summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/vc4/vc4_crtc.c
blob: dcadf793ee80697cae097733eb387470c6423594 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
/*
 * Copyright (C) 2015 Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/**
 * DOC: VC4 CRTC module
 *
 * In VC4, the Pixel Valve is what most closely corresponds to the
 * DRM's concept of a CRTC.  The PV generates video timings from the
 * encoder's clock plus its configuration.  It pulls scaled pixels from
 * the HVS at that timing, and feeds it to the encoder.
 *
 * However, the DRM CRTC also collects the configuration of all the
 * DRM planes attached to it.  As a result, the CRTC is also
 * responsible for writing the display list for the HVS channel that
 * the CRTC will use.
 *
 * The 2835 has 3 different pixel valves.  pv0 in the audio power
 * domain feeds DSI0 or DPI, while pv1 feeds DS1 or SMI.  pv2 in the
 * image domain can feed either HDMI or the SDTV controller.  The
 * pixel valve chooses from the CPRMAN clocks (HSM for HDMI, VEC for
 * SDTV, etc.) according to which output type is chosen in the mux.
 *
 * For power management, the pixel valve's registers are all clocked
 * by the AXI clock, while the timings and FIFOs make use of the
 * output-specific clock.  Since the encoders also directly consume
 * the CPRMAN clocks, and know what timings they need, they are the
 * ones that set the clock.
 */

#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_crtc_helper.h>
#include <linux/clk.h>
#include <drm/drm_fb_cma_helper.h>
#include <linux/component.h>
#include <linux/of_device.h>
#include "vc4_drv.h"
#include "vc4_regs.h"

struct vc4_crtc_state {
	struct drm_crtc_state base;
	/* Dlist area for this CRTC configuration. */
	struct drm_mm_node mm;
};

static inline struct vc4_crtc_state *
to_vc4_crtc_state(struct drm_crtc_state *crtc_state)
{
	return (struct vc4_crtc_state *)crtc_state;
}

#define CRTC_WRITE(offset, val) writel(val, vc4_crtc->regs + (offset))
#define CRTC_READ(offset) readl(vc4_crtc->regs + (offset))

#define CRTC_REG(reg) { reg, #reg }
static const struct {
	u32 reg;
	const char *name;
} crtc_regs[] = {
	CRTC_REG(PV_CONTROL),
	CRTC_REG(PV_V_CONTROL),
	CRTC_REG(PV_VSYNCD_EVEN),
	CRTC_REG(PV_HORZA),
	CRTC_REG(PV_HORZB),
	CRTC_REG(PV_VERTA),
	CRTC_REG(PV_VERTB),
	CRTC_REG(PV_VERTA_EVEN),
	CRTC_REG(PV_VERTB_EVEN),
	CRTC_REG(PV_INTEN),
	CRTC_REG(PV_INTSTAT),
	CRTC_REG(PV_STAT),
	CRTC_REG(PV_HACT_ACT),
};

static void vc4_crtc_dump_regs(struct vc4_crtc *vc4_crtc)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
		DRM_INFO("0x%04x (%s): 0x%08x\n",
			 crtc_regs[i].reg, crtc_regs[i].name,
			 CRTC_READ(crtc_regs[i].reg));
	}
}

#ifdef CONFIG_DEBUG_FS
int vc4_crtc_debugfs_regs(struct seq_file *m, void *unused)
{
	struct drm_info_node *node = (struct drm_info_node *)m->private;
	struct drm_device *dev = node->minor->dev;
	int crtc_index = (uintptr_t)node->info_ent->data;
	struct drm_crtc *crtc;
	struct vc4_crtc *vc4_crtc;
	int i;

	i = 0;
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		if (i == crtc_index)
			break;
		i++;
	}
	if (!crtc)
		return 0;
	vc4_crtc = to_vc4_crtc(crtc);

	for (i = 0; i < ARRAY_SIZE(crtc_regs); i++) {
		seq_printf(m, "%s (0x%04x): 0x%08x\n",
			   crtc_regs[i].name, crtc_regs[i].reg,
			   CRTC_READ(crtc_regs[i].reg));
	}

	return 0;
}
#endif

bool vc4_crtc_get_scanoutpos(struct drm_device *dev, unsigned int crtc_id,
			     bool in_vblank_irq, int *vpos, int *hpos,
			     ktime_t *stime, ktime_t *etime,
			     const struct drm_display_mode *mode)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_crtc *crtc = drm_crtc_from_index(dev, crtc_id);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 val;
	int fifo_lines;
	int vblank_lines;
	bool ret = false;

	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */

	/* Get optional system timestamp before query. */
	if (stime)
		*stime = ktime_get();

	/*
	 * Read vertical scanline which is currently composed for our
	 * pixelvalve by the HVS, and also the scaler status.
	 */
	val = HVS_READ(SCALER_DISPSTATX(vc4_crtc->channel));

	/* Get optional system timestamp after query. */
	if (etime)
		*etime = ktime_get();

	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */

	/* Vertical position of hvs composed scanline. */
	*vpos = VC4_GET_FIELD(val, SCALER_DISPSTATX_LINE);
	*hpos = 0;

	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
		*vpos /= 2;

		/* Use hpos to correct for field offset in interlaced mode. */
		if (VC4_GET_FIELD(val, SCALER_DISPSTATX_FRAME_COUNT) % 2)
			*hpos += mode->crtc_htotal / 2;
	}

	/* This is the offset we need for translating hvs -> pv scanout pos. */
	fifo_lines = vc4_crtc->cob_size / mode->crtc_hdisplay;

	if (fifo_lines > 0)
		ret = true;

	/* HVS more than fifo_lines into frame for compositing? */
	if (*vpos > fifo_lines) {
		/*
		 * We are in active scanout and can get some meaningful results
		 * from HVS. The actual PV scanout can not trail behind more
		 * than fifo_lines as that is the fifo's capacity. Assume that
		 * in active scanout the HVS and PV work in lockstep wrt. HVS
		 * refilling the fifo and PV consuming from the fifo, ie.
		 * whenever the PV consumes and frees up a scanline in the
		 * fifo, the HVS will immediately refill it, therefore
		 * incrementing vpos. Therefore we choose HVS read position -
		 * fifo size in scanlines as a estimate of the real scanout
		 * position of the PV.
		 */
		*vpos -= fifo_lines + 1;

		return ret;
	}

	/*
	 * Less: This happens when we are in vblank and the HVS, after getting
	 * the VSTART restart signal from the PV, just started refilling its
	 * fifo with new lines from the top-most lines of the new framebuffers.
	 * The PV does not scan out in vblank, so does not remove lines from
	 * the fifo, so the fifo will be full quickly and the HVS has to pause.
	 * We can't get meaningful readings wrt. scanline position of the PV
	 * and need to make things up in a approximative but consistent way.
	 */
	vblank_lines = mode->vtotal - mode->vdisplay;

	if (in_vblank_irq) {
		/*
		 * Assume the irq handler got called close to first
		 * line of vblank, so PV has about a full vblank
		 * scanlines to go, and as a base timestamp use the
		 * one taken at entry into vblank irq handler, so it
		 * is not affected by random delays due to lock
		 * contention on event_lock or vblank_time lock in
		 * the core.
		 */
		*vpos = -vblank_lines;

		if (stime)
			*stime = vc4_crtc->t_vblank;
		if (etime)
			*etime = vc4_crtc->t_vblank;

		/*
		 * If the HVS fifo is not yet full then we know for certain
		 * we are at the very beginning of vblank, as the hvs just
		 * started refilling, and the stime and etime timestamps
		 * truly correspond to start of vblank.
		 *
		 * Unfortunately there's no way to report this to upper levels
		 * and make it more useful.
		 */
	} else {
		/*
		 * No clue where we are inside vblank. Return a vpos of zero,
		 * which will cause calling code to just return the etime
		 * timestamp uncorrected. At least this is no worse than the
		 * standard fallback.
		 */
		*vpos = 0;
	}

	return ret;
}

static void vc4_crtc_destroy(struct drm_crtc *crtc)
{
	drm_crtc_cleanup(crtc);
}

static void
vc4_crtc_lut_load(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 i;

	/* The LUT memory is laid out with each HVS channel in order,
	 * each of which takes 256 writes for R, 256 for G, then 256
	 * for B.
	 */
	HVS_WRITE(SCALER_GAMADDR,
		  SCALER_GAMADDR_AUTOINC |
		  (vc4_crtc->channel * 3 * crtc->gamma_size));

	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
	for (i = 0; i < crtc->gamma_size; i++)
		HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
}

static void
vc4_crtc_update_gamma_lut(struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_color_lut *lut = crtc->state->gamma_lut->data;
	u32 length = drm_color_lut_size(crtc->state->gamma_lut);
	u32 i;

	for (i = 0; i < length; i++) {
		vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
		vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
		vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
	}

	vc4_crtc_lut_load(crtc);
}

static u32 vc4_get_fifo_full_level(u32 format)
{
	static const u32 fifo_len_bytes = 64;
	static const u32 hvs_latency_pix = 6;

	switch (format) {
	case PV_CONTROL_FORMAT_DSIV_16:
	case PV_CONTROL_FORMAT_DSIC_16:
		return fifo_len_bytes - 2 * hvs_latency_pix;
	case PV_CONTROL_FORMAT_DSIV_18:
		return fifo_len_bytes - 14;
	case PV_CONTROL_FORMAT_24:
	case PV_CONTROL_FORMAT_DSIV_24:
	default:
		return fifo_len_bytes - 3 * hvs_latency_pix;
	}
}

/*
 * Returns the encoder attached to the CRTC.
 *
 * VC4 can only scan out to one encoder at a time, while the DRM core
 * allows drivers to push pixels to more than one encoder from the
 * same CRTC.
 */
static struct drm_encoder *vc4_get_crtc_encoder(struct drm_crtc *crtc)
{
	struct drm_connector *connector;
	struct drm_connector_list_iter conn_iter;

	drm_connector_list_iter_begin(crtc->dev, &conn_iter);
	drm_for_each_connector_iter(connector, &conn_iter) {
		if (connector->state->crtc == crtc) {
			drm_connector_list_iter_end(&conn_iter);
			return connector->encoder;
		}
	}
	drm_connector_list_iter_end(&conn_iter);

	return NULL;
}

static void vc4_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_encoder *encoder = vc4_get_crtc_encoder(crtc);
	struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_crtc_state *state = crtc->state;
	struct drm_display_mode *mode = &state->adjusted_mode;
	bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
	u32 pixel_rep = (mode->flags & DRM_MODE_FLAG_DBLCLK) ? 2 : 1;
	bool is_dsi = (vc4_encoder->type == VC4_ENCODER_TYPE_DSI0 ||
		       vc4_encoder->type == VC4_ENCODER_TYPE_DSI1);
	u32 format = is_dsi ? PV_CONTROL_FORMAT_DSIV_24 : PV_CONTROL_FORMAT_24;
	bool debug_dump_regs = false;

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d regs before:\n", drm_crtc_index(crtc));
		vc4_crtc_dump_regs(vc4_crtc);
	}

	/* Reset the PV fifo. */
	CRTC_WRITE(PV_CONTROL, 0);
	CRTC_WRITE(PV_CONTROL, PV_CONTROL_FIFO_CLR | PV_CONTROL_EN);
	CRTC_WRITE(PV_CONTROL, 0);

	CRTC_WRITE(PV_HORZA,
		   VC4_SET_FIELD((mode->htotal -
				  mode->hsync_end) * pixel_rep,
				 PV_HORZA_HBP) |
		   VC4_SET_FIELD((mode->hsync_end -
				  mode->hsync_start) * pixel_rep,
				 PV_HORZA_HSYNC));
	CRTC_WRITE(PV_HORZB,
		   VC4_SET_FIELD((mode->hsync_start -
				  mode->hdisplay) * pixel_rep,
				 PV_HORZB_HFP) |
		   VC4_SET_FIELD(mode->hdisplay * pixel_rep, PV_HORZB_HACTIVE));

	CRTC_WRITE(PV_VERTA,
		   VC4_SET_FIELD(mode->crtc_vtotal - mode->crtc_vsync_end,
				 PV_VERTA_VBP) |
		   VC4_SET_FIELD(mode->crtc_vsync_end - mode->crtc_vsync_start,
				 PV_VERTA_VSYNC));
	CRTC_WRITE(PV_VERTB,
		   VC4_SET_FIELD(mode->crtc_vsync_start - mode->crtc_vdisplay,
				 PV_VERTB_VFP) |
		   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));

	if (interlace) {
		CRTC_WRITE(PV_VERTA_EVEN,
			   VC4_SET_FIELD(mode->crtc_vtotal -
					 mode->crtc_vsync_end - 1,
					 PV_VERTA_VBP) |
			   VC4_SET_FIELD(mode->crtc_vsync_end -
					 mode->crtc_vsync_start,
					 PV_VERTA_VSYNC));
		CRTC_WRITE(PV_VERTB_EVEN,
			   VC4_SET_FIELD(mode->crtc_vsync_start -
					 mode->crtc_vdisplay,
					 PV_VERTB_VFP) |
			   VC4_SET_FIELD(mode->crtc_vdisplay, PV_VERTB_VACTIVE));

		/* We set up first field even mode for HDMI.  VEC's
		 * NTSC mode would want first field odd instead, once
		 * we support it (to do so, set ODD_FIRST and put the
		 * delay in VSYNCD_EVEN instead).
		 */
		CRTC_WRITE(PV_V_CONTROL,
			   PV_VCONTROL_CONTINUOUS |
			   (is_dsi ? PV_VCONTROL_DSI : 0) |
			   PV_VCONTROL_INTERLACE |
			   VC4_SET_FIELD(mode->htotal * pixel_rep / 2,
					 PV_VCONTROL_ODD_DELAY));
		CRTC_WRITE(PV_VSYNCD_EVEN, 0);
	} else {
		CRTC_WRITE(PV_V_CONTROL,
			   PV_VCONTROL_CONTINUOUS |
			   (is_dsi ? PV_VCONTROL_DSI : 0));
	}

	CRTC_WRITE(PV_HACT_ACT, mode->hdisplay * pixel_rep);

	CRTC_WRITE(PV_CONTROL,
		   VC4_SET_FIELD(format, PV_CONTROL_FORMAT) |
		   VC4_SET_FIELD(vc4_get_fifo_full_level(format),
				 PV_CONTROL_FIFO_LEVEL) |
		   VC4_SET_FIELD(pixel_rep - 1, PV_CONTROL_PIXEL_REP) |
		   PV_CONTROL_CLR_AT_START |
		   PV_CONTROL_TRIGGER_UNDERFLOW |
		   PV_CONTROL_WAIT_HSTART |
		   VC4_SET_FIELD(vc4_encoder->clock_select,
				 PV_CONTROL_CLK_SELECT) |
		   PV_CONTROL_FIFO_CLR |
		   PV_CONTROL_EN);

	HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
		  SCALER_DISPBKGND_AUTOHS |
		  SCALER_DISPBKGND_GAMMA |
		  (interlace ? SCALER_DISPBKGND_INTERLACE : 0));

	/* Reload the LUT, since the SRAMs would have been disabled if
	 * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
	 */
	vc4_crtc_lut_load(crtc);

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d regs after:\n", drm_crtc_index(crtc));
		vc4_crtc_dump_regs(vc4_crtc);
	}
}

static void require_hvs_enabled(struct drm_device *dev)
{
	struct vc4_dev *vc4 = to_vc4_dev(dev);

	WARN_ON_ONCE((HVS_READ(SCALER_DISPCTRL) & SCALER_DISPCTRL_ENABLE) !=
		     SCALER_DISPCTRL_ENABLE);
}

static void vc4_crtc_atomic_disable(struct drm_crtc *crtc,
				    struct drm_crtc_state *old_state)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	u32 chan = vc4_crtc->channel;
	int ret;
	require_hvs_enabled(dev);

	/* Disable vblank irq handling before crtc is disabled. */
	drm_crtc_vblank_off(crtc);

	CRTC_WRITE(PV_V_CONTROL,
		   CRTC_READ(PV_V_CONTROL) & ~PV_VCONTROL_VIDEN);
	ret = wait_for(!(CRTC_READ(PV_V_CONTROL) & PV_VCONTROL_VIDEN), 1);
	WARN_ONCE(ret, "Timeout waiting for !PV_VCONTROL_VIDEN\n");

	if (HVS_READ(SCALER_DISPCTRLX(chan)) &
	    SCALER_DISPCTRLX_ENABLE) {
		HVS_WRITE(SCALER_DISPCTRLX(chan),
			  SCALER_DISPCTRLX_RESET);

		/* While the docs say that reset is self-clearing, it
		 * seems it doesn't actually.
		 */
		HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
	}

	/* Once we leave, the scaler should be disabled and its fifo empty. */

	WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);

	WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
				   SCALER_DISPSTATX_MODE) !=
		     SCALER_DISPSTATX_MODE_DISABLED);

	WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
		      (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
		     SCALER_DISPSTATX_EMPTY);

	/*
	 * Make sure we issue a vblank event after disabling the CRTC if
	 * someone was waiting it.
	 */
	if (crtc->state->event) {
		unsigned long flags;

		spin_lock_irqsave(&dev->event_lock, flags);
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		crtc->state->event = NULL;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}
}

static void vc4_crtc_update_dlist(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);

	if (crtc->state->event) {
		unsigned long flags;

		crtc->state->event->pipe = drm_crtc_index(crtc);

		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
		vc4_crtc->event = crtc->state->event;
		crtc->state->event = NULL;

		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
			  vc4_state->mm.start);

		spin_unlock_irqrestore(&dev->event_lock, flags);
	} else {
		HVS_WRITE(SCALER_DISPLISTX(vc4_crtc->channel),
			  vc4_state->mm.start);
	}
}

static void vc4_crtc_atomic_enable(struct drm_crtc *crtc,
				   struct drm_crtc_state *old_state)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct drm_crtc_state *state = crtc->state;
	struct drm_display_mode *mode = &state->adjusted_mode;

	require_hvs_enabled(dev);

	/* Enable vblank irq handling before crtc is started otherwise
	 * drm_crtc_get_vblank() fails in vc4_crtc_update_dlist().
	 */
	drm_crtc_vblank_on(crtc);
	vc4_crtc_update_dlist(crtc);

	/* Turn on the scaler, which will wait for vstart to start
	 * compositing.
	 */
	HVS_WRITE(SCALER_DISPCTRLX(vc4_crtc->channel),
		  VC4_SET_FIELD(mode->hdisplay, SCALER_DISPCTRLX_WIDTH) |
		  VC4_SET_FIELD(mode->vdisplay, SCALER_DISPCTRLX_HEIGHT) |
		  SCALER_DISPCTRLX_ENABLE);

	/* Turn on the pixel valve, which will emit the vstart signal. */
	CRTC_WRITE(PV_V_CONTROL,
		   CRTC_READ(PV_V_CONTROL) | PV_VCONTROL_VIDEN);
}

static enum drm_mode_status vc4_crtc_mode_valid(struct drm_crtc *crtc,
						const struct drm_display_mode *mode)
{
	/* Do not allow doublescan modes from user space */
	if (mode->flags & DRM_MODE_FLAG_DBLSCAN) {
		DRM_DEBUG_KMS("[CRTC:%d] Doublescan mode rejected.\n",
			      crtc->base.id);
		return MODE_NO_DBLESCAN;
	}

	return MODE_OK;
}

static int vc4_crtc_atomic_check(struct drm_crtc *crtc,
				 struct drm_crtc_state *state)
{
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane;
	unsigned long flags;
	const struct drm_plane_state *plane_state;
	u32 dlist_count = 0;
	int ret;

	/* The pixelvalve can only feed one encoder (and encoders are
	 * 1:1 with connectors.)
	 */
	if (hweight32(state->connector_mask) > 1)
		return -EINVAL;

	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, state)
		dlist_count += vc4_plane_dlist_size(plane_state);

	dlist_count++; /* Account for SCALER_CTL0_END. */

	spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
	ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
				 dlist_count);
	spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
	if (ret)
		return ret;

	return 0;
}

static void vc4_crtc_atomic_flush(struct drm_crtc *crtc,
				  struct drm_crtc_state *old_state)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
	struct drm_plane *plane;
	struct vc4_plane_state *vc4_plane_state;
	bool debug_dump_regs = false;
	bool enable_bg_fill = false;
	u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
	u32 __iomem *dlist_next = dlist_start;

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
		vc4_hvs_dump_state(dev);
	}

	/* Copy all the active planes' dlist contents to the hardware dlist. */
	drm_atomic_crtc_for_each_plane(plane, crtc) {
		/* Is this the first active plane? */
		if (dlist_next == dlist_start) {
			/* We need to enable background fill when a plane
			 * could be alpha blending from the background, i.e.
			 * where no other plane is underneath. It suffices to
			 * consider the first active plane here since we set
			 * needs_bg_fill such that either the first plane
			 * already needs it or all planes on top blend from
			 * the first or a lower plane.
			 */
			vc4_plane_state = to_vc4_plane_state(plane->state);
			enable_bg_fill = vc4_plane_state->needs_bg_fill;
		}

		dlist_next += vc4_plane_write_dlist(plane, dlist_next);
	}

	writel(SCALER_CTL0_END, dlist_next);
	dlist_next++;

	WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);

	if (enable_bg_fill)
		/* This sets a black background color fill, as is the case
		 * with other DRM drivers.
		 */
		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel),
			  HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel)) |
			  SCALER_DISPBKGND_FILL);

	/* Only update DISPLIST if the CRTC was already running and is not
	 * being disabled.
	 * vc4_crtc_enable() takes care of updating the dlist just after
	 * re-enabling VBLANK interrupts and before enabling the engine.
	 * If the CRTC is being disabled, there's no point in updating this
	 * information.
	 */
	if (crtc->state->active && old_state->active)
		vc4_crtc_update_dlist(crtc);

	if (crtc->state->color_mgmt_changed) {
		u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(vc4_crtc->channel));

		if (crtc->state->gamma_lut) {
			vc4_crtc_update_gamma_lut(crtc);
			dispbkgndx |= SCALER_DISPBKGND_GAMMA;
		} else {
			/* Unsetting DISPBKGND_GAMMA skips the gamma lut step
			 * in hardware, which is the same as a linear lut that
			 * DRM expects us to use in absence of a user lut.
			 */
			dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
		}
		HVS_WRITE(SCALER_DISPBKGNDX(vc4_crtc->channel), dispbkgndx);
	}

	if (debug_dump_regs) {
		DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
		vc4_hvs_dump_state(dev);
	}
}

static int vc4_enable_vblank(struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);

	CRTC_WRITE(PV_INTEN, PV_INT_VFP_START);

	return 0;
}

static void vc4_disable_vblank(struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);

	CRTC_WRITE(PV_INTEN, 0);
}

static void vc4_crtc_handle_page_flip(struct vc4_crtc *vc4_crtc)
{
	struct drm_crtc *crtc = &vc4_crtc->base;
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
	u32 chan = vc4_crtc->channel;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	if (vc4_crtc->event &&
	    (vc4_state->mm.start == HVS_READ(SCALER_DISPLACTX(chan)))) {
		drm_crtc_send_vblank_event(crtc, vc4_crtc->event);
		vc4_crtc->event = NULL;
		drm_crtc_vblank_put(crtc);
	}
	spin_unlock_irqrestore(&dev->event_lock, flags);
}

static irqreturn_t vc4_crtc_irq_handler(int irq, void *data)
{
	struct vc4_crtc *vc4_crtc = data;
	u32 stat = CRTC_READ(PV_INTSTAT);
	irqreturn_t ret = IRQ_NONE;

	if (stat & PV_INT_VFP_START) {
		vc4_crtc->t_vblank = ktime_get();
		CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
		drm_crtc_handle_vblank(&vc4_crtc->base);
		vc4_crtc_handle_page_flip(vc4_crtc);
		ret = IRQ_HANDLED;
	}

	return ret;
}

struct vc4_async_flip_state {
	struct drm_crtc *crtc;
	struct drm_framebuffer *fb;
	struct drm_framebuffer *old_fb;
	struct drm_pending_vblank_event *event;

	struct vc4_seqno_cb cb;
};

/* Called when the V3D execution for the BO being flipped to is done, so that
 * we can actually update the plane's address to point to it.
 */
static void
vc4_async_page_flip_complete(struct vc4_seqno_cb *cb)
{
	struct vc4_async_flip_state *flip_state =
		container_of(cb, struct vc4_async_flip_state, cb);
	struct drm_crtc *crtc = flip_state->crtc;
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane = crtc->primary;

	vc4_plane_async_set_fb(plane, flip_state->fb);
	if (flip_state->event) {
		unsigned long flags;

		spin_lock_irqsave(&dev->event_lock, flags);
		drm_crtc_send_vblank_event(crtc, flip_state->event);
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

	drm_crtc_vblank_put(crtc);
	drm_framebuffer_put(flip_state->fb);

	/* Decrement the BO usecnt in order to keep the inc/dec calls balanced
	 * when the planes are updated through the async update path.
	 * FIXME: we should move to generic async-page-flip when it's
	 * available, so that we can get rid of this hand-made cleanup_fb()
	 * logic.
	 */
	if (flip_state->old_fb) {
		struct drm_gem_cma_object *cma_bo;
		struct vc4_bo *bo;

		cma_bo = drm_fb_cma_get_gem_obj(flip_state->old_fb, 0);
		bo = to_vc4_bo(&cma_bo->base);
		vc4_bo_dec_usecnt(bo);
		drm_framebuffer_put(flip_state->old_fb);
	}

	kfree(flip_state);

	up(&vc4->async_modeset);
}

/* Implements async (non-vblank-synced) page flips.
 *
 * The page flip ioctl needs to return immediately, so we grab the
 * modeset semaphore on the pipe, and queue the address update for
 * when V3D is done with the BO being flipped to.
 */
static int vc4_async_page_flip(struct drm_crtc *crtc,
			       struct drm_framebuffer *fb,
			       struct drm_pending_vblank_event *event,
			       uint32_t flags)
{
	struct drm_device *dev = crtc->dev;
	struct vc4_dev *vc4 = to_vc4_dev(dev);
	struct drm_plane *plane = crtc->primary;
	int ret = 0;
	struct vc4_async_flip_state *flip_state;
	struct drm_gem_cma_object *cma_bo = drm_fb_cma_get_gem_obj(fb, 0);
	struct vc4_bo *bo = to_vc4_bo(&cma_bo->base);

	/* Increment the BO usecnt here, so that we never end up with an
	 * unbalanced number of vc4_bo_{dec,inc}_usecnt() calls when the
	 * plane is later updated through the non-async path.
	 * FIXME: we should move to generic async-page-flip when it's
	 * available, so that we can get rid of this hand-made prepare_fb()
	 * logic.
	 */
	ret = vc4_bo_inc_usecnt(bo);
	if (ret)
		return ret;

	flip_state = kzalloc(sizeof(*flip_state), GFP_KERNEL);
	if (!flip_state) {
		vc4_bo_dec_usecnt(bo);
		return -ENOMEM;
	}

	drm_framebuffer_get(fb);
	flip_state->fb = fb;
	flip_state->crtc = crtc;
	flip_state->event = event;

	/* Make sure all other async modesetes have landed. */
	ret = down_interruptible(&vc4->async_modeset);
	if (ret) {
		drm_framebuffer_put(fb);
		vc4_bo_dec_usecnt(bo);
		kfree(flip_state);
		return ret;
	}

	/* Save the current FB before it's replaced by the new one in
	 * drm_atomic_set_fb_for_plane(). We'll need the old FB in
	 * vc4_async_page_flip_complete() to decrement the BO usecnt and keep
	 * it consistent.
	 * FIXME: we should move to generic async-page-flip when it's
	 * available, so that we can get rid of this hand-made cleanup_fb()
	 * logic.
	 */
	flip_state->old_fb = plane->state->fb;
	if (flip_state->old_fb)
		drm_framebuffer_get(flip_state->old_fb);

	WARN_ON(drm_crtc_vblank_get(crtc) != 0);

	/* Immediately update the plane's legacy fb pointer, so that later
	 * modeset prep sees the state that will be present when the semaphore
	 * is released.
	 */
	drm_atomic_set_fb_for_plane(plane->state, fb);

	vc4_queue_seqno_cb(dev, &flip_state->cb, bo->seqno,
			   vc4_async_page_flip_complete);

	/* Driver takes ownership of state on successful async commit. */
	return 0;
}

static int vc4_page_flip(struct drm_crtc *crtc,
			 struct drm_framebuffer *fb,
			 struct drm_pending_vblank_event *event,
			 uint32_t flags,
			 struct drm_modeset_acquire_ctx *ctx)
{
	if (flags & DRM_MODE_PAGE_FLIP_ASYNC)
		return vc4_async_page_flip(crtc, fb, event, flags);
	else
		return drm_atomic_helper_page_flip(crtc, fb, event, flags, ctx);
}

static struct drm_crtc_state *vc4_crtc_duplicate_state(struct drm_crtc *crtc)
{
	struct vc4_crtc_state *vc4_state;

	vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL);
	if (!vc4_state)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &vc4_state->base);
	return &vc4_state->base;
}

static void vc4_crtc_destroy_state(struct drm_crtc *crtc,
				   struct drm_crtc_state *state)
{
	struct vc4_dev *vc4 = to_vc4_dev(crtc->dev);
	struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(state);

	if (vc4_state->mm.allocated) {
		unsigned long flags;

		spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
		drm_mm_remove_node(&vc4_state->mm);
		spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);

	}

	drm_atomic_helper_crtc_destroy_state(crtc, state);
}

static void
vc4_crtc_reset(struct drm_crtc *crtc)
{
	if (crtc->state)
		__drm_atomic_helper_crtc_destroy_state(crtc->state);

	crtc->state = kzalloc(sizeof(struct vc4_crtc_state), GFP_KERNEL);
	if (crtc->state)
		crtc->state->crtc = crtc;
}

static const struct drm_crtc_funcs vc4_crtc_funcs = {
	.set_config = drm_atomic_helper_set_config,
	.destroy = vc4_crtc_destroy,
	.page_flip = vc4_page_flip,
	.set_property = NULL,
	.cursor_set = NULL, /* handled by drm_mode_cursor_universal */
	.cursor_move = NULL, /* handled by drm_mode_cursor_universal */
	.reset = vc4_crtc_reset,
	.atomic_duplicate_state = vc4_crtc_duplicate_state,
	.atomic_destroy_state = vc4_crtc_destroy_state,
	.gamma_set = drm_atomic_helper_legacy_gamma_set,
	.enable_vblank = vc4_enable_vblank,
	.disable_vblank = vc4_disable_vblank,
};

static const struct drm_crtc_helper_funcs vc4_crtc_helper_funcs = {
	.mode_set_nofb = vc4_crtc_mode_set_nofb,
	.mode_valid = vc4_crtc_mode_valid,
	.atomic_check = vc4_crtc_atomic_check,
	.atomic_flush = vc4_crtc_atomic_flush,
	.atomic_enable = vc4_crtc_atomic_enable,
	.atomic_disable = vc4_crtc_atomic_disable,
};

static const struct vc4_crtc_data pv0_data = {
	.hvs_channel = 0,
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI0,
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_DPI,
	},
};

static const struct vc4_crtc_data pv1_data = {
	.hvs_channel = 2,
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DSI] = VC4_ENCODER_TYPE_DSI1,
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_SMI,
	},
};

static const struct vc4_crtc_data pv2_data = {
	.hvs_channel = 1,
	.encoder_types = {
		[PV_CONTROL_CLK_SELECT_DPI_SMI_HDMI] = VC4_ENCODER_TYPE_HDMI,
		[PV_CONTROL_CLK_SELECT_VEC] = VC4_ENCODER_TYPE_VEC,
	},
};

static const struct of_device_id vc4_crtc_dt_match[] = {
	{ .compatible = "brcm,bcm2835-pixelvalve0", .data = &pv0_data },
	{ .compatible = "brcm,bcm2835-pixelvalve1", .data = &pv1_data },
	{ .compatible = "brcm,bcm2835-pixelvalve2", .data = &pv2_data },
	{}
};

static void vc4_set_crtc_possible_masks(struct drm_device *drm,
					struct drm_crtc *crtc)
{
	struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
	const struct vc4_crtc_data *crtc_data = vc4_crtc->data;
	const enum vc4_encoder_type *encoder_types = crtc_data->encoder_types;
	struct drm_encoder *encoder;

	drm_for_each_encoder(encoder, drm) {
		struct vc4_encoder *vc4_encoder = to_vc4_encoder(encoder);
		int i;

		for (i = 0; i < ARRAY_SIZE(crtc_data->encoder_types); i++) {
			if (vc4_encoder->type == encoder_types[i]) {
				vc4_encoder->clock_select = i;
				encoder->possible_crtcs |= drm_crtc_mask(crtc);
				break;
			}
		}
	}
}

static void
vc4_crtc_get_cob_allocation(struct vc4_crtc *vc4_crtc)
{
	struct drm_device *drm = vc4_crtc->base.dev;
	struct vc4_dev *vc4 = to_vc4_dev(drm);
	u32 dispbase = HVS_READ(SCALER_DISPBASEX(vc4_crtc->channel));
	/* Top/base are supposed to be 4-pixel aligned, but the
	 * Raspberry Pi firmware fills the low bits (which are
	 * presumably ignored).
	 */
	u32 top = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_TOP) & ~3;
	u32 base = VC4_GET_FIELD(dispbase, SCALER_DISPBASEX_BASE) & ~3;

	vc4_crtc->cob_size = top - base + 4;
}

static int vc4_crtc_bind(struct device *dev, struct device *master, void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct drm_device *drm = dev_get_drvdata(master);
	struct vc4_crtc *vc4_crtc;
	struct drm_crtc *crtc;
	struct drm_plane *primary_plane, *cursor_plane, *destroy_plane, *temp;
	const struct of_device_id *match;
	int ret, i;

	vc4_crtc = devm_kzalloc(dev, sizeof(*vc4_crtc), GFP_KERNEL);
	if (!vc4_crtc)
		return -ENOMEM;
	crtc = &vc4_crtc->base;

	match = of_match_device(vc4_crtc_dt_match, dev);
	if (!match)
		return -ENODEV;
	vc4_crtc->data = match->data;

	vc4_crtc->regs = vc4_ioremap_regs(pdev, 0);
	if (IS_ERR(vc4_crtc->regs))
		return PTR_ERR(vc4_crtc->regs);

	/* For now, we create just the primary and the legacy cursor
	 * planes.  We should be able to stack more planes on easily,
	 * but to do that we would need to compute the bandwidth
	 * requirement of the plane configuration, and reject ones
	 * that will take too much.
	 */
	primary_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_PRIMARY);
	if (IS_ERR(primary_plane)) {
		dev_err(dev, "failed to construct primary plane\n");
		ret = PTR_ERR(primary_plane);
		goto err;
	}

	drm_crtc_init_with_planes(drm, crtc, primary_plane, NULL,
				  &vc4_crtc_funcs, NULL);
	drm_crtc_helper_add(crtc, &vc4_crtc_helper_funcs);
	vc4_crtc->channel = vc4_crtc->data->hvs_channel;
	drm_mode_crtc_set_gamma_size(crtc, ARRAY_SIZE(vc4_crtc->lut_r));
	drm_crtc_enable_color_mgmt(crtc, 0, false, crtc->gamma_size);

	/* We support CTM, but only for one CRTC at a time. It's therefore
	 * implemented as private driver state in vc4_kms, not here.
	 */
	drm_crtc_enable_color_mgmt(crtc, 0, true, crtc->gamma_size);

	/* Set up some arbitrary number of planes.  We're not limited
	 * by a set number of physical registers, just the space in
	 * the HVS (16k) and how small an plane can be (28 bytes).
	 * However, each plane we set up takes up some memory, and
	 * increases the cost of looping over planes, which atomic
	 * modesetting does quite a bit.  As a result, we pick a
	 * modest number of planes to expose, that should hopefully
	 * still cover any sane usecase.
	 */
	for (i = 0; i < 8; i++) {
		struct drm_plane *plane =
			vc4_plane_init(drm, DRM_PLANE_TYPE_OVERLAY);

		if (IS_ERR(plane))
			continue;

		plane->possible_crtcs = 1 << drm_crtc_index(crtc);
	}

	/* Set up the legacy cursor after overlay initialization,
	 * since we overlay planes on the CRTC in the order they were
	 * initialized.
	 */
	cursor_plane = vc4_plane_init(drm, DRM_PLANE_TYPE_CURSOR);
	if (!IS_ERR(cursor_plane)) {
		cursor_plane->possible_crtcs = 1 << drm_crtc_index(crtc);
		crtc->cursor = cursor_plane;
	}

	vc4_crtc_get_cob_allocation(vc4_crtc);

	CRTC_WRITE(PV_INTEN, 0);
	CRTC_WRITE(PV_INTSTAT, PV_INT_VFP_START);
	ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
			       vc4_crtc_irq_handler, 0, "vc4 crtc", vc4_crtc);
	if (ret)
		goto err_destroy_planes;

	vc4_set_crtc_possible_masks(drm, crtc);

	for (i = 0; i < crtc->gamma_size; i++) {
		vc4_crtc->lut_r[i] = i;
		vc4_crtc->lut_g[i] = i;
		vc4_crtc->lut_b[i] = i;
	}

	platform_set_drvdata(pdev, vc4_crtc);

	return 0;

err_destroy_planes:
	list_for_each_entry_safe(destroy_plane, temp,
				 &drm->mode_config.plane_list, head) {
		if (destroy_plane->possible_crtcs == 1 << drm_crtc_index(crtc))
		    destroy_plane->funcs->destroy(destroy_plane);
	}
err:
	return ret;
}

static void vc4_crtc_unbind(struct device *dev, struct device *master,
			    void *data)
{
	struct platform_device *pdev = to_platform_device(dev);
	struct vc4_crtc *vc4_crtc = dev_get_drvdata(dev);

	vc4_crtc_destroy(&vc4_crtc->base);

	CRTC_WRITE(PV_INTEN, 0);

	platform_set_drvdata(pdev, NULL);
}

static const struct component_ops vc4_crtc_ops = {
	.bind   = vc4_crtc_bind,
	.unbind = vc4_crtc_unbind,
};

static int vc4_crtc_dev_probe(struct platform_device *pdev)
{
	return component_add(&pdev->dev, &vc4_crtc_ops);
}

static int vc4_crtc_dev_remove(struct platform_device *pdev)
{
	component_del(&pdev->dev, &vc4_crtc_ops);
	return 0;
}

struct platform_driver vc4_crtc_driver = {
	.probe = vc4_crtc_dev_probe,
	.remove = vc4_crtc_dev_remove,
	.driver = {
		.name = "vc4_crtc",
		.of_match_table = vc4_crtc_dt_match,
	},
};