1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
|
// SPDX-License-Identifier: GPL-2.0
/*
* i2c Support for Atmel's AT91 Two-Wire Interface (TWI)
*
* Copyright (C) 2011 Weinmann Medical GmbH
* Author: Nikolaus Voss <n.voss@weinmann.de>
*
* Evolved from original work by:
* Copyright (C) 2004 Rick Bronson
* Converted to 2.6 by Andrew Victor <andrew@sanpeople.com>
*
* Borrowed heavily from original work by:
* Copyright (C) 2000 Philip Edelbrock <phil@stimpy.netroedge.com>
*/
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/err.h>
#include <linux/gpio/consumer.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include "i2c-at91.h"
void at91_init_twi_bus_master(struct at91_twi_dev *dev)
{
struct at91_twi_pdata *pdata = dev->pdata;
u32 filtr = 0;
/* FIFO should be enabled immediately after the software reset */
if (dev->fifo_size)
at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_FIFOEN);
at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_MSEN);
at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_SVDIS);
at91_twi_write(dev, AT91_TWI_CWGR, dev->twi_cwgr_reg);
/* enable digital filter */
if (pdata->has_dig_filtr && dev->enable_dig_filt)
filtr |= AT91_TWI_FILTR_FILT;
/* enable advanced digital filter */
if (pdata->has_adv_dig_filtr && dev->enable_dig_filt)
filtr |= AT91_TWI_FILTR_FILT |
(AT91_TWI_FILTR_THRES(dev->filter_width) &
AT91_TWI_FILTR_THRES_MASK);
/* enable analog filter */
if (pdata->has_ana_filtr && dev->enable_ana_filt)
filtr |= AT91_TWI_FILTR_PADFEN;
if (filtr)
at91_twi_write(dev, AT91_TWI_FILTR, filtr);
}
/*
* Calculate symmetric clock as stated in datasheet:
* twi_clk = F_MAIN / (2 * (cdiv * (1 << ckdiv) + offset))
*/
static void at91_calc_twi_clock(struct at91_twi_dev *dev)
{
int ckdiv, cdiv, div, hold = 0, filter_width = 0;
struct at91_twi_pdata *pdata = dev->pdata;
int offset = pdata->clk_offset;
int max_ckdiv = pdata->clk_max_div;
struct i2c_timings timings, *t = &timings;
i2c_parse_fw_timings(dev->dev, t, true);
div = max(0, (int)DIV_ROUND_UP(clk_get_rate(dev->clk),
2 * t->bus_freq_hz) - offset);
ckdiv = fls(div >> 8);
cdiv = div >> ckdiv;
if (ckdiv > max_ckdiv) {
dev_warn(dev->dev, "%d exceeds ckdiv max value which is %d.\n",
ckdiv, max_ckdiv);
ckdiv = max_ckdiv;
cdiv = 255;
}
if (pdata->has_hold_field) {
/*
* hold time = HOLD + 3 x T_peripheral_clock
* Use clk rate in kHz to prevent overflows when computing
* hold.
*/
hold = DIV_ROUND_UP(t->sda_hold_ns
* (clk_get_rate(dev->clk) / 1000), 1000000);
hold -= 3;
if (hold < 0)
hold = 0;
if (hold > AT91_TWI_CWGR_HOLD_MAX) {
dev_warn(dev->dev,
"HOLD field set to its maximum value (%d instead of %d)\n",
AT91_TWI_CWGR_HOLD_MAX, hold);
hold = AT91_TWI_CWGR_HOLD_MAX;
}
}
if (pdata->has_adv_dig_filtr) {
/*
* filter width = 0 to AT91_TWI_FILTR_THRES_MAX
* peripheral clocks
*/
filter_width = DIV_ROUND_UP(t->digital_filter_width_ns
* (clk_get_rate(dev->clk) / 1000), 1000000);
if (filter_width > AT91_TWI_FILTR_THRES_MAX) {
dev_warn(dev->dev,
"Filter threshold set to its maximum value (%d instead of %d)\n",
AT91_TWI_FILTR_THRES_MAX, filter_width);
filter_width = AT91_TWI_FILTR_THRES_MAX;
}
}
dev->twi_cwgr_reg = (ckdiv << 16) | (cdiv << 8) | cdiv
| AT91_TWI_CWGR_HOLD(hold);
dev->filter_width = filter_width;
dev_dbg(dev->dev, "cdiv %d ckdiv %d hold %d (%d ns), filter_width %d (%d ns)\n",
cdiv, ckdiv, hold, t->sda_hold_ns, filter_width,
t->digital_filter_width_ns);
}
static void at91_twi_dma_cleanup(struct at91_twi_dev *dev)
{
struct at91_twi_dma *dma = &dev->dma;
at91_twi_irq_save(dev);
if (dma->xfer_in_progress) {
if (dma->direction == DMA_FROM_DEVICE)
dmaengine_terminate_sync(dma->chan_rx);
else
dmaengine_terminate_sync(dma->chan_tx);
dma->xfer_in_progress = false;
}
if (dma->buf_mapped) {
dma_unmap_single(dev->dev, sg_dma_address(&dma->sg[0]),
dev->buf_len, dma->direction);
dma->buf_mapped = false;
}
at91_twi_irq_restore(dev);
}
static void at91_twi_write_next_byte(struct at91_twi_dev *dev)
{
if (!dev->buf_len)
return;
/* 8bit write works with and without FIFO */
writeb_relaxed(*dev->buf, dev->base + AT91_TWI_THR);
/* send stop when last byte has been written */
if (--dev->buf_len == 0) {
if (!dev->use_alt_cmd)
at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
at91_twi_write(dev, AT91_TWI_IDR, AT91_TWI_TXRDY);
}
dev_dbg(dev->dev, "wrote 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
++dev->buf;
}
static void at91_twi_write_data_dma_callback(void *data)
{
struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
dev->buf_len, DMA_TO_DEVICE);
/*
* When this callback is called, THR/TX FIFO is likely not to be empty
* yet. So we have to wait for TXCOMP or NACK bits to be set into the
* Status Register to be sure that the STOP bit has been sent and the
* transfer is completed. The NACK interrupt has already been enabled,
* we just have to enable TXCOMP one.
*/
at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
if (!dev->use_alt_cmd)
at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
}
static void at91_twi_write_data_dma(struct at91_twi_dev *dev)
{
dma_addr_t dma_addr;
struct dma_async_tx_descriptor *txdesc;
struct at91_twi_dma *dma = &dev->dma;
struct dma_chan *chan_tx = dma->chan_tx;
unsigned int sg_len = 1;
if (!dev->buf_len)
return;
dma->direction = DMA_TO_DEVICE;
at91_twi_irq_save(dev);
dma_addr = dma_map_single(dev->dev, dev->buf, dev->buf_len,
DMA_TO_DEVICE);
if (dma_mapping_error(dev->dev, dma_addr)) {
dev_err(dev->dev, "dma map failed\n");
return;
}
dma->buf_mapped = true;
at91_twi_irq_restore(dev);
if (dev->fifo_size) {
size_t part1_len, part2_len;
struct scatterlist *sg;
unsigned fifo_mr;
sg_len = 0;
part1_len = dev->buf_len & ~0x3;
if (part1_len) {
sg = &dma->sg[sg_len++];
sg_dma_len(sg) = part1_len;
sg_dma_address(sg) = dma_addr;
}
part2_len = dev->buf_len & 0x3;
if (part2_len) {
sg = &dma->sg[sg_len++];
sg_dma_len(sg) = part2_len;
sg_dma_address(sg) = dma_addr + part1_len;
}
/*
* DMA controller is triggered when at least 4 data can be
* written into the TX FIFO
*/
fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
fifo_mr &= ~AT91_TWI_FMR_TXRDYM_MASK;
fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_FOUR_DATA);
at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
} else {
sg_dma_len(&dma->sg[0]) = dev->buf_len;
sg_dma_address(&dma->sg[0]) = dma_addr;
}
txdesc = dmaengine_prep_slave_sg(chan_tx, dma->sg, sg_len,
DMA_MEM_TO_DEV,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!txdesc) {
dev_err(dev->dev, "dma prep slave sg failed\n");
goto error;
}
txdesc->callback = at91_twi_write_data_dma_callback;
txdesc->callback_param = dev;
dma->xfer_in_progress = true;
dmaengine_submit(txdesc);
dma_async_issue_pending(chan_tx);
return;
error:
at91_twi_dma_cleanup(dev);
}
static void at91_twi_read_next_byte(struct at91_twi_dev *dev)
{
/*
* If we are in this case, it means there is garbage data in RHR, so
* delete them.
*/
if (!dev->buf_len) {
at91_twi_read(dev, AT91_TWI_RHR);
return;
}
/* 8bit read works with and without FIFO */
*dev->buf = readb_relaxed(dev->base + AT91_TWI_RHR);
--dev->buf_len;
/* return if aborting, we only needed to read RHR to clear RXRDY*/
if (dev->recv_len_abort)
return;
/* handle I2C_SMBUS_BLOCK_DATA */
if (unlikely(dev->msg->flags & I2C_M_RECV_LEN)) {
/* ensure length byte is a valid value */
if (*dev->buf <= I2C_SMBUS_BLOCK_MAX && *dev->buf > 0) {
dev->msg->flags &= ~I2C_M_RECV_LEN;
dev->buf_len += *dev->buf;
dev->msg->len = dev->buf_len + 1;
dev_dbg(dev->dev, "received block length %zu\n",
dev->buf_len);
} else {
/* abort and send the stop by reading one more byte */
dev->recv_len_abort = true;
dev->buf_len = 1;
}
}
/* send stop if second but last byte has been read */
if (!dev->use_alt_cmd && dev->buf_len == 1)
at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_STOP);
dev_dbg(dev->dev, "read 0x%x, to go %zu\n", *dev->buf, dev->buf_len);
++dev->buf;
}
static void at91_twi_read_data_dma_callback(void *data)
{
struct at91_twi_dev *dev = (struct at91_twi_dev *)data;
unsigned ier = AT91_TWI_TXCOMP;
dma_unmap_single(dev->dev, sg_dma_address(&dev->dma.sg[0]),
dev->buf_len, DMA_FROM_DEVICE);
if (!dev->use_alt_cmd) {
/* The last two bytes have to be read without using dma */
dev->buf += dev->buf_len - 2;
dev->buf_len = 2;
ier |= AT91_TWI_RXRDY;
}
at91_twi_write(dev, AT91_TWI_IER, ier);
}
static void at91_twi_read_data_dma(struct at91_twi_dev *dev)
{
dma_addr_t dma_addr;
struct dma_async_tx_descriptor *rxdesc;
struct at91_twi_dma *dma = &dev->dma;
struct dma_chan *chan_rx = dma->chan_rx;
size_t buf_len;
buf_len = (dev->use_alt_cmd) ? dev->buf_len : dev->buf_len - 2;
dma->direction = DMA_FROM_DEVICE;
/* Keep in mind that we won't use dma to read the last two bytes */
at91_twi_irq_save(dev);
dma_addr = dma_map_single(dev->dev, dev->buf, buf_len, DMA_FROM_DEVICE);
if (dma_mapping_error(dev->dev, dma_addr)) {
dev_err(dev->dev, "dma map failed\n");
return;
}
dma->buf_mapped = true;
at91_twi_irq_restore(dev);
if (dev->fifo_size && IS_ALIGNED(buf_len, 4)) {
unsigned fifo_mr;
/*
* DMA controller is triggered when at least 4 data can be
* read from the RX FIFO
*/
fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
fifo_mr &= ~AT91_TWI_FMR_RXRDYM_MASK;
fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_FOUR_DATA);
at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
}
sg_dma_len(&dma->sg[0]) = buf_len;
sg_dma_address(&dma->sg[0]) = dma_addr;
rxdesc = dmaengine_prep_slave_sg(chan_rx, dma->sg, 1, DMA_DEV_TO_MEM,
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
if (!rxdesc) {
dev_err(dev->dev, "dma prep slave sg failed\n");
goto error;
}
rxdesc->callback = at91_twi_read_data_dma_callback;
rxdesc->callback_param = dev;
dma->xfer_in_progress = true;
dmaengine_submit(rxdesc);
dma_async_issue_pending(dma->chan_rx);
return;
error:
at91_twi_dma_cleanup(dev);
}
static irqreturn_t atmel_twi_interrupt(int irq, void *dev_id)
{
struct at91_twi_dev *dev = dev_id;
const unsigned status = at91_twi_read(dev, AT91_TWI_SR);
const unsigned irqstatus = status & at91_twi_read(dev, AT91_TWI_IMR);
if (!irqstatus)
return IRQ_NONE;
/*
* In reception, the behavior of the twi device (before sama5d2) is
* weird. There is some magic about RXRDY flag! When a data has been
* almost received, the reception of a new one is anticipated if there
* is no stop command to send. That is the reason why ask for sending
* the stop command not on the last data but on the second last one.
*
* Unfortunately, we could still have the RXRDY flag set even if the
* transfer is done and we have read the last data. It might happen
* when the i2c slave device sends too quickly data after receiving the
* ack from the master. The data has been almost received before having
* the order to send stop. In this case, sending the stop command could
* cause a RXRDY interrupt with a TXCOMP one. It is better to manage
* the RXRDY interrupt first in order to not keep garbage data in the
* Receive Holding Register for the next transfer.
*/
if (irqstatus & AT91_TWI_RXRDY) {
/*
* Read all available bytes at once by polling RXRDY usable w/
* and w/o FIFO. With FIFO enabled we could also read RXFL and
* avoid polling RXRDY.
*/
do {
at91_twi_read_next_byte(dev);
} while (at91_twi_read(dev, AT91_TWI_SR) & AT91_TWI_RXRDY);
}
/*
* When a NACK condition is detected, the I2C controller sets the NACK,
* TXCOMP and TXRDY bits all together in the Status Register (SR).
*
* 1 - Handling NACK errors with CPU write transfer.
*
* In such case, we should not write the next byte into the Transmit
* Holding Register (THR) otherwise the I2C controller would start a new
* transfer and the I2C slave is likely to reply by another NACK.
*
* 2 - Handling NACK errors with DMA write transfer.
*
* By setting the TXRDY bit in the SR, the I2C controller also triggers
* the DMA controller to write the next data into the THR. Then the
* result depends on the hardware version of the I2C controller.
*
* 2a - Without support of the Alternative Command mode.
*
* This is the worst case: the DMA controller is triggered to write the
* next data into the THR, hence starting a new transfer: the I2C slave
* is likely to reply by another NACK.
* Concurrently, this interrupt handler is likely to be called to manage
* the first NACK before the I2C controller detects the second NACK and
* sets once again the NACK bit into the SR.
* When handling the first NACK, this interrupt handler disables the I2C
* controller interruptions, especially the NACK interrupt.
* Hence, the NACK bit is pending into the SR. This is why we should
* read the SR to clear all pending interrupts at the beginning of
* at91_do_twi_transfer() before actually starting a new transfer.
*
* 2b - With support of the Alternative Command mode.
*
* When a NACK condition is detected, the I2C controller also locks the
* THR (and sets the LOCK bit in the SR): even though the DMA controller
* is triggered by the TXRDY bit to write the next data into the THR,
* this data actually won't go on the I2C bus hence a second NACK is not
* generated.
*/
if (irqstatus & (AT91_TWI_TXCOMP | AT91_TWI_NACK)) {
at91_disable_twi_interrupts(dev);
complete(&dev->cmd_complete);
} else if (irqstatus & AT91_TWI_TXRDY) {
at91_twi_write_next_byte(dev);
}
/* catch error flags */
dev->transfer_status |= status;
return IRQ_HANDLED;
}
static int at91_do_twi_transfer(struct at91_twi_dev *dev)
{
int ret;
unsigned long time_left;
bool has_unre_flag = dev->pdata->has_unre_flag;
bool has_alt_cmd = dev->pdata->has_alt_cmd;
/*
* WARNING: the TXCOMP bit in the Status Register is NOT a clear on
* read flag but shows the state of the transmission at the time the
* Status Register is read. According to the programmer datasheet,
* TXCOMP is set when both holding register and internal shifter are
* empty and STOP condition has been sent.
* Consequently, we should enable NACK interrupt rather than TXCOMP to
* detect transmission failure.
* Indeed let's take the case of an i2c write command using DMA.
* Whenever the slave doesn't acknowledge a byte, the LOCK, NACK and
* TXCOMP bits are set together into the Status Register.
* LOCK is a clear on write bit, which is set to prevent the DMA
* controller from sending new data on the i2c bus after a NACK
* condition has happened. Once locked, this i2c peripheral stops
* triggering the DMA controller for new data but it is more than
* likely that a new DMA transaction is already in progress, writing
* into the Transmit Holding Register. Since the peripheral is locked,
* these new data won't be sent to the i2c bus but they will remain
* into the Transmit Holding Register, so TXCOMP bit is cleared.
* Then when the interrupt handler is called, the Status Register is
* read: the TXCOMP bit is clear but NACK bit is still set. The driver
* manage the error properly, without waiting for timeout.
* This case can be reproduced easyly when writing into an at24 eeprom.
*
* Besides, the TXCOMP bit is already set before the i2c transaction
* has been started. For read transactions, this bit is cleared when
* writing the START bit into the Control Register. So the
* corresponding interrupt can safely be enabled just after.
* However for write transactions managed by the CPU, we first write
* into THR, so TXCOMP is cleared. Then we can safely enable TXCOMP
* interrupt. If TXCOMP interrupt were enabled before writing into THR,
* the interrupt handler would be called immediately and the i2c command
* would be reported as completed.
* Also when a write transaction is managed by the DMA controller,
* enabling the TXCOMP interrupt in this function may lead to a race
* condition since we don't know whether the TXCOMP interrupt is enabled
* before or after the DMA has started to write into THR. So the TXCOMP
* interrupt is enabled later by at91_twi_write_data_dma_callback().
* Immediately after in that DMA callback, if the alternative command
* mode is not used, we still need to send the STOP condition manually
* writing the corresponding bit into the Control Register.
*/
dev_dbg(dev->dev, "transfer: %s %zu bytes.\n",
(dev->msg->flags & I2C_M_RD) ? "read" : "write", dev->buf_len);
reinit_completion(&dev->cmd_complete);
dev->transfer_status = 0;
/* Clear pending interrupts, such as NACK. */
at91_twi_read(dev, AT91_TWI_SR);
if (dev->fifo_size) {
unsigned fifo_mr = at91_twi_read(dev, AT91_TWI_FMR);
/* Reset FIFO mode register */
fifo_mr &= ~(AT91_TWI_FMR_TXRDYM_MASK |
AT91_TWI_FMR_RXRDYM_MASK);
fifo_mr |= AT91_TWI_FMR_TXRDYM(AT91_TWI_ONE_DATA);
fifo_mr |= AT91_TWI_FMR_RXRDYM(AT91_TWI_ONE_DATA);
at91_twi_write(dev, AT91_TWI_FMR, fifo_mr);
/* Flush FIFOs */
at91_twi_write(dev, AT91_TWI_CR,
AT91_TWI_THRCLR | AT91_TWI_RHRCLR);
}
if (!dev->buf_len) {
at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_QUICK);
at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_TXCOMP);
} else if (dev->msg->flags & I2C_M_RD) {
unsigned start_flags = AT91_TWI_START;
/* if only one byte is to be read, immediately stop transfer */
if (!dev->use_alt_cmd && dev->buf_len <= 1 &&
!(dev->msg->flags & I2C_M_RECV_LEN))
start_flags |= AT91_TWI_STOP;
at91_twi_write(dev, AT91_TWI_CR, start_flags);
/*
* When using dma without alternative command mode, the last
* byte has to be read manually in order to not send the stop
* command too late and then to receive extra data.
* In practice, there are some issues if you use the dma to
* read n-1 bytes because of latency.
* Reading n-2 bytes with dma and the two last ones manually
* seems to be the best solution.
*/
if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
at91_twi_read_data_dma(dev);
} else {
at91_twi_write(dev, AT91_TWI_IER,
AT91_TWI_TXCOMP |
AT91_TWI_NACK |
AT91_TWI_RXRDY);
}
} else {
if (dev->use_dma && (dev->buf_len > AT91_I2C_DMA_THRESHOLD)) {
at91_twi_write(dev, AT91_TWI_IER, AT91_TWI_NACK);
at91_twi_write_data_dma(dev);
} else {
at91_twi_write_next_byte(dev);
at91_twi_write(dev, AT91_TWI_IER,
AT91_TWI_TXCOMP | AT91_TWI_NACK |
(dev->buf_len ? AT91_TWI_TXRDY : 0));
}
}
time_left = wait_for_completion_timeout(&dev->cmd_complete,
dev->adapter.timeout);
if (time_left == 0) {
dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
dev_err(dev->dev, "controller timed out\n");
at91_init_twi_bus(dev);
ret = -ETIMEDOUT;
goto error;
}
if (dev->transfer_status & AT91_TWI_NACK) {
dev_dbg(dev->dev, "received nack\n");
ret = -EREMOTEIO;
goto error;
}
if (dev->transfer_status & AT91_TWI_OVRE) {
dev_err(dev->dev, "overrun while reading\n");
ret = -EIO;
goto error;
}
if (has_unre_flag && dev->transfer_status & AT91_TWI_UNRE) {
dev_err(dev->dev, "underrun while writing\n");
ret = -EIO;
goto error;
}
if ((has_alt_cmd || dev->fifo_size) &&
(dev->transfer_status & AT91_TWI_LOCK)) {
dev_err(dev->dev, "tx locked\n");
ret = -EIO;
goto error;
}
if (dev->recv_len_abort) {
dev_err(dev->dev, "invalid smbus block length recvd\n");
ret = -EPROTO;
goto error;
}
dev_dbg(dev->dev, "transfer complete\n");
return 0;
error:
/* first stop DMA transfer if still in progress */
at91_twi_dma_cleanup(dev);
/* then flush THR/FIFO and unlock TX if locked */
if ((has_alt_cmd || dev->fifo_size) &&
(dev->transfer_status & AT91_TWI_LOCK)) {
dev_dbg(dev->dev, "unlock tx\n");
at91_twi_write(dev, AT91_TWI_CR,
AT91_TWI_THRCLR | AT91_TWI_LOCKCLR);
}
/*
* some faulty I2C slave devices might hold SDA down;
* we can send a bus clear command, hoping that the pins will be
* released
*/
i2c_recover_bus(&dev->adapter);
return ret;
}
static int at91_twi_xfer(struct i2c_adapter *adap, struct i2c_msg *msg, int num)
{
struct at91_twi_dev *dev = i2c_get_adapdata(adap);
int ret;
unsigned int_addr_flag = 0;
struct i2c_msg *m_start = msg;
bool is_read;
u8 *dma_buf = NULL;
dev_dbg(&adap->dev, "at91_xfer: processing %d messages:\n", num);
ret = pm_runtime_get_sync(dev->dev);
if (ret < 0)
goto out;
if (num == 2) {
int internal_address = 0;
int i;
/* 1st msg is put into the internal address, start with 2nd */
m_start = &msg[1];
for (i = 0; i < msg->len; ++i) {
const unsigned addr = msg->buf[msg->len - 1 - i];
internal_address |= addr << (8 * i);
int_addr_flag += AT91_TWI_IADRSZ_1;
}
at91_twi_write(dev, AT91_TWI_IADR, internal_address);
}
dev->use_alt_cmd = false;
is_read = (m_start->flags & I2C_M_RD);
if (dev->pdata->has_alt_cmd) {
if (m_start->len > 0 &&
m_start->len < AT91_I2C_MAX_ALT_CMD_DATA_SIZE) {
at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMEN);
at91_twi_write(dev, AT91_TWI_ACR,
AT91_TWI_ACR_DATAL(m_start->len) |
((is_read) ? AT91_TWI_ACR_DIR : 0));
dev->use_alt_cmd = true;
} else {
at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_ACMDIS);
}
}
at91_twi_write(dev, AT91_TWI_MMR,
(m_start->addr << 16) |
int_addr_flag |
((!dev->use_alt_cmd && is_read) ? AT91_TWI_MREAD : 0));
dev->buf_len = m_start->len;
dev->buf = m_start->buf;
dev->msg = m_start;
dev->recv_len_abort = false;
if (dev->use_dma) {
dma_buf = i2c_get_dma_safe_msg_buf(m_start, 1);
if (!dma_buf) {
ret = -ENOMEM;
goto out;
}
dev->buf = dma_buf;
}
ret = at91_do_twi_transfer(dev);
i2c_put_dma_safe_msg_buf(dma_buf, m_start, !ret);
ret = (ret < 0) ? ret : num;
out:
pm_runtime_mark_last_busy(dev->dev);
pm_runtime_put_autosuspend(dev->dev);
return ret;
}
/*
* The hardware can handle at most two messages concatenated by a
* repeated start via it's internal address feature.
*/
static const struct i2c_adapter_quirks at91_twi_quirks = {
.flags = I2C_AQ_COMB | I2C_AQ_COMB_WRITE_FIRST | I2C_AQ_COMB_SAME_ADDR,
.max_comb_1st_msg_len = 3,
};
static u32 at91_twi_func(struct i2c_adapter *adapter)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL
| I2C_FUNC_SMBUS_READ_BLOCK_DATA;
}
static const struct i2c_algorithm at91_twi_algorithm = {
.master_xfer = at91_twi_xfer,
.functionality = at91_twi_func,
};
static int at91_twi_configure_dma(struct at91_twi_dev *dev, u32 phy_addr)
{
int ret = 0;
struct dma_slave_config slave_config;
struct at91_twi_dma *dma = &dev->dma;
enum dma_slave_buswidth addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
/*
* The actual width of the access will be chosen in
* dmaengine_prep_slave_sg():
* for each buffer in the scatter-gather list, if its size is aligned
* to addr_width then addr_width accesses will be performed to transfer
* the buffer. On the other hand, if the buffer size is not aligned to
* addr_width then the buffer is transferred using single byte accesses.
* Please refer to the Atmel eXtended DMA controller driver.
* When FIFOs are used, the TXRDYM threshold can always be set to
* trigger the XDMAC when at least 4 data can be written into the TX
* FIFO, even if single byte accesses are performed.
* However the RXRDYM threshold must be set to fit the access width,
* deduced from buffer length, so the XDMAC is triggered properly to
* read data from the RX FIFO.
*/
if (dev->fifo_size)
addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
memset(&slave_config, 0, sizeof(slave_config));
slave_config.src_addr = (dma_addr_t)phy_addr + AT91_TWI_RHR;
slave_config.src_addr_width = addr_width;
slave_config.src_maxburst = 1;
slave_config.dst_addr = (dma_addr_t)phy_addr + AT91_TWI_THR;
slave_config.dst_addr_width = addr_width;
slave_config.dst_maxburst = 1;
slave_config.device_fc = false;
dma->chan_tx = dma_request_chan(dev->dev, "tx");
if (IS_ERR(dma->chan_tx)) {
ret = PTR_ERR(dma->chan_tx);
dma->chan_tx = NULL;
goto error;
}
dma->chan_rx = dma_request_chan(dev->dev, "rx");
if (IS_ERR(dma->chan_rx)) {
ret = PTR_ERR(dma->chan_rx);
dma->chan_rx = NULL;
goto error;
}
slave_config.direction = DMA_MEM_TO_DEV;
if (dmaengine_slave_config(dma->chan_tx, &slave_config)) {
dev_err(dev->dev, "failed to configure tx channel\n");
ret = -EINVAL;
goto error;
}
slave_config.direction = DMA_DEV_TO_MEM;
if (dmaengine_slave_config(dma->chan_rx, &slave_config)) {
dev_err(dev->dev, "failed to configure rx channel\n");
ret = -EINVAL;
goto error;
}
sg_init_table(dma->sg, 2);
dma->buf_mapped = false;
dma->xfer_in_progress = false;
dev->use_dma = true;
dev_info(dev->dev, "using %s (tx) and %s (rx) for DMA transfers\n",
dma_chan_name(dma->chan_tx), dma_chan_name(dma->chan_rx));
return ret;
error:
if (ret != -EPROBE_DEFER)
dev_info(dev->dev, "can't get DMA channel, continue without DMA support\n");
if (dma->chan_rx)
dma_release_channel(dma->chan_rx);
if (dma->chan_tx)
dma_release_channel(dma->chan_tx);
return ret;
}
static int at91_init_twi_recovery_gpio(struct platform_device *pdev,
struct at91_twi_dev *dev)
{
struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
rinfo->pinctrl = devm_pinctrl_get(&pdev->dev);
if (!rinfo->pinctrl || IS_ERR(rinfo->pinctrl)) {
dev_info(dev->dev, "can't get pinctrl, bus recovery not supported\n");
return PTR_ERR(rinfo->pinctrl);
}
dev->adapter.bus_recovery_info = rinfo;
return 0;
}
static int at91_twi_recover_bus_cmd(struct i2c_adapter *adap)
{
struct at91_twi_dev *dev = i2c_get_adapdata(adap);
dev->transfer_status |= at91_twi_read(dev, AT91_TWI_SR);
if (!(dev->transfer_status & AT91_TWI_SDA)) {
dev_dbg(dev->dev, "SDA is down; sending bus clear command\n");
if (dev->use_alt_cmd) {
unsigned int acr;
acr = at91_twi_read(dev, AT91_TWI_ACR);
acr &= ~AT91_TWI_ACR_DATAL_MASK;
at91_twi_write(dev, AT91_TWI_ACR, acr);
}
at91_twi_write(dev, AT91_TWI_CR, AT91_TWI_CLEAR);
}
return 0;
}
static int at91_init_twi_recovery_info(struct platform_device *pdev,
struct at91_twi_dev *dev)
{
struct i2c_bus_recovery_info *rinfo = &dev->rinfo;
bool has_clear_cmd = dev->pdata->has_clear_cmd;
if (!has_clear_cmd)
return at91_init_twi_recovery_gpio(pdev, dev);
rinfo->recover_bus = at91_twi_recover_bus_cmd;
dev->adapter.bus_recovery_info = rinfo;
return 0;
}
int at91_twi_probe_master(struct platform_device *pdev,
u32 phy_addr, struct at91_twi_dev *dev)
{
int rc;
init_completion(&dev->cmd_complete);
rc = devm_request_irq(&pdev->dev, dev->irq, atmel_twi_interrupt, 0,
dev_name(dev->dev), dev);
if (rc) {
dev_err(dev->dev, "Cannot get irq %d: %d\n", dev->irq, rc);
return rc;
}
if (dev->dev->of_node) {
rc = at91_twi_configure_dma(dev, phy_addr);
if (rc == -EPROBE_DEFER)
return rc;
}
if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
&dev->fifo_size)) {
dev_info(dev->dev, "Using FIFO (%u data)\n", dev->fifo_size);
}
dev->enable_dig_filt = of_property_read_bool(pdev->dev.of_node,
"i2c-digital-filter");
dev->enable_ana_filt = of_property_read_bool(pdev->dev.of_node,
"i2c-analog-filter");
at91_calc_twi_clock(dev);
rc = at91_init_twi_recovery_info(pdev, dev);
if (rc == -EPROBE_DEFER)
return rc;
dev->adapter.algo = &at91_twi_algorithm;
dev->adapter.quirks = &at91_twi_quirks;
return 0;
}
|