summaryrefslogtreecommitdiff
path: root/drivers/hwmon/axi-fan-control.c
blob: 5fd136baf1cd310c830179d0aaa69ec85e2f423e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
// SPDX-License-Identifier: GPL-2.0
/*
 * Fan Control HDL CORE driver
 *
 * Copyright 2019 Analog Devices Inc.
 */
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/fpga/adi-axi-common.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>

/* register map */
#define ADI_REG_RSTN		0x0080
#define ADI_REG_PWM_WIDTH	0x0084
#define ADI_REG_TACH_PERIOD	0x0088
#define ADI_REG_TACH_TOLERANCE	0x008c
#define ADI_REG_PWM_PERIOD	0x00c0
#define ADI_REG_TACH_MEASUR	0x00c4
#define ADI_REG_TEMPERATURE	0x00c8
#define ADI_REG_TEMP_00_H	0x0100
#define ADI_REG_TEMP_25_L	0x0104
#define ADI_REG_TEMP_25_H	0x0108
#define ADI_REG_TEMP_50_L	0x010c
#define ADI_REG_TEMP_50_H	0x0110
#define ADI_REG_TEMP_75_L	0x0114
#define ADI_REG_TEMP_75_H	0x0118
#define ADI_REG_TEMP_100_L	0x011c

#define ADI_REG_IRQ_MASK	0x0040
#define ADI_REG_IRQ_PENDING	0x0044
#define ADI_REG_IRQ_SRC		0x0048

/* IRQ sources */
#define ADI_IRQ_SRC_PWM_CHANGED		BIT(0)
#define ADI_IRQ_SRC_TACH_ERR		BIT(1)
#define ADI_IRQ_SRC_TEMP_INCREASE	BIT(2)
#define ADI_IRQ_SRC_NEW_MEASUR		BIT(3)
#define ADI_IRQ_SRC_MASK		GENMASK(3, 0)
#define ADI_IRQ_MASK_OUT_ALL		0xFFFFFFFFU

#define SYSFS_PWM_MAX			255

struct axi_fan_control_data {
	void __iomem *base;
	struct device *hdev;
	unsigned long clk_rate;
	int irq;
	/* pulses per revolution */
	u32 ppr;
	bool hw_pwm_req;
	bool update_tacho_params;
	u8 fan_fault;
};

static inline void axi_iowrite(const u32 val, const u32 reg,
			       const struct axi_fan_control_data *ctl)
{
	iowrite32(val, ctl->base + reg);
}

static inline u32 axi_ioread(const u32 reg,
			     const struct axi_fan_control_data *ctl)
{
	return ioread32(ctl->base + reg);
}

/*
 * The core calculates the temperature as:
 *	T = /raw * 509.3140064 / 65535) - 280.2308787
 */
static ssize_t axi_fan_control_show(struct device *dev, struct device_attribute *da, char *buf)
{
	struct axi_fan_control_data *ctl = dev_get_drvdata(dev);
	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
	u32 temp = axi_ioread(attr->index, ctl);

	temp = DIV_ROUND_CLOSEST_ULL(temp * 509314ULL, 65535) - 280230;

	return sprintf(buf, "%u\n", temp);
}

static ssize_t axi_fan_control_store(struct device *dev, struct device_attribute *da,
				     const char *buf, size_t count)
{
	struct axi_fan_control_data *ctl = dev_get_drvdata(dev);
	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
	u32 temp;
	int ret;

	ret = kstrtou32(buf, 10, &temp);
	if (ret)
		return ret;

	temp = DIV_ROUND_CLOSEST_ULL((temp + 280230) * 65535ULL, 509314);
	axi_iowrite(temp, attr->index, ctl);

	return count;
}

static long axi_fan_control_get_pwm_duty(const struct axi_fan_control_data *ctl)
{
	u32 pwm_width = axi_ioread(ADI_REG_PWM_WIDTH, ctl);
	u32 pwm_period = axi_ioread(ADI_REG_PWM_PERIOD, ctl);
	/*
	 * PWM_PERIOD is a RO register set by the core. It should never be 0.
	 * For now we are trusting the HW...
	 */
	return DIV_ROUND_CLOSEST(pwm_width * SYSFS_PWM_MAX, pwm_period);
}

static int axi_fan_control_set_pwm_duty(const long val,
					struct axi_fan_control_data *ctl)
{
	u32 pwm_period = axi_ioread(ADI_REG_PWM_PERIOD, ctl);
	u32 new_width;
	long __val = clamp_val(val, 0, SYSFS_PWM_MAX);

	new_width = DIV_ROUND_CLOSEST(__val * pwm_period, SYSFS_PWM_MAX);

	axi_iowrite(new_width, ADI_REG_PWM_WIDTH, ctl);

	return 0;
}

static long axi_fan_control_get_fan_rpm(const struct axi_fan_control_data *ctl)
{
	const u32 tach = axi_ioread(ADI_REG_TACH_MEASUR, ctl);

	if (tach == 0)
		/* should we return error, EAGAIN maybe? */
		return 0;
	/*
	 * The tacho period should be:
	 *      TACH = 60/(ppr * rpm), where rpm is revolutions per second
	 *      and ppr is pulses per revolution.
	 * Given the tacho period, we can multiply it by the input clock
	 * so that we know how many clocks we need to have this period.
	 * From this, we can derive the RPM value.
	 */
	return DIV_ROUND_CLOSEST(60 * ctl->clk_rate, ctl->ppr * tach);
}

static int axi_fan_control_read_temp(struct device *dev, u32 attr, long *val)
{
	struct axi_fan_control_data *ctl = dev_get_drvdata(dev);
	long raw_temp;

	switch (attr) {
	case hwmon_temp_input:
		raw_temp = axi_ioread(ADI_REG_TEMPERATURE, ctl);
		/*
		 * The formula for the temperature is:
		 *      T = (ADC * 501.3743 / 2^bits) - 273.6777
		 * It's multiplied by 1000 to have millidegrees as
		 * specified by the hwmon sysfs interface.
		 */
		*val = ((raw_temp * 501374) >> 16) - 273677;
		return 0;
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_read_fan(struct device *dev, u32 attr, long *val)
{
	struct axi_fan_control_data *ctl = dev_get_drvdata(dev);

	switch (attr) {
	case hwmon_fan_fault:
		*val = ctl->fan_fault;
		/* clear it now */
		ctl->fan_fault = 0;
		return 0;
	case hwmon_fan_input:
		*val = axi_fan_control_get_fan_rpm(ctl);
		return 0;
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_read_pwm(struct device *dev, u32 attr, long *val)
{
	struct axi_fan_control_data *ctl = dev_get_drvdata(dev);

	switch (attr) {
	case hwmon_pwm_input:
		*val = axi_fan_control_get_pwm_duty(ctl);
		return 0;
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_write_pwm(struct device *dev, u32 attr, long val)
{
	struct axi_fan_control_data *ctl = dev_get_drvdata(dev);

	switch (attr) {
	case hwmon_pwm_input:
		return axi_fan_control_set_pwm_duty(val, ctl);
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_read_labels(struct device *dev,
				       enum hwmon_sensor_types type,
				       u32 attr, int channel, const char **str)
{
	switch (type) {
	case hwmon_fan:
		*str = "FAN";
		return 0;
	case hwmon_temp:
		*str = "SYSMON4";
		return 0;
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_read(struct device *dev,
				enum hwmon_sensor_types type,
				u32 attr, int channel, long *val)
{
	switch (type) {
	case hwmon_fan:
		return axi_fan_control_read_fan(dev, attr, val);
	case hwmon_pwm:
		return axi_fan_control_read_pwm(dev, attr, val);
	case hwmon_temp:
		return axi_fan_control_read_temp(dev, attr, val);
	default:
		return -ENOTSUPP;
	}
}

static int axi_fan_control_write(struct device *dev,
				 enum hwmon_sensor_types type,
				 u32 attr, int channel, long val)
{
	switch (type) {
	case hwmon_pwm:
		return axi_fan_control_write_pwm(dev, attr, val);
	default:
		return -ENOTSUPP;
	}
}

static umode_t axi_fan_control_fan_is_visible(const u32 attr)
{
	switch (attr) {
	case hwmon_fan_input:
	case hwmon_fan_fault:
	case hwmon_fan_label:
		return 0444;
	default:
		return 0;
	}
}

static umode_t axi_fan_control_pwm_is_visible(const u32 attr)
{
	switch (attr) {
	case hwmon_pwm_input:
		return 0644;
	default:
		return 0;
	}
}

static umode_t axi_fan_control_temp_is_visible(const u32 attr)
{
	switch (attr) {
	case hwmon_temp_input:
	case hwmon_temp_label:
		return 0444;
	default:
		return 0;
	}
}

static umode_t axi_fan_control_is_visible(const void *data,
					  enum hwmon_sensor_types type,
					  u32 attr, int channel)
{
	switch (type) {
	case hwmon_fan:
		return axi_fan_control_fan_is_visible(attr);
	case hwmon_pwm:
		return axi_fan_control_pwm_is_visible(attr);
	case hwmon_temp:
		return axi_fan_control_temp_is_visible(attr);
	default:
		return 0;
	}
}

/*
 * This core has two main ways of changing the PWM duty cycle. It is done,
 * either by a request from userspace (writing on pwm1_input) or by the
 * core itself. When the change is done by the core, it will use predefined
 * parameters to evaluate the tach signal and, on that case we cannot set them.
 * On the other hand, when the request is done by the user, with some arbitrary
 * value that the core does not now about, we have to provide the tach
 * parameters so that, the core can evaluate the signal. On the IRQ handler we
 * distinguish this by using the ADI_IRQ_SRC_TEMP_INCREASE interrupt. This tell
 * us that the CORE requested a new duty cycle. After this, there is 5s delay
 * on which the core waits for the fan rotation speed to stabilize. After this
 * we get ADI_IRQ_SRC_PWM_CHANGED irq where we will decide if we need to set
 * the tach parameters or not on the next tach measurement cycle (corresponding
 * already to the ney duty cycle) based on the %ctl->hw_pwm_req flag.
 */
static irqreturn_t axi_fan_control_irq_handler(int irq, void *data)
{
	struct axi_fan_control_data *ctl = (struct axi_fan_control_data *)data;
	u32 irq_pending = axi_ioread(ADI_REG_IRQ_PENDING, ctl);
	u32 clear_mask;

	if (irq_pending & ADI_IRQ_SRC_TEMP_INCREASE)
		/* hardware requested a new pwm */
		ctl->hw_pwm_req = true;

	if (irq_pending & ADI_IRQ_SRC_PWM_CHANGED) {
		/*
		 * if the pwm changes on behalf of software,
		 * we need to provide new tacho parameters to the core.
		 * Wait for the next measurement for that...
		 */
		if (!ctl->hw_pwm_req) {
			ctl->update_tacho_params = true;
		} else {
			ctl->hw_pwm_req = false;
			hwmon_notify_event(ctl->hdev, hwmon_pwm,
					   hwmon_pwm_input, 0);
		}
	}

	if (irq_pending & ADI_IRQ_SRC_NEW_MEASUR) {
		if (ctl->update_tacho_params) {
			u32 new_tach = axi_ioread(ADI_REG_TACH_MEASUR, ctl);
			/* get 25% tolerance */
			u32 tach_tol = DIV_ROUND_CLOSEST(new_tach * 25, 100);

			/* set new tacho parameters */
			axi_iowrite(new_tach, ADI_REG_TACH_PERIOD, ctl);
			axi_iowrite(tach_tol, ADI_REG_TACH_TOLERANCE, ctl);
			ctl->update_tacho_params = false;
		}
	}

	if (irq_pending & ADI_IRQ_SRC_TACH_ERR)
		ctl->fan_fault = 1;

	/* clear all interrupts */
	clear_mask = irq_pending & ADI_IRQ_SRC_MASK;
	axi_iowrite(clear_mask, ADI_REG_IRQ_PENDING, ctl);

	return IRQ_HANDLED;
}

static int axi_fan_control_init(struct axi_fan_control_data *ctl,
				const struct device_node *np)
{
	int ret;

	/* get fan pulses per revolution */
	ret = of_property_read_u32(np, "pulses-per-revolution", &ctl->ppr);
	if (ret)
		return ret;

	/* 1, 2 and 4 are the typical and accepted values */
	if (ctl->ppr != 1 && ctl->ppr != 2 && ctl->ppr != 4)
		return -EINVAL;
	/*
	 * Enable all IRQs
	 */
	axi_iowrite(ADI_IRQ_MASK_OUT_ALL &
		    ~(ADI_IRQ_SRC_NEW_MEASUR | ADI_IRQ_SRC_TACH_ERR |
		      ADI_IRQ_SRC_PWM_CHANGED | ADI_IRQ_SRC_TEMP_INCREASE),
		    ADI_REG_IRQ_MASK, ctl);

	/* bring the device out of reset */
	axi_iowrite(0x01, ADI_REG_RSTN, ctl);

	return ret;
}

static const struct hwmon_channel_info * const axi_fan_control_info[] = {
	HWMON_CHANNEL_INFO(pwm, HWMON_PWM_INPUT),
	HWMON_CHANNEL_INFO(fan, HWMON_F_INPUT | HWMON_F_FAULT | HWMON_F_LABEL),
	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT | HWMON_T_LABEL),
	NULL
};

static const struct hwmon_ops axi_fan_control_hwmon_ops = {
	.is_visible = axi_fan_control_is_visible,
	.read = axi_fan_control_read,
	.write = axi_fan_control_write,
	.read_string = axi_fan_control_read_labels,
};

static const struct hwmon_chip_info axi_chip_info = {
	.ops = &axi_fan_control_hwmon_ops,
	.info = axi_fan_control_info,
};

/* temperature threshold below which PWM should be 0% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_temp_hyst, axi_fan_control, ADI_REG_TEMP_00_H);
/* temperature threshold above which PWM should be 25% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point1_temp, axi_fan_control, ADI_REG_TEMP_25_L);
/* temperature threshold below which PWM should be 25% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_temp_hyst, axi_fan_control, ADI_REG_TEMP_25_H);
/* temperature threshold above which PWM should be 50% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point2_temp, axi_fan_control, ADI_REG_TEMP_50_L);
/* temperature threshold below which PWM should be 50% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point3_temp_hyst, axi_fan_control, ADI_REG_TEMP_50_H);
/* temperature threshold above which PWM should be 75% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point3_temp, axi_fan_control, ADI_REG_TEMP_75_L);
/* temperature threshold below which PWM should be 75% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point4_temp_hyst, axi_fan_control, ADI_REG_TEMP_75_H);
/* temperature threshold above which PWM should be 100% */
static SENSOR_DEVICE_ATTR_RW(pwm1_auto_point4_temp, axi_fan_control, ADI_REG_TEMP_100_L);

static struct attribute *axi_fan_control_attrs[] = {
	&sensor_dev_attr_pwm1_auto_point1_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point1_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point2_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point2_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point3_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point3_temp.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point4_temp_hyst.dev_attr.attr,
	&sensor_dev_attr_pwm1_auto_point4_temp.dev_attr.attr,
	NULL,
};
ATTRIBUTE_GROUPS(axi_fan_control);

static const u32 version_1_0_0 = ADI_AXI_PCORE_VER(1, 0, 'a');

static const struct of_device_id axi_fan_control_of_match[] = {
	{ .compatible = "adi,axi-fan-control-1.00.a",
		.data = (void *)&version_1_0_0},
	{},
};
MODULE_DEVICE_TABLE(of, axi_fan_control_of_match);

static int axi_fan_control_probe(struct platform_device *pdev)
{
	struct axi_fan_control_data *ctl;
	struct clk *clk;
	const struct of_device_id *id;
	const char *name = "axi_fan_control";
	u32 version;
	int ret;

	id = of_match_node(axi_fan_control_of_match, pdev->dev.of_node);
	if (!id)
		return -EINVAL;

	ctl = devm_kzalloc(&pdev->dev, sizeof(*ctl), GFP_KERNEL);
	if (!ctl)
		return -ENOMEM;

	ctl->base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(ctl->base))
		return PTR_ERR(ctl->base);

	clk = devm_clk_get_enabled(&pdev->dev, NULL);
	if (IS_ERR(clk)) {
		dev_err(&pdev->dev, "clk_get failed with %ld\n", PTR_ERR(clk));
		return PTR_ERR(clk);
	}

	ctl->clk_rate = clk_get_rate(clk);
	if (!ctl->clk_rate)
		return -EINVAL;

	version = axi_ioread(ADI_AXI_REG_VERSION, ctl);
	if (ADI_AXI_PCORE_VER_MAJOR(version) !=
	    ADI_AXI_PCORE_VER_MAJOR((*(u32 *)id->data))) {
		dev_err(&pdev->dev, "Major version mismatch. Expected %d.%.2d.%c, Reported %d.%.2d.%c\n",
			ADI_AXI_PCORE_VER_MAJOR((*(u32 *)id->data)),
			ADI_AXI_PCORE_VER_MINOR((*(u32 *)id->data)),
			ADI_AXI_PCORE_VER_PATCH((*(u32 *)id->data)),
			ADI_AXI_PCORE_VER_MAJOR(version),
			ADI_AXI_PCORE_VER_MINOR(version),
			ADI_AXI_PCORE_VER_PATCH(version));
		return -ENODEV;
	}

	ctl->irq = platform_get_irq(pdev, 0);
	if (ctl->irq < 0)
		return ctl->irq;

	ret = devm_request_threaded_irq(&pdev->dev, ctl->irq, NULL,
					axi_fan_control_irq_handler,
					IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
					pdev->driver_override, ctl);
	if (ret) {
		dev_err(&pdev->dev, "failed to request an irq, %d", ret);
		return ret;
	}

	ret = axi_fan_control_init(ctl, pdev->dev.of_node);
	if (ret) {
		dev_err(&pdev->dev, "Failed to initialize device\n");
		return ret;
	}

	ctl->hdev = devm_hwmon_device_register_with_info(&pdev->dev,
							 name,
							 ctl,
							 &axi_chip_info,
							 axi_fan_control_groups);

	return PTR_ERR_OR_ZERO(ctl->hdev);
}

static struct platform_driver axi_fan_control_driver = {
	.driver = {
		.name = "axi_fan_control_driver",
		.of_match_table = axi_fan_control_of_match,
	},
	.probe = axi_fan_control_probe,
};
module_platform_driver(axi_fan_control_driver);

MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
MODULE_DESCRIPTION("Analog Devices Fan Control HDL CORE driver");
MODULE_LICENSE("GPL");