_spec *chan,
			      enum iio_event_type type,
			      enum iio_event_direction dir,
			      enum iio_event_info info, int *val, int *val2)
{
	struct irsd200_data *data = iio_priv(indio_dev);
	int ret;

	switch (info) {
	case IIO_EV_INFO_VALUE:
		ret = irsd200_read_threshold(data, dir, val);
		if (ret)
			return ret;

		return IIO_VAL_INT;
	case IIO_EV_INFO_RUNNING_PERIOD:
		ret = irsd200_read_timer(data, val, val2);
		if (ret)
			return ret;

		return IIO_VAL_FRACTIONAL;
	case IIO_EV_INFO_RUNNING_COUNT:
		ret = irsd200_read_nr_count(data, val);
		if (ret)
			return ret;

		return IIO_VAL_INT;
	default:
		return -EINVAL;
	}
}

static int irsd200_write_event(struct iio_dev *indio_dev,
			       const struct iio_chan_spec *chan,
			       enum iio_event_type type,
			       enum iio_event_direction dir,
			       enum iio_event_info info, int val, int val2)
{
	struct irsd200_data *data = iio_priv(indio_dev);

	switch (info) {
	case IIO_EV_INFO_VALUE:
		return irsd200_write_threshold(data, dir, val);
	case IIO_EV_INFO_RUNNING_PERIOD:
		return irsd200_write_timer(data, val, val2);
	case IIO_EV_INFO_RUNNING_COUNT:
		return irsd200_write_nr_count(data, val);
	default:
		return -EINVAL;
	}
}

static int irsd200_read_event_config(struct iio_dev *indio_dev,
				     const struct iio_chan_spec *chan,
				     enum iio_event_type type,
				     enum iio_event_direction dir)
{
	struct irsd200_data *data = iio_priv(indio_dev);
	unsigned int val;
	int ret;

	switch (type) {
	case IIO_EV_TYPE_THRESH:
		ret = regmap_field_read(
			data->regfields[IRS_REGF_INTR_COUNT_THR_OR], &val);
		if (ret)
			return ret;

		return val;
	default:
		return -EINVAL;
	}
}

static int irsd200_write_event_config(struct iio_dev *indio_dev,
				      const struct iio_chan_spec *chan,
				      enum iio_event_type type,
				      enum iio_event_direction dir, int state)
{
	struct irsd200_data *data = iio_priv(indio_dev);
	unsigned int tmp;
	int ret;

	switch (type) {
	case IIO_EV_TYPE_THRESH:
		/* Clear the count register (by reading from it). */
		ret = regmap_read(data->regmap, IRS_REG_COUNT, &tmp);
		if (ret)
			return ret;

		return regmap_field_write(
			data->regfields[IRS_REGF_INTR_COUNT_THR_OR], !!state);
	default:
		return -EINVAL;
	}
}

static irqreturn_t irsd200_irq_thread(int irq, void *dev_id)
{
	struct iio_dev *indio_dev = dev_id;
	struct irsd200_data *data = iio_priv(indio_dev);
	enum iio_event_direction dir;
	unsigned int lower_count;
	unsigned int upper_count;
	unsigned int status = 0;
	unsigned int source = 0;
	unsigned int clear = 0;
	unsigned int count = 0;
	int ret;

	ret = regmap_read(data->regmap, IRS_REG_INTR, &source);
	if (ret) {
		dev_err(data->dev, "Could not read interrupt source (%d)\n",
			ret);
		return IRQ_HANDLED;
	}

	ret = regmap_read(data->regmap, IRS_REG_STATUS, &status);
	if (ret) {
		dev_err(data->dev, "Could not acknowledge interrupt (%d)\n",
			ret);
		return IRQ_HANDLED;
	}

	if (status & BIT(IRS_INTR_DATA) && iio_buffer_enabled(indio_dev)) {
		iio_trigger_poll_nested(indio_dev->trig);
		clear |= BIT(IRS_INTR_DATA);
	}

	if (status & BIT(IRS_INTR_COUNT_THR_OR) &&
	    source & BIT(IRS_INTR_COUNT_THR_OR)) {
		/*
		 * The register value resets to zero after reading. We therefore
		 * need to read once and manually extract the lower and upper
		 * count register fields.
		 */
		ret = regmap_read(data->regmap, IRS_REG_COUNT, &count);
		if (ret)
			dev_err(data->dev, "Could not read count (%d)\n", ret);

		upper_count = IRS_UPPER_COUNT(count);
		lower_count = IRS_LOWER_COUNT(count);

		/*
		 * We only check the OR mode to be able to push events for
		 * rising and falling thresholds. AND mode is covered when both
		 * upper and lower count is non-zero, and is signaled with
		 * IIO_EV_DIR_EITHER.
		 */
		if (upper_count && !lower_count)
			dir = IIO_EV_DIR_RISING;
		else if (!upper_count && lower_count)
			dir = IIO_EV_DIR_FALLING;
		else
			dir = IIO_EV_DIR_EITHER;

		iio_push_event(indio_dev,
			       IIO_UNMOD_EVENT_CODE(IIO_PROXIMITY, 0,
						    IIO_EV_TYPE_THRESH, dir),
			       iio_get_time_ns(indio_dev));

		/*
		 * The OR mode will always trigger when the AND mode does, but
		 * not vice versa. However, it seems like the AND bit needs to
		 * be cleared if data capture _and_ threshold count interrupts
		 * are desirable, even though it hasn't explicitly been selected
		 * (with IRS_REG_INTR). Either way, it doesn't hurt...
		 */
		clear |= BIT(IRS_INTR_COUNT_THR_OR) |
			 BIT(IRS_INTR_COUNT_THR_AND);
	}

	if (!clear)
		return IRQ_NONE;

	ret = regmap_write(data->regmap, IRS_REG_STATUS, clear);
	if (ret)
		dev_err(data->dev,
			"Could not clear interrupt status (%d)\n", ret);

	return IRQ_HANDLED;
}

static irqreturn_t irsd200_trigger_handler(int irq, void *pollf)
{
	struct iio_dev *indio_dev = ((struct iio_poll_func *)pollf)->indio_dev;
	struct irsd200_data *data = iio_priv(indio_dev);
	s64 buf[2] = {};
	int ret;

	ret = irsd200_read_data(data, (s16 *)buf);
	if (ret)
		goto end;

	iio_push_to_buffers_with_timestamp(indio_dev, buf,
					   iio_get_time_ns(indio_dev));

end:
	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static int irsd200_set_trigger_state(struct iio_trigger *trig, bool state)
{
	struct irsd200_data *data = iio_trigger_get_drvdata(trig);
	int ret;

	ret = regmap_field_write(data->regfields[IRS_REGF_INTR_DATA], state);
	if (ret) {
		dev_err(data->dev, "Could not %s data interrupt source (%d)\n",
			state ? "enable" : "disable", ret);
	}

	return ret;
}

static const struct iio_info irsd200_info = {
	.read_raw = irsd200_read_raw,
	.read_avail = irsd200_read_avail,
	.write_raw = irsd200_write_raw,
	.read_event_value = irsd200_read_event,
	.write_event_value = irsd200_write_event,
	.read_event_config = irsd200_read_event_config,
	.write_event_config = irsd200_write_event_config,
};

static const struct iio_trigger_ops irsd200_trigger_ops = {
	.set_trigger_state = irsd200_set_trigger_state,
	.validate_device = iio_trigger_validate_own_device,
};

static const struct iio_event_spec irsd200_event_spec[] = {
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_RISING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE),
	},
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_FALLING,
		.mask_separate = BIT(IIO_EV_INFO_VALUE),
	},
	{
		.type = IIO_EV_TYPE_THRESH,
		.dir = IIO_EV_DIR_EITHER,
		.mask_separate =
			BIT(IIO_EV_INFO_RUNNING_PERIOD) |
			BIT(IIO_EV_INFO_RUNNING_COUNT) |
			BIT(IIO_EV_INFO_ENABLE),
	},
};

static const struct iio_chan_spec irsd200_channels[] = {
	{
		.type = IIO_PROXIMITY,
		.info_mask_separate =
			BIT(IIO_CHAN_INFO_RAW) |
			BIT(IIO_CHAN_INFO_SAMP_FREQ) |
			BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
			BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),
		.info_mask_separate_available =
			BIT(IIO_CHAN_INFO_SAMP_FREQ) |
			BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) |
			BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY),
		.event_spec = irsd200_event_spec,
		.num_event_specs = ARRAY_SIZE(irsd200_event_spec),
		.scan_type = {
			.sign = 's',
			.realbits = 16,
			.storagebits = 16,
			.endianness = IIO_CPU,
		},
	},
};

static int irsd200_probe(struct i2c_client *client)
{
	struct iio_trigger *trigger;
	struct irsd200_data *data;
	struct iio_dev *indio_dev;
	size_t i;
	int ret;

	indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
	if (!indio_dev)
		return dev_err_probe(&client->dev, -ENOMEM,
				     "Could not allocate iio device\n");

	data = iio_priv(indio_dev);
	data->dev = &client->dev;

	data->regmap = devm_regmap_init_i2c(client, &irsd200_regmap_config);
	if (IS_ERR(data->regmap))
		return dev_err_probe(data->dev, PTR_ERR(data->regmap),
				     "Could not initialize regmap\n");

	for (i = 0; i < IRS_REGF_MAX; ++i) {
		data->regfields[i] = devm_regmap_field_alloc(
			data->dev, data->regmap, irsd200_regfields[i]);
		if (IS_ERR(data->regfields[i]))
			return dev_err_probe(
				data->dev, PTR_ERR(data->regfields[i]),
				"Could not allocate register field %zu\n", i);
	}

	ret = devm_regulator_get_enable(data->dev, "vdd");
	if (ret)
		return dev_err_probe(
			data->dev, ret,
			"Could not get and enable regulator (%d)\n", ret);

	ret = irsd200_setup(data);
	if (ret)
		return ret;

	indio_dev->info = &irsd200_info;
	indio_dev->name = IRS_DRV_NAME;
	indio_dev->channels = irsd200_channels;
	indio_dev->num_channels = ARRAY_SIZE(irsd200_channels);
	indio_dev->modes = INDIO_DIRECT_MODE;

	if (!client->irq)
		return dev_err_probe(data->dev, -ENXIO, "No irq available\n");

	ret = devm_iio_triggered_buffer_setup(data->dev, indio_dev, NULL,
					      irsd200_trigger_handler, NULL);
	if (ret)
		return dev_err_probe(
			data->dev, ret,
			"Could not setup iio triggered buffer (%d)\n", ret);

	ret = devm_request_threaded_irq(data->dev, client->irq, NULL,
					irsd200_irq_thread,
					IRQF_TRIGGER_RISING | IRQF_ONESHOT,
					NULL, indio_dev);
	if (ret)
		return dev_err_probe(data->dev, ret,
				     "Could not request irq (%d)\n", ret);

	trigger = devm_iio_trigger_alloc(data->dev, "%s-dev%d", indio_dev->name,
					 iio_device_id(indio_dev));
	if (!trigger)
		return dev_err_probe(data->dev, -ENOMEM,
				     "Could not allocate iio trigger\n");

	trigger->ops = &irsd200_trigger_ops;
	iio_trigger_set_drvdata(trigger, data);

	ret = devm_iio_trigger_register(data->dev, trigger);
	if (ret)
		return dev_err_probe(data->dev, ret,
				     "Could not register iio trigger (%d)\n",
				     ret);

	ret = devm_iio_device_register(data->dev, indio_dev);
	if (ret)
		return dev_err_probe(data->dev, ret,
				     "Could not register iio device (%d)\n",
				     ret);

	return 0;
}

static const struct of_device_id irsd200_of_match[] = {
	{
		.compatible = "murata,irsd200",
	},
	{}
};
MODULE_DEVICE_TABLE(of, irsd200_of_match);

static struct i2c_driver irsd200_driver = {
	.driver = {
		.name = IRS_DRV_NAME,
		.of_match_table = irsd200_of_match,
	},
	.probe = irsd200_probe,
};
module_i2c_driver(irsd200_driver);

MODULE_AUTHOR("Waqar Hameed <waqar.hameed@axis.com>");
MODULE_DESCRIPTION("Murata IRS-D200 PIR sensor driver");
MODULE_LICENSE("GPL");