1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2015, The Linux Foundation. All rights reserved.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include "dsi_phy.h"
#include "dsi.xml.h"
#include "dsi_phy_28nm.xml.h"
/*
* DSI PLL 28nm - clock diagram (eg: DSI0):
*
* dsi0analog_postdiv_clk
* | dsi0indirect_path_div2_clk
* | |
* +------+ | +----+ | |\ dsi0byte_mux
* dsi0vco_clk --o--| DIV1 |--o--| /2 |--o--| \ |
* | +------+ +----+ | m| | +----+
* | | u|--o--| /4 |-- dsi0pllbyte
* | | x| +----+
* o--------------------------| /
* | |/
* | +------+
* o----------| DIV3 |------------------------- dsi0pll
* +------+
*/
#define POLL_MAX_READS 10
#define POLL_TIMEOUT_US 50
#define VCO_REF_CLK_RATE 19200000
#define VCO_MIN_RATE 350000000
#define VCO_MAX_RATE 750000000
/* v2.0.0 28nm LP implementation */
#define DSI_PHY_28NM_QUIRK_PHY_LP BIT(0)
#define LPFR_LUT_SIZE 10
struct lpfr_cfg {
unsigned long vco_rate;
u32 resistance;
};
/* Loop filter resistance: */
static const struct lpfr_cfg lpfr_lut[LPFR_LUT_SIZE] = {
{ 479500000, 8 },
{ 480000000, 11 },
{ 575500000, 8 },
{ 576000000, 12 },
{ 610500000, 8 },
{ 659500000, 9 },
{ 671500000, 10 },
{ 672000000, 14 },
{ 708500000, 10 },
{ 750000000, 11 },
};
struct pll_28nm_cached_state {
unsigned long vco_rate;
u8 postdiv3;
u8 postdiv1;
u8 byte_mux;
};
struct dsi_pll_28nm {
struct clk_hw clk_hw;
struct msm_dsi_phy *phy;
struct pll_28nm_cached_state cached_state;
};
#define to_pll_28nm(x) container_of(x, struct dsi_pll_28nm, clk_hw)
static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
u32 nb_tries, u32 timeout_us)
{
bool pll_locked = false;
u32 val;
while (nb_tries--) {
val = dsi_phy_read(pll_28nm->phy->pll_base + REG_DSI_28nm_PHY_PLL_STATUS);
pll_locked = !!(val & DSI_28nm_PHY_PLL_STATUS_PLL_RDY);
if (pll_locked)
break;
udelay(timeout_us);
}
DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");
return pll_locked;
}
static void pll_28nm_software_reset(struct dsi_pll_28nm *pll_28nm)
{
void __iomem *base = pll_28nm->phy->pll_base;
/*
* Add HW recommended delays after toggling the software
* reset bit off and back on.
*/
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG,
DSI_28nm_PHY_PLL_TEST_CFG_PLL_SW_RESET, 1);
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_TEST_CFG, 0x00, 1);
}
/*
* Clock Callbacks
*/
static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
struct device *dev = &pll_28nm->phy->pdev->dev;
void __iomem *base = pll_28nm->phy->pll_base;
unsigned long div_fbx1000, gen_vco_clk;
u32 refclk_cfg, frac_n_mode, frac_n_value;
u32 sdm_cfg0, sdm_cfg1, sdm_cfg2, sdm_cfg3;
u32 cal_cfg10, cal_cfg11;
u32 rem;
int i;
VERB("rate=%lu, parent's=%lu", rate, parent_rate);
/* Force postdiv2 to be div-4 */
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV2_CFG, 3);
/* Configure the Loop filter resistance */
for (i = 0; i < LPFR_LUT_SIZE; i++)
if (rate <= lpfr_lut[i].vco_rate)
break;
if (i == LPFR_LUT_SIZE) {
DRM_DEV_ERROR(dev, "unable to get loop filter resistance. vco=%lu\n",
rate);
return -EINVAL;
}
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LPFR_CFG, lpfr_lut[i].resistance);
/* Loop filter capacitance values : c1 and c2 */
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LPFC1_CFG, 0x70);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LPFC2_CFG, 0x15);
rem = rate % VCO_REF_CLK_RATE;
if (rem) {
refclk_cfg = DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR;
frac_n_mode = 1;
div_fbx1000 = rate / (VCO_REF_CLK_RATE / 500);
gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 500);
} else {
refclk_cfg = 0x0;
frac_n_mode = 0;
div_fbx1000 = rate / (VCO_REF_CLK_RATE / 1000);
gen_vco_clk = div_fbx1000 * (VCO_REF_CLK_RATE / 1000);
}
DBG("refclk_cfg = %d", refclk_cfg);
rem = div_fbx1000 % 1000;
frac_n_value = (rem << 16) / 1000;
DBG("div_fb = %lu", div_fbx1000);
DBG("frac_n_value = %d", frac_n_value);
DBG("Generated VCO Clock: %lu", gen_vco_clk);
rem = 0;
sdm_cfg1 = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1);
sdm_cfg1 &= ~DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET__MASK;
if (frac_n_mode) {
sdm_cfg0 = 0x0;
sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(0);
sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(
(u32)(((div_fbx1000 / 1000) & 0x3f) - 1));
sdm_cfg3 = frac_n_value >> 8;
sdm_cfg2 = frac_n_value & 0xff;
} else {
sdm_cfg0 = DSI_28nm_PHY_PLL_SDM_CFG0_BYP;
sdm_cfg0 |= DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV(
(u32)(((div_fbx1000 / 1000) & 0x3f) - 1));
sdm_cfg1 |= DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET(0);
sdm_cfg2 = 0;
sdm_cfg3 = 0;
}
DBG("sdm_cfg0=%d", sdm_cfg0);
DBG("sdm_cfg1=%d", sdm_cfg1);
DBG("sdm_cfg2=%d", sdm_cfg2);
DBG("sdm_cfg3=%d", sdm_cfg3);
cal_cfg11 = (u32)(gen_vco_clk / (256 * 1000000));
cal_cfg10 = (u32)((gen_vco_clk % (256 * 1000000)) / 1000000);
DBG("cal_cfg10=%d, cal_cfg11=%d", cal_cfg10, cal_cfg11);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CHGPUMP_CFG, 0x02);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG3, 0x2b);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG4, 0x06);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1, sdm_cfg1);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2,
DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0(sdm_cfg2));
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3,
DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8(sdm_cfg3));
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG4, 0x00);
/* Add hardware recommended delay for correct PLL configuration */
if (pll_28nm->phy->cfg->quirks & DSI_PHY_28NM_QUIRK_PHY_LP)
udelay(1000);
else
udelay(1);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG, refclk_cfg);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_PWRGEN_CFG, 0x00);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_VCOLPF_CFG, 0x31);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0, sdm_cfg0);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG0, 0x12);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG6, 0x30);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG7, 0x00);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG8, 0x60);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG9, 0x00);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG10, cal_cfg10 & 0xff);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_CAL_CFG11, cal_cfg11 & 0xff);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_EFUSE_CFG, 0x20);
return 0;
}
static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
POLL_TIMEOUT_US);
}
static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
void __iomem *base = pll_28nm->phy->pll_base;
u32 sdm0, doubler, sdm_byp_div;
u32 sdm_dc_off, sdm_freq_seed, sdm2, sdm3;
u32 ref_clk = VCO_REF_CLK_RATE;
unsigned long vco_rate;
VERB("parent_rate=%lu", parent_rate);
/* Check to see if the ref clk doubler is enabled */
doubler = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_REFCLK_CFG) &
DSI_28nm_PHY_PLL_REFCLK_CFG_DBLR;
ref_clk += (doubler * VCO_REF_CLK_RATE);
/* see if it is integer mode or sdm mode */
sdm0 = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0);
if (sdm0 & DSI_28nm_PHY_PLL_SDM_CFG0_BYP) {
/* integer mode */
sdm_byp_div = FIELD(
dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG0),
DSI_28nm_PHY_PLL_SDM_CFG0_BYP_DIV) + 1;
vco_rate = ref_clk * sdm_byp_div;
} else {
/* sdm mode */
sdm_dc_off = FIELD(
dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG1),
DSI_28nm_PHY_PLL_SDM_CFG1_DC_OFFSET);
DBG("sdm_dc_off = %d", sdm_dc_off);
sdm2 = FIELD(dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG2),
DSI_28nm_PHY_PLL_SDM_CFG2_FREQ_SEED_7_0);
sdm3 = FIELD(dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_SDM_CFG3),
DSI_28nm_PHY_PLL_SDM_CFG3_FREQ_SEED_15_8);
sdm_freq_seed = (sdm3 << 8) | sdm2;
DBG("sdm_freq_seed = %d", sdm_freq_seed);
vco_rate = (ref_clk * (sdm_dc_off + 1)) +
mult_frac(ref_clk, sdm_freq_seed, BIT(16));
DBG("vco rate = %lu", vco_rate);
}
DBG("returning vco rate = %lu", vco_rate);
return vco_rate;
}
static int _dsi_pll_28nm_vco_prepare_hpm(struct dsi_pll_28nm *pll_28nm)
{
struct device *dev = &pll_28nm->phy->pdev->dev;
void __iomem *base = pll_28nm->phy->pll_base;
u32 max_reads = 5, timeout_us = 100;
bool locked;
u32 val;
int i;
DBG("id=%d", pll_28nm->phy->id);
pll_28nm_software_reset(pll_28nm);
/*
* PLL power up sequence.
* Add necessary delays recommended by hardware.
*/
val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600);
for (i = 0; i < 2; i++) {
/* DSI Uniphy lock detect setting */
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2,
0x0c, 100);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x0d);
/* poll for PLL ready status */
locked = pll_28nm_poll_for_ready(pll_28nm,
max_reads, timeout_us);
if (locked)
break;
pll_28nm_software_reset(pll_28nm);
/*
* PLL power up sequence.
* Add necessary delays recommended by hardware.
*/
val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 1);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 250);
val &= ~DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 200);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 600);
}
if (unlikely(!locked))
DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
else
DBG("DSI PLL Lock success");
return locked ? 0 : -EINVAL;
}
static int dsi_pll_28nm_vco_prepare_hpm(struct clk_hw *hw)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
int i, ret;
if (unlikely(pll_28nm->phy->pll_on))
return 0;
for (i = 0; i < 3; i++) {
ret = _dsi_pll_28nm_vco_prepare_hpm(pll_28nm);
if (!ret) {
pll_28nm->phy->pll_on = true;
return 0;
}
}
return ret;
}
static int dsi_pll_28nm_vco_prepare_lp(struct clk_hw *hw)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
struct device *dev = &pll_28nm->phy->pdev->dev;
void __iomem *base = pll_28nm->phy->pll_base;
bool locked;
u32 max_reads = 10, timeout_us = 50;
u32 val;
DBG("id=%d", pll_28nm->phy->id);
if (unlikely(pll_28nm->phy->pll_on))
return 0;
pll_28nm_software_reset(pll_28nm);
/*
* PLL power up sequence.
* Add necessary delays recommended by hardware.
*/
dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_CAL_CFG1, 0x34, 500);
val = DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRDN_B;
dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_PWRGEN_PWRDN_B;
dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
val |= DSI_28nm_PHY_PLL_GLB_CFG_PLL_LDO_PWRDN_B |
DSI_28nm_PHY_PLL_GLB_CFG_PLL_ENABLE;
dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_GLB_CFG, val, 500);
/* DSI PLL toggle lock detect setting */
dsi_phy_write_ndelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x04, 500);
dsi_phy_write_udelay(base + REG_DSI_28nm_PHY_PLL_LKDET_CFG2, 0x05, 512);
locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);
if (unlikely(!locked)) {
DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
return -EINVAL;
}
DBG("DSI PLL lock success");
pll_28nm->phy->pll_on = true;
return 0;
}
static void dsi_pll_28nm_vco_unprepare(struct clk_hw *hw)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
DBG("id=%d", pll_28nm->phy->id);
if (unlikely(!pll_28nm->phy->pll_on))
return;
dsi_phy_write(pll_28nm->phy->pll_base + REG_DSI_28nm_PHY_PLL_GLB_CFG, 0x00);
pll_28nm->phy->pll_on = false;
}
static long dsi_pll_28nm_clk_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *parent_rate)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(hw);
if (rate < pll_28nm->phy->cfg->min_pll_rate)
return pll_28nm->phy->cfg->min_pll_rate;
else if (rate > pll_28nm->phy->cfg->max_pll_rate)
return pll_28nm->phy->cfg->max_pll_rate;
else
return rate;
}
static const struct clk_ops clk_ops_dsi_pll_28nm_vco_hpm = {
.round_rate = dsi_pll_28nm_clk_round_rate,
.set_rate = dsi_pll_28nm_clk_set_rate,
.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
.prepare = dsi_pll_28nm_vco_prepare_hpm,
.unprepare = dsi_pll_28nm_vco_unprepare,
.is_enabled = dsi_pll_28nm_clk_is_enabled,
};
static const struct clk_ops clk_ops_dsi_pll_28nm_vco_lp = {
.round_rate = dsi_pll_28nm_clk_round_rate,
.set_rate = dsi_pll_28nm_clk_set_rate,
.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
.prepare = dsi_pll_28nm_vco_prepare_lp,
.unprepare = dsi_pll_28nm_vco_unprepare,
.is_enabled = dsi_pll_28nm_clk_is_enabled,
};
/*
* PLL Callbacks
*/
static void dsi_28nm_pll_save_state(struct msm_dsi_phy *phy)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw);
struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
void __iomem *base = pll_28nm->phy->pll_base;
cached_state->postdiv3 =
dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG);
cached_state->postdiv1 =
dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG);
cached_state->byte_mux = dsi_phy_read(base + REG_DSI_28nm_PHY_PLL_VREG_CFG);
if (dsi_pll_28nm_clk_is_enabled(phy->vco_hw))
cached_state->vco_rate = clk_hw_get_rate(phy->vco_hw);
else
cached_state->vco_rate = 0;
}
static int dsi_28nm_pll_restore_state(struct msm_dsi_phy *phy)
{
struct dsi_pll_28nm *pll_28nm = to_pll_28nm(phy->vco_hw);
struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
void __iomem *base = pll_28nm->phy->pll_base;
int ret;
ret = dsi_pll_28nm_clk_set_rate(phy->vco_hw,
cached_state->vco_rate, 0);
if (ret) {
DRM_DEV_ERROR(&pll_28nm->phy->pdev->dev,
"restore vco rate failed. ret=%d\n", ret);
return ret;
}
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG,
cached_state->postdiv3);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG,
cached_state->postdiv1);
dsi_phy_write(base + REG_DSI_28nm_PHY_PLL_VREG_CFG,
cached_state->byte_mux);
return 0;
}
static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm, struct clk_hw **provided_clocks)
{
char clk_name[32], parent1[32], parent2[32], vco_name[32];
struct clk_init_data vco_init = {
.parent_names = (const char *[]){ "xo" },
.num_parents = 1,
.name = vco_name,
.flags = CLK_IGNORE_UNUSED,
};
struct device *dev = &pll_28nm->phy->pdev->dev;
struct clk_hw *hw;
int ret;
DBG("%d", pll_28nm->phy->id);
if (pll_28nm->phy->cfg->quirks & DSI_PHY_28NM_QUIRK_PHY_LP)
vco_init.ops = &clk_ops_dsi_pll_28nm_vco_lp;
else
vco_init.ops = &clk_ops_dsi_pll_28nm_vco_hpm;
snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->phy->id);
pll_28nm->clk_hw.init = &vco_init;
ret = devm_clk_hw_register(dev, &pll_28nm->clk_hw);
if (ret)
return ret;
snprintf(clk_name, 32, "dsi%danalog_postdiv_clk", pll_28nm->phy->id);
snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->phy->id);
hw = devm_clk_hw_register_divider(dev, clk_name,
parent1, CLK_SET_RATE_PARENT,
pll_28nm->phy->pll_base +
REG_DSI_28nm_PHY_PLL_POSTDIV1_CFG,
0, 4, 0, NULL);
if (IS_ERR(hw))
return PTR_ERR(hw);
snprintf(clk_name, 32, "dsi%dindirect_path_div2_clk", pll_28nm->phy->id);
snprintf(parent1, 32, "dsi%danalog_postdiv_clk", pll_28nm->phy->id);
hw = devm_clk_hw_register_fixed_factor(dev, clk_name,
parent1, CLK_SET_RATE_PARENT,
1, 2);
if (IS_ERR(hw))
return PTR_ERR(hw);
snprintf(clk_name, 32, "dsi%dpll", pll_28nm->phy->id);
snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->phy->id);
hw = devm_clk_hw_register_divider(dev, clk_name,
parent1, 0, pll_28nm->phy->pll_base +
REG_DSI_28nm_PHY_PLL_POSTDIV3_CFG,
0, 8, 0, NULL);
if (IS_ERR(hw))
return PTR_ERR(hw);
provided_clocks[DSI_PIXEL_PLL_CLK] = hw;
snprintf(clk_name, 32, "dsi%dbyte_mux", pll_28nm->phy->id);
snprintf(parent1, 32, "dsi%dvco_clk", pll_28nm->phy->id);
snprintf(parent2, 32, "dsi%dindirect_path_div2_clk", pll_28nm->phy->id);
hw = devm_clk_hw_register_mux(dev, clk_name,
((const char *[]){
parent1, parent2
}), 2, CLK_SET_RATE_PARENT, pll_28nm->phy->pll_base +
REG_DSI_28nm_PHY_PLL_VREG_CFG, 1, 1, 0, NULL);
if (IS_ERR(hw))
return PTR_ERR(hw);
snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->phy->id);
snprintf(parent1, 32, "dsi%dbyte_mux", pll_28nm->phy->id);
hw = devm_clk_hw_register_fixed_factor(dev, clk_name,
parent1, CLK_SET_RATE_PARENT, 1, 4);
if (IS_ERR(hw))
return PTR_ERR(hw);
provided_clocks[DSI_BYTE_PLL_CLK] = hw;
return 0;
}
static int dsi_pll_28nm_init(struct msm_dsi_phy *phy)
{
struct platform_device *pdev = phy->pdev;
struct dsi_pll_28nm *pll_28nm;
int ret;
if (!pdev)
return -ENODEV;
pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
if (!pll_28nm)
return -ENOMEM;
pll_28nm->phy = phy;
ret = pll_28nm_register(pll_28nm, phy->provided_clocks->hws);
if (ret) {
DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
return ret;
}
phy->vco_hw = &pll_28nm->clk_hw;
return 0;
}
static void dsi_28nm_dphy_set_timing(struct msm_dsi_phy *phy,
struct msm_dsi_dphy_timing *timing)
{
void __iomem *base = phy->base;
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_0,
DSI_28nm_PHY_TIMING_CTRL_0_CLK_ZERO(timing->clk_zero));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_1,
DSI_28nm_PHY_TIMING_CTRL_1_CLK_TRAIL(timing->clk_trail));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_2,
DSI_28nm_PHY_TIMING_CTRL_2_CLK_PREPARE(timing->clk_prepare));
if (timing->clk_zero & BIT(8))
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_3,
DSI_28nm_PHY_TIMING_CTRL_3_CLK_ZERO_8);
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_4,
DSI_28nm_PHY_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_5,
DSI_28nm_PHY_TIMING_CTRL_5_HS_ZERO(timing->hs_zero));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_6,
DSI_28nm_PHY_TIMING_CTRL_6_HS_PREPARE(timing->hs_prepare));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_7,
DSI_28nm_PHY_TIMING_CTRL_7_HS_TRAIL(timing->hs_trail));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_8,
DSI_28nm_PHY_TIMING_CTRL_8_HS_RQST(timing->hs_rqst));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_9,
DSI_28nm_PHY_TIMING_CTRL_9_TA_GO(timing->ta_go) |
DSI_28nm_PHY_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_10,
DSI_28nm_PHY_TIMING_CTRL_10_TA_GET(timing->ta_get));
dsi_phy_write(base + REG_DSI_28nm_PHY_TIMING_CTRL_11,
DSI_28nm_PHY_TIMING_CTRL_11_TRIG3_CMD(0));
}
static void dsi_28nm_phy_regulator_enable_dcdc(struct msm_dsi_phy *phy)
{
void __iomem *base = phy->reg_base;
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 1);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_5, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_3, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_2, 0x3);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_1, 0x9);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x7);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_4, 0x20);
dsi_phy_write(phy->base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x00);
}
static void dsi_28nm_phy_regulator_enable_ldo(struct msm_dsi_phy *phy)
{
void __iomem *base = phy->reg_base;
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_0, 0x0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_5, 0x7);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_3, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_2, 0x1);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_1, 0x1);
dsi_phy_write(base + REG_DSI_28nm_PHY_REGULATOR_CTRL_4, 0x20);
if (phy->cfg->quirks & DSI_PHY_28NM_QUIRK_PHY_LP)
dsi_phy_write(phy->base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x05);
else
dsi_phy_write(phy->base + REG_DSI_28nm_PHY_LDO_CNTRL, 0x0d);
}
static void dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy *phy, bool enable)
{
if (!enable) {
dsi_phy_write(phy->reg_base +
REG_DSI_28nm_PHY_REGULATOR_CAL_PWR_CFG, 0);
return;
}
if (phy->regulator_ldo_mode)
dsi_28nm_phy_regulator_enable_ldo(phy);
else
dsi_28nm_phy_regulator_enable_dcdc(phy);
}
static int dsi_28nm_phy_enable(struct msm_dsi_phy *phy,
struct msm_dsi_phy_clk_request *clk_req)
{
struct msm_dsi_dphy_timing *timing = &phy->timing;
int i;
void __iomem *base = phy->base;
u32 val;
DBG("");
if (msm_dsi_dphy_timing_calc(timing, clk_req)) {
DRM_DEV_ERROR(&phy->pdev->dev,
"%s: D-PHY timing calculation failed\n", __func__);
return -EINVAL;
}
dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_0, 0xff);
dsi_28nm_phy_regulator_ctrl(phy, true);
dsi_28nm_dphy_set_timing(phy, timing);
dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_1, 0x00);
dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f);
dsi_phy_write(base + REG_DSI_28nm_PHY_STRENGTH_1, 0x6);
for (i = 0; i < 4; i++) {
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_0(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_1(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_2(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_3(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_CFG_4(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_DATAPATH(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_DEBUG_SEL(i), 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_0(i), 0x1);
dsi_phy_write(base + REG_DSI_28nm_PHY_LN_TEST_STR_1(i), 0x97);
}
dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_CFG_4, 0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_CFG_1, 0xc0);
dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR0, 0x1);
dsi_phy_write(base + REG_DSI_28nm_PHY_LNCK_TEST_STR1, 0xbb);
dsi_phy_write(base + REG_DSI_28nm_PHY_CTRL_0, 0x5f);
val = dsi_phy_read(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL);
if (phy->id == DSI_1 && phy->usecase == MSM_DSI_PHY_SLAVE)
val &= ~DSI_28nm_PHY_GLBL_TEST_CTRL_BITCLK_HS_SEL;
else
val |= DSI_28nm_PHY_GLBL_TEST_CTRL_BITCLK_HS_SEL;
dsi_phy_write(base + REG_DSI_28nm_PHY_GLBL_TEST_CTRL, val);
return 0;
}
static void dsi_28nm_phy_disable(struct msm_dsi_phy *phy)
{
dsi_phy_write(phy->base + REG_DSI_28nm_PHY_CTRL_0, 0);
dsi_28nm_phy_regulator_ctrl(phy, false);
/*
* Wait for the registers writes to complete in order to
* ensure that the phy is completely disabled
*/
wmb();
}
const struct msm_dsi_phy_cfg dsi_phy_28nm_hpm_cfgs = {
.has_phy_regulator = true,
.reg_cfg = {
.num = 1,
.regs = {
{"vddio", 100000, 100},
},
},
.ops = {
.enable = dsi_28nm_phy_enable,
.disable = dsi_28nm_phy_disable,
.pll_init = dsi_pll_28nm_init,
.save_pll_state = dsi_28nm_pll_save_state,
.restore_pll_state = dsi_28nm_pll_restore_state,
},
.min_pll_rate = VCO_MIN_RATE,
.max_pll_rate = VCO_MAX_RATE,
.io_start = { 0xfd922b00, 0xfd923100 },
.num_dsi_phy = 2,
};
const struct msm_dsi_phy_cfg dsi_phy_28nm_hpm_famb_cfgs = {
.has_phy_regulator = true,
.reg_cfg = {
.num = 1,
.regs = {
{"vddio", 100000, 100},
},
},
.ops = {
.enable = dsi_28nm_phy_enable,
.disable = dsi_28nm_phy_disable,
.pll_init = dsi_pll_28nm_init,
.save_pll_state = dsi_28nm_pll_save_state,
.restore_pll_state = dsi_28nm_pll_restore_state,
},
.min_pll_rate = VCO_MIN_RATE,
.max_pll_rate = VCO_MAX_RATE,
.io_start = { 0x1a94400, 0x1a96400 },
.num_dsi_phy = 2,
};
const struct msm_dsi_phy_cfg dsi_phy_28nm_lp_cfgs = {
.has_phy_regulator = true,
.reg_cfg = {
.num = 1,
.regs = {
{"vddio", 100000, 100}, /* 1.8 V */
},
},
.ops = {
.enable = dsi_28nm_phy_enable,
.disable = dsi_28nm_phy_disable,
.pll_init = dsi_pll_28nm_init,
.save_pll_state = dsi_28nm_pll_save_state,
.restore_pll_state = dsi_28nm_pll_restore_state,
},
.min_pll_rate = VCO_MIN_RATE,
.max_pll_rate = VCO_MAX_RATE,
.io_start = { 0x1a98500 },
.num_dsi_phy = 1,
.quirks = DSI_PHY_28NM_QUIRK_PHY_LP,
};
|