1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
|
/*
* Copyright 2003 NVIDIA, Corporation
* Copyright 2006 Dave Airlie
* Copyright 2007 Maarten Maathuis
* Copyright 2007-2009 Stuart Bennett
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include <drm/drm_crtc_helper.h>
#include <drm/drm_fourcc.h>
#include "nouveau_drv.h"
#include "nouveau_reg.h"
#include "nouveau_encoder.h"
#include "nouveau_connector.h"
#include "nouveau_crtc.h"
#include "hw.h"
#include "nvreg.h"
#include <drm/i2c/sil164.h>
#include <subdev/i2c.h>
#define FP_TG_CONTROL_ON (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | \
NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS | \
NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS)
#define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE | \
NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE | \
NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE)
static inline bool is_fpc_off(uint32_t fpc)
{
return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) ==
FP_TG_CONTROL_OFF);
}
int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_output *dcbent)
{
/* special case of nv_read_tmds to find crtc associated with an output.
* this does not give a correct answer for off-chip dvi, but there's no
* use for such an answer anyway
*/
int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL,
NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4);
return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac;
}
void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_output *dcbent,
int head, bool dl)
{
/* The BIOS scripts don't do this for us, sadly
* Luckily we do know the values ;-)
*
* head < 0 indicates we wish to force a setting with the overrideval
* (for VT restore etc.)
*/
int ramdac = (dcbent->or & DCB_OUTPUT_C) >> 2;
uint8_t tmds04 = 0x80;
if (head != ramdac)
tmds04 = 0x88;
if (dcbent->type == DCB_OUTPUT_LVDS)
tmds04 |= 0x01;
nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04);
if (dl) /* dual link */
nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08);
}
void nv04_dfp_disable(struct drm_device *dev, int head)
{
struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) &
FP_TG_CONTROL_ON) {
/* digital remnants must be cleaned before new crtc
* values programmed. delay is time for the vga stuff
* to realise it's in control again
*/
NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL,
FP_TG_CONTROL_OFF);
msleep(50);
}
/* don't inadvertently turn it on when state written later */
crtcstate[head].fp_control = FP_TG_CONTROL_OFF;
crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX] &=
~NV_CIO_CRE_LCD_ROUTE_MASK;
}
void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode)
{
struct drm_device *dev = encoder->dev;
struct drm_crtc *crtc;
struct nouveau_crtc *nv_crtc;
uint32_t *fpc;
if (mode == DRM_MODE_DPMS_ON) {
nv_crtc = nouveau_crtc(encoder->crtc);
fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
if (is_fpc_off(*fpc)) {
/* using saved value is ok, as (is_digital && dpms_on &&
* fp_control==OFF) is (at present) *only* true when
* fpc's most recent change was by below "off" code
*/
*fpc = nv_crtc->dpms_saved_fp_control;
}
nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index;
NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc);
} else {
list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
nv_crtc = nouveau_crtc(crtc);
fpc = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index].fp_control;
nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index);
if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) {
nv_crtc->dpms_saved_fp_control = *fpc;
/* cut the FP output */
*fpc &= ~FP_TG_CONTROL_ON;
*fpc |= FP_TG_CONTROL_OFF;
NVWriteRAMDAC(dev, nv_crtc->index,
NV_PRAMDAC_FP_TG_CONTROL, *fpc);
}
}
}
}
static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
struct drm_encoder *slave;
if (dcb->type != DCB_OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP)
return NULL;
/* Some BIOSes (e.g. the one in a Quadro FX1000) report several
* TMDS transmitters at the same I2C address, in the same I2C
* bus. This can still work because in that case one of them is
* always hard-wired to a reasonable configuration using straps,
* and the other one needs to be programmed.
*
* I don't think there's a way to know which is which, even the
* blob programs the one exposed via I2C for *both* heads, so
* let's do the same.
*/
list_for_each_entry(slave, &dev->mode_config.encoder_list, head) {
struct dcb_output *slave_dcb = nouveau_encoder(slave)->dcb;
if (slave_dcb->type == DCB_OUTPUT_TMDS && get_slave_funcs(slave) &&
slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr)
return slave;
}
return NULL;
}
static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct nouveau_connector *nv_connector =
nv04_encoder_get_connector(nv_encoder);
if (!nv_connector->native_mode ||
nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
mode->hdisplay > nv_connector->native_mode->hdisplay ||
mode->vdisplay > nv_connector->native_mode->vdisplay) {
nv_encoder->mode = *adjusted_mode;
} else {
nv_encoder->mode = *nv_connector->native_mode;
adjusted_mode->clock = nv_connector->native_mode->clock;
}
return true;
}
static void nv04_dfp_prepare_sel_clk(struct drm_device *dev,
struct nouveau_encoder *nv_encoder, int head)
{
struct nv04_mode_state *state = &nv04_display(dev)->mode_reg;
uint32_t bits1618 = nv_encoder->dcb->or & DCB_OUTPUT_A ? 0x10000 : 0x40000;
if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP)
return;
/* SEL_CLK is only used on the primary ramdac
* It toggles spread spectrum PLL output and sets the bindings of PLLs
* to heads on digital outputs
*/
if (head)
state->sel_clk |= bits1618;
else
state->sel_clk &= ~bits1618;
/* nv30:
* bit 0 NVClk spread spectrum on/off
* bit 2 MemClk spread spectrum on/off
* bit 4 PixClk1 spread spectrum on/off toggle
* bit 6 PixClk2 spread spectrum on/off toggle
*
* nv40 (observations from bios behaviour and mmio traces):
* bits 4&6 as for nv30
* bits 5&7 head dependent as for bits 4&6, but do not appear with 4&6;
* maybe a different spread mode
* bits 8&10 seen on dual-link dvi outputs, purpose unknown (set by POST scripts)
* The logic behind turning spread spectrum on/off in the first place,
* and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table
* entry has the necessary info)
*/
if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS && nv04_display(dev)->saved_reg.sel_clk & 0xf0) {
int shift = (nv04_display(dev)->saved_reg.sel_clk & 0x50) ? 0 : 1;
state->sel_clk &= ~0xf0;
state->sel_clk |= (head ? 0x40 : 0x10) << shift;
}
}
static void nv04_dfp_prepare(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
struct drm_device *dev = encoder->dev;
int head = nouveau_crtc(encoder->crtc)->index;
struct nv04_crtc_reg *crtcstate = nv04_display(dev)->mode_reg.crtc_reg;
uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX];
uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX];
helper->dpms(encoder, DRM_MODE_DPMS_OFF);
nv04_dfp_prepare_sel_clk(dev, nv_encoder, head);
*cr_lcd = (*cr_lcd & ~NV_CIO_CRE_LCD_ROUTE_MASK) | 0x3;
if (nv_two_heads(dev)) {
if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP)
*cr_lcd |= head ? 0x0 : 0x8;
else {
*cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30;
if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS)
*cr_lcd |= 0x30;
if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) {
/* avoid being connected to both crtcs */
*cr_lcd_oth &= ~0x30;
NVWriteVgaCrtc(dev, head ^ 1,
NV_CIO_CRE_LCD__INDEX,
*cr_lcd_oth);
}
}
}
}
static void nv04_dfp_mode_set(struct drm_encoder *encoder,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = encoder->dev;
struct nvif_object *device = &nouveau_drm(dev)->client.device.object;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nv04_crtc_reg *regp = &nv04_display(dev)->mode_reg.crtc_reg[nv_crtc->index];
struct nv04_crtc_reg *savep = &nv04_display(dev)->saved_reg.crtc_reg[nv_crtc->index];
struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_display_mode *output_mode = &nv_encoder->mode;
struct drm_connector *connector = &nv_connector->base;
const struct drm_framebuffer *fb = encoder->crtc->primary->fb;
uint32_t mode_ratio, panel_ratio;
NV_DEBUG(drm, "Output mode on CRTC %d:\n", nv_crtc->index);
drm_mode_debug_printmodeline(output_mode);
/* Initialize the FP registers in this CRTC. */
regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1;
regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1;
if (!nv_gf4_disp_arch(dev) ||
(output_mode->hsync_start - output_mode->hdisplay) >=
drm->vbios.digital_min_front_porch)
regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay;
else
regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - drm->vbios.digital_min_front_porch - 1;
regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1;
regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1;
regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew;
regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1;
regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1;
regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1;
regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1;
regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1;
regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1;
regp->fp_vert_regs[FP_VALID_START] = 0;
regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1;
/* bit26: a bit seen on some g7x, no as yet discernable purpose */
regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS |
(savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG));
/* Deal with vsync/hsync polarity */
/* LVDS screens do set this, but modes with +ve syncs are very rare */
if (output_mode->flags & DRM_MODE_FLAG_PVSYNC)
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS;
if (output_mode->flags & DRM_MODE_FLAG_PHSYNC)
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS;
/* panel scaling first, as native would get set otherwise */
if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE ||
nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER) /* panel handles it */
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER;
else if (adjusted_mode->hdisplay == output_mode->hdisplay &&
adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE;
else /* gpu needs to scale */
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE;
if (nvif_rd32(device, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT)
regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12;
if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP &&
output_mode->clock > 165000)
regp->fp_control |= (2 << 24);
if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
bool duallink = false, dummy;
if (nv_connector->edid &&
nv_connector->type == DCB_CONNECTOR_LVDS_SPWG) {
duallink = (((u8 *)nv_connector->edid)[121] == 2);
} else {
nouveau_bios_parse_lvds_table(dev, output_mode->clock,
&duallink, &dummy);
}
if (duallink)
regp->fp_control |= (8 << 28);
} else
if (output_mode->clock > 165000)
regp->fp_control |= (8 << 28);
regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND |
NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND |
NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR |
NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR |
NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED |
NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE |
NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE;
/* We want automatic scaling */
regp->fp_debug_1 = 0;
/* This can override HTOTAL and VTOTAL */
regp->fp_debug_2 = 0;
/* Use 20.12 fixed point format to avoid floats */
mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay;
panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay;
/* if ratios are equal, SCALE_ASPECT will automatically (and correctly)
* get treated the same as SCALE_FULLSCREEN */
if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT &&
mode_ratio != panel_ratio) {
uint32_t diff, scale;
bool divide_by_2 = nv_gf4_disp_arch(dev);
if (mode_ratio < panel_ratio) {
/* vertical needs to expand to glass size (automatic)
* horizontal needs to be scaled at vertical scale factor
* to maintain aspect */
scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay;
regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE |
XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE);
/* restrict area of screen used, horizontally */
diff = output_mode->hdisplay -
output_mode->vdisplay * mode_ratio / (1 << 12);
regp->fp_horiz_regs[FP_VALID_START] += diff / 2;
regp->fp_horiz_regs[FP_VALID_END] -= diff / 2;
}
if (mode_ratio > panel_ratio) {
/* horizontal needs to expand to glass size (automatic)
* vertical needs to be scaled at horizontal scale factor
* to maintain aspect */
scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay;
regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE |
XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE);
/* restrict area of screen used, vertically */
diff = output_mode->vdisplay -
(1 << 12) * output_mode->hdisplay / mode_ratio;
regp->fp_vert_regs[FP_VALID_START] += diff / 2;
regp->fp_vert_regs[FP_VALID_END] -= diff / 2;
}
}
/* Output property. */
if ((nv_connector->dithering_mode == DITHERING_MODE_ON) ||
(nv_connector->dithering_mode == DITHERING_MODE_AUTO &&
fb->format->depth > connector->display_info.bpc * 3)) {
if (drm->client.device.info.chipset == 0x11)
regp->dither = savep->dither | 0x00010000;
else {
int i;
regp->dither = savep->dither | 0x00000001;
for (i = 0; i < 3; i++) {
regp->dither_regs[i] = 0xe4e4e4e4;
regp->dither_regs[i + 3] = 0x44444444;
}
}
} else {
if (drm->client.device.info.chipset != 0x11) {
/* reset them */
int i;
for (i = 0; i < 3; i++) {
regp->dither_regs[i] = savep->dither_regs[i];
regp->dither_regs[i + 3] = savep->dither_regs[i + 3];
}
}
regp->dither = savep->dither;
}
regp->fp_margin_color = 0;
}
static void nv04_dfp_commit(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct nouveau_drm *drm = nouveau_drm(dev);
const struct drm_encoder_helper_funcs *helper = encoder->helper_private;
struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct dcb_output *dcbe = nv_encoder->dcb;
int head = nouveau_crtc(encoder->crtc)->index;
struct drm_encoder *slave_encoder;
if (dcbe->type == DCB_OUTPUT_TMDS)
run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock);
else if (dcbe->type == DCB_OUTPUT_LVDS)
call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock);
/* update fp_control state for any changes made by scripts,
* so correct value is written at DPMS on */
nv04_display(dev)->mode_reg.crtc_reg[head].fp_control =
NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL);
/* This could use refinement for flatpanels, but it should work this way */
if (drm->client.device.info.chipset < 0x44)
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000);
else
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000);
/* Init external transmitters */
slave_encoder = get_tmds_slave(encoder);
if (slave_encoder)
get_slave_funcs(slave_encoder)->mode_set(
slave_encoder, &nv_encoder->mode, &nv_encoder->mode);
helper->dpms(encoder, DRM_MODE_DPMS_ON);
NV_DEBUG(drm, "Output %s is running on CRTC %d using output %c\n",
nv04_encoder_get_connector(nv_encoder)->base.name,
nv_crtc->index, '@' + ffs(nv_encoder->dcb->or));
}
static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode)
{
#ifdef __powerpc__
struct drm_device *dev = encoder->dev;
struct nvif_object *device = &nouveau_drm(dev)->client.device.object;
/* BIOS scripts usually take care of the backlight, thanks
* Apple for your consistency.
*/
if (dev->pdev->device == 0x0174 || dev->pdev->device == 0x0179 ||
dev->pdev->device == 0x0189 || dev->pdev->device == 0x0329) {
if (mode == DRM_MODE_DPMS_ON) {
nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 1 << 31);
nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 1);
} else {
nvif_mask(device, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0);
nvif_mask(device, NV_PCRTC_GPIO_EXT, 3, 0);
}
}
#endif
}
static inline bool is_powersaving_dpms(int mode)
{
return mode != DRM_MODE_DPMS_ON && mode != NV_DPMS_CLEARED;
}
static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode)
{
struct drm_device *dev = encoder->dev;
struct drm_crtc *crtc = encoder->crtc;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms);
if (nv_encoder->last_dpms == mode)
return;
nv_encoder->last_dpms = mode;
NV_DEBUG(drm, "Setting dpms mode %d on lvds encoder (output %d)\n",
mode, nv_encoder->dcb->index);
if (was_powersaving && is_powersaving_dpms(mode))
return;
if (nv_encoder->dcb->lvdsconf.use_power_scripts) {
/* when removing an output, crtc may not be set, but PANEL_OFF
* must still be run
*/
int head = crtc ? nouveau_crtc(crtc)->index :
nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
if (mode == DRM_MODE_DPMS_ON) {
call_lvds_script(dev, nv_encoder->dcb, head,
LVDS_PANEL_ON, nv_encoder->mode.clock);
} else
/* pxclk of 0 is fine for PANEL_OFF, and for a
* disconnected LVDS encoder there is no native_mode
*/
call_lvds_script(dev, nv_encoder->dcb, head,
LVDS_PANEL_OFF, 0);
}
nv04_dfp_update_backlight(encoder, mode);
nv04_dfp_update_fp_control(encoder, mode);
if (mode == DRM_MODE_DPMS_ON)
nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index);
else {
nv04_display(dev)->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK);
nv04_display(dev)->mode_reg.sel_clk &= ~0xf0;
}
NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, nv04_display(dev)->mode_reg.sel_clk);
}
static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode)
{
struct nouveau_drm *drm = nouveau_drm(encoder->dev);
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
if (nv_encoder->last_dpms == mode)
return;
nv_encoder->last_dpms = mode;
NV_DEBUG(drm, "Setting dpms mode %d on tmds encoder (output %d)\n",
mode, nv_encoder->dcb->index);
nv04_dfp_update_backlight(encoder, mode);
nv04_dfp_update_fp_control(encoder, mode);
}
static void nv04_dfp_save(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
if (nv_two_heads(dev))
nv_encoder->restore.head =
nv04_dfp_get_bound_head(dev, nv_encoder->dcb);
}
static void nv04_dfp_restore(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
struct drm_device *dev = encoder->dev;
int head = nv_encoder->restore.head;
if (nv_encoder->dcb->type == DCB_OUTPUT_LVDS) {
struct nouveau_connector *connector =
nv04_encoder_get_connector(nv_encoder);
if (connector && connector->native_mode)
call_lvds_script(dev, nv_encoder->dcb, head,
LVDS_PANEL_ON,
connector->native_mode->clock);
} else if (nv_encoder->dcb->type == DCB_OUTPUT_TMDS) {
int clock = nouveau_hw_pllvals_to_clk
(&nv04_display(dev)->saved_reg.crtc_reg[head].pllvals);
run_tmds_table(dev, nv_encoder->dcb, head, clock);
}
nv_encoder->last_dpms = NV_DPMS_CLEARED;
}
static void nv04_dfp_destroy(struct drm_encoder *encoder)
{
struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder);
if (get_slave_funcs(encoder))
get_slave_funcs(encoder)->destroy(encoder);
drm_encoder_cleanup(encoder);
kfree(nv_encoder);
}
static void nv04_tmds_slave_init(struct drm_encoder *encoder)
{
struct drm_device *dev = encoder->dev;
struct dcb_output *dcb = nouveau_encoder(encoder)->dcb;
struct nouveau_drm *drm = nouveau_drm(dev);
struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device);
struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, NVKM_I2C_BUS_PRI);
struct nvkm_i2c_bus_probe info[] = {
{
{
.type = "sil164",
.addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38),
.platform_data = &(struct sil164_encoder_params) {
SIL164_INPUT_EDGE_RISING
}
}, 0
},
{ }
};
int type;
if (!nv_gf4_disp_arch(dev) || !bus || get_tmds_slave(encoder))
return;
type = nvkm_i2c_bus_probe(bus, "TMDS transmitter", info, NULL, NULL);
if (type < 0)
return;
drm_i2c_encoder_init(dev, to_encoder_slave(encoder),
&bus->i2c, &info[type].dev);
}
static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = {
.dpms = nv04_lvds_dpms,
.mode_fixup = nv04_dfp_mode_fixup,
.prepare = nv04_dfp_prepare,
.commit = nv04_dfp_commit,
.mode_set = nv04_dfp_mode_set,
.detect = NULL,
};
static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = {
.dpms = nv04_tmds_dpms,
.mode_fixup = nv04_dfp_mode_fixup,
.prepare = nv04_dfp_prepare,
.commit = nv04_dfp_commit,
.mode_set = nv04_dfp_mode_set,
.detect = NULL,
};
static const struct drm_encoder_funcs nv04_dfp_funcs = {
.destroy = nv04_dfp_destroy,
};
int
nv04_dfp_create(struct drm_connector *connector, struct dcb_output *entry)
{
const struct drm_encoder_helper_funcs *helper;
struct nouveau_encoder *nv_encoder = NULL;
struct drm_encoder *encoder;
int type;
switch (entry->type) {
case DCB_OUTPUT_TMDS:
type = DRM_MODE_ENCODER_TMDS;
helper = &nv04_tmds_helper_funcs;
break;
case DCB_OUTPUT_LVDS:
type = DRM_MODE_ENCODER_LVDS;
helper = &nv04_lvds_helper_funcs;
break;
default:
return -EINVAL;
}
nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL);
if (!nv_encoder)
return -ENOMEM;
nv_encoder->enc_save = nv04_dfp_save;
nv_encoder->enc_restore = nv04_dfp_restore;
encoder = to_drm_encoder(nv_encoder);
nv_encoder->dcb = entry;
nv_encoder->or = ffs(entry->or) - 1;
drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type, NULL);
drm_encoder_helper_add(encoder, helper);
encoder->possible_crtcs = entry->heads;
encoder->possible_clones = 0;
if (entry->type == DCB_OUTPUT_TMDS &&
entry->location != DCB_LOC_ON_CHIP)
nv04_tmds_slave_init(encoder);
drm_connector_attach_encoder(connector, encoder);
return 0;
}
|