summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/intel_ringbuffer.h
blob: ef22c994038bb6d3db4e31226ced916a11b97baa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
#ifndef _INTEL_RINGBUFFER_H_
#define _INTEL_RINGBUFFER_H_

#include <linux/hashtable.h>
#include "i915_gem_batch_pool.h"
#include "i915_gem_request.h"
#include "i915_gem_timeline.h"
#include "i915_selftest.h"

struct drm_printer;

#define I915_CMD_HASH_ORDER 9

/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
 * to give some inclination as to some of the magic values used in the various
 * workarounds!
 */
#define CACHELINE_BYTES 64
#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))

struct intel_hw_status_page {
	struct i915_vma *vma;
	u32 *page_addr;
	u32 ggtt_offset;
};

#define I915_READ_TAIL(engine) I915_READ(RING_TAIL((engine)->mmio_base))
#define I915_WRITE_TAIL(engine, val) I915_WRITE(RING_TAIL((engine)->mmio_base), val)

#define I915_READ_START(engine) I915_READ(RING_START((engine)->mmio_base))
#define I915_WRITE_START(engine, val) I915_WRITE(RING_START((engine)->mmio_base), val)

#define I915_READ_HEAD(engine)  I915_READ(RING_HEAD((engine)->mmio_base))
#define I915_WRITE_HEAD(engine, val) I915_WRITE(RING_HEAD((engine)->mmio_base), val)

#define I915_READ_CTL(engine) I915_READ(RING_CTL((engine)->mmio_base))
#define I915_WRITE_CTL(engine, val) I915_WRITE(RING_CTL((engine)->mmio_base), val)

#define I915_READ_IMR(engine) I915_READ(RING_IMR((engine)->mmio_base))
#define I915_WRITE_IMR(engine, val) I915_WRITE(RING_IMR((engine)->mmio_base), val)

#define I915_READ_MODE(engine) I915_READ(RING_MI_MODE((engine)->mmio_base))
#define I915_WRITE_MODE(engine, val) I915_WRITE(RING_MI_MODE((engine)->mmio_base), val)

/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
 */
#define gen8_semaphore_seqno_size sizeof(uint64_t)
#define GEN8_SEMAPHORE_OFFSET(__from, __to)			     \
	(((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
#define GEN8_SIGNAL_OFFSET(__ring, to)			     \
	(dev_priv->semaphore->node.start + \
	 GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
#define GEN8_WAIT_OFFSET(__ring, from)			     \
	(dev_priv->semaphore->node.start + \
	 GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))

enum intel_engine_hangcheck_action {
	ENGINE_IDLE = 0,
	ENGINE_WAIT,
	ENGINE_ACTIVE_SEQNO,
	ENGINE_ACTIVE_HEAD,
	ENGINE_ACTIVE_SUBUNITS,
	ENGINE_WAIT_KICK,
	ENGINE_DEAD,
};

static inline const char *
hangcheck_action_to_str(const enum intel_engine_hangcheck_action a)
{
	switch (a) {
	case ENGINE_IDLE:
		return "idle";
	case ENGINE_WAIT:
		return "wait";
	case ENGINE_ACTIVE_SEQNO:
		return "active seqno";
	case ENGINE_ACTIVE_HEAD:
		return "active head";
	case ENGINE_ACTIVE_SUBUNITS:
		return "active subunits";
	case ENGINE_WAIT_KICK:
		return "wait kick";
	case ENGINE_DEAD:
		return "dead";
	}

	return "unknown";
}

#define I915_MAX_SLICES	3
#define I915_MAX_SUBSLICES 3

#define instdone_slice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.slice_mask)

#define instdone_subslice_mask(dev_priv__) \
	(INTEL_GEN(dev_priv__) == 7 ? \
	 1 : INTEL_INFO(dev_priv__)->sseu.subslice_mask)

#define for_each_instdone_slice_subslice(dev_priv__, slice__, subslice__) \
	for ((slice__) = 0, (subslice__) = 0; \
	     (slice__) < I915_MAX_SLICES; \
	     (subslice__) = ((subslice__) + 1) < I915_MAX_SUBSLICES ? (subslice__) + 1 : 0, \
	       (slice__) += ((subslice__) == 0)) \
		for_each_if((BIT(slice__) & instdone_slice_mask(dev_priv__)) && \
			    (BIT(subslice__) & instdone_subslice_mask(dev_priv__)))

struct intel_instdone {
	u32 instdone;
	/* The following exist only in the RCS engine */
	u32 slice_common;
	u32 sampler[I915_MAX_SLICES][I915_MAX_SUBSLICES];
	u32 row[I915_MAX_SLICES][I915_MAX_SUBSLICES];
};

struct intel_engine_hangcheck {
	u64 acthd;
	u32 seqno;
	enum intel_engine_hangcheck_action action;
	unsigned long action_timestamp;
	int deadlock;
	struct intel_instdone instdone;
	struct drm_i915_gem_request *active_request;
	bool stalled;
};

struct intel_ring {
	struct i915_vma *vma;
	void *vaddr;

	struct list_head request_list;

	u32 head;
	u32 tail;
	u32 emit;

	u32 space;
	u32 size;
	u32 effective_size;
};

struct i915_gem_context;
struct drm_i915_reg_table;

/*
 * we use a single page to load ctx workarounds so all of these
 * values are referred in terms of dwords
 *
 * struct i915_wa_ctx_bb:
 *  offset: specifies batch starting position, also helpful in case
 *    if we want to have multiple batches at different offsets based on
 *    some criteria. It is not a requirement at the moment but provides
 *    an option for future use.
 *  size: size of the batch in DWORDS
 */
struct i915_ctx_workarounds {
	struct i915_wa_ctx_bb {
		u32 offset;
		u32 size;
	} indirect_ctx, per_ctx;
	struct i915_vma *vma;
};

struct drm_i915_gem_request;

/*
 * Engine IDs definitions.
 * Keep instances of the same type engine together.
 */
enum intel_engine_id {
	RCS = 0,
	BCS,
	VCS,
	VCS2,
#define _VCS(n) (VCS + (n))
	VECS
};

struct i915_priolist {
	struct rb_node node;
	struct list_head requests;
	int priority;
};

/**
 * struct intel_engine_execlists - execlist submission queue and port state
 *
 * The struct intel_engine_execlists represents the combined logical state of
 * driver and the hardware state for execlist mode of submission.
 */
struct intel_engine_execlists {
	/**
	 * @irq_tasklet: softirq tasklet for bottom handler
	 */
	struct tasklet_struct irq_tasklet;

	/**
	 * @default_priolist: priority list for I915_PRIORITY_NORMAL
	 */
	struct i915_priolist default_priolist;

	/**
	 * @no_priolist: priority lists disabled
	 */
	bool no_priolist;

	/**
	 * @port: execlist port states
	 *
	 * For each hardware ELSP (ExecList Submission Port) we keep
	 * track of the last request and the number of times we submitted
	 * that port to hw. We then count the number of times the hw reports
	 * a context completion or preemption. As only one context can
	 * be active on hw, we limit resubmission of context to port[0]. This
	 * is called Lite Restore, of the context.
	 */
	struct execlist_port {
		/**
		 * @request_count: combined request and submission count
		 */
		struct drm_i915_gem_request *request_count;
#define EXECLIST_COUNT_BITS 2
#define port_request(p) ptr_mask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_count(p) ptr_unmask_bits((p)->request_count, EXECLIST_COUNT_BITS)
#define port_pack(rq, count) ptr_pack_bits(rq, count, EXECLIST_COUNT_BITS)
#define port_unpack(p, count) ptr_unpack_bits((p)->request_count, count, EXECLIST_COUNT_BITS)
#define port_set(p, packed) ((p)->request_count = (packed))
#define port_isset(p) ((p)->request_count)
#define port_index(p, execlists) ((p) - (execlists)->port)

		/**
		 * @context_id: context ID for port
		 */
		GEM_DEBUG_DECL(u32 context_id);

#define EXECLIST_MAX_PORTS 2
	} port[EXECLIST_MAX_PORTS];

	/**
	 * @active: is the HW active? We consider the HW as active after
	 * submitting any context for execution and until we have seen the
	 * last context completion event. After that, we do not expect any
	 * more events until we submit, and so can park the HW.
	 *
	 * As we have a small number of different sources from which we feed
	 * the HW, we track the state of each inside a single bitfield.
	 */
	unsigned int active;
#define EXECLISTS_ACTIVE_USER 0
#define EXECLISTS_ACTIVE_PREEMPT 1

	/**
	 * @port_mask: number of execlist ports - 1
	 */
	unsigned int port_mask;

	/**
	 * @queue: queue of requests, in priority lists
	 */
	struct rb_root queue;

	/**
	 * @first: leftmost level in priority @queue
	 */
	struct rb_node *first;

	/**
	 * @fw_domains: forcewake domains for irq tasklet
	 */
	unsigned int fw_domains;

	/**
	 * @csb_head: context status buffer head
	 */
	unsigned int csb_head;

	/**
	 * @csb_use_mmio: access csb through mmio, instead of hwsp
	 */
	bool csb_use_mmio;
};

#define INTEL_ENGINE_CS_MAX_NAME 8

struct intel_engine_cs {
	struct drm_i915_private *i915;
	char name[INTEL_ENGINE_CS_MAX_NAME];

	enum intel_engine_id id;
	unsigned int hw_id;
	unsigned int guc_id;

	u8 uabi_id;
	u8 uabi_class;

	u8 class;
	u8 instance;
	u32 context_size;
	u32 mmio_base;
	unsigned int irq_shift;

	struct intel_ring *buffer;
	struct intel_timeline *timeline;

	struct drm_i915_gem_object *default_state;

	atomic_t irq_count;
	unsigned long irq_posted;
#define ENGINE_IRQ_BREADCRUMB 0
#define ENGINE_IRQ_EXECLIST 1

	/* Rather than have every client wait upon all user interrupts,
	 * with the herd waking after every interrupt and each doing the
	 * heavyweight seqno dance, we delegate the task (of being the
	 * bottom-half of the user interrupt) to the first client. After
	 * every interrupt, we wake up one client, who does the heavyweight
	 * coherent seqno read and either goes back to sleep (if incomplete),
	 * or wakes up all the completed clients in parallel, before then
	 * transferring the bottom-half status to the next client in the queue.
	 *
	 * Compared to walking the entire list of waiters in a single dedicated
	 * bottom-half, we reduce the latency of the first waiter by avoiding
	 * a context switch, but incur additional coherent seqno reads when
	 * following the chain of request breadcrumbs. Since it is most likely
	 * that we have a single client waiting on each seqno, then reducing
	 * the overhead of waking that client is much preferred.
	 */
	struct intel_breadcrumbs {
		spinlock_t irq_lock; /* protects irq_*; irqsafe */
		struct intel_wait *irq_wait; /* oldest waiter by retirement */

		spinlock_t rb_lock; /* protects the rb and wraps irq_lock */
		struct rb_root waiters; /* sorted by retirement, priority */
		struct rb_root signals; /* sorted by retirement */
		struct task_struct *signaler; /* used for fence signalling */
		struct drm_i915_gem_request __rcu *first_signal;
		struct timer_list fake_irq; /* used after a missed interrupt */
		struct timer_list hangcheck; /* detect missed interrupts */

		unsigned int hangcheck_interrupts;
		unsigned int irq_enabled;

		bool irq_armed : 1;
		I915_SELFTEST_DECLARE(bool mock : 1);
	} breadcrumbs;

	/*
	 * A pool of objects to use as shadow copies of client batch buffers
	 * when the command parser is enabled. Prevents the client from
	 * modifying the batch contents after software parsing.
	 */
	struct i915_gem_batch_pool batch_pool;

	struct intel_hw_status_page status_page;
	struct i915_ctx_workarounds wa_ctx;
	struct i915_vma *scratch;

	u32             irq_keep_mask; /* always keep these interrupts */
	u32		irq_enable_mask; /* bitmask to enable ring interrupt */
	void		(*irq_enable)(struct intel_engine_cs *engine);
	void		(*irq_disable)(struct intel_engine_cs *engine);

	int		(*init_hw)(struct intel_engine_cs *engine);
	void		(*reset_hw)(struct intel_engine_cs *engine,
				    struct drm_i915_gem_request *req);

	void		(*park)(struct intel_engine_cs *engine);
	void		(*unpark)(struct intel_engine_cs *engine);

	void		(*set_default_submission)(struct intel_engine_cs *engine);

	struct intel_ring *(*context_pin)(struct intel_engine_cs *engine,
					  struct i915_gem_context *ctx);
	void		(*context_unpin)(struct intel_engine_cs *engine,
					 struct i915_gem_context *ctx);
	int		(*request_alloc)(struct drm_i915_gem_request *req);
	int		(*init_context)(struct drm_i915_gem_request *req);

	int		(*emit_flush)(struct drm_i915_gem_request *request,
				      u32 mode);
#define EMIT_INVALIDATE	BIT(0)
#define EMIT_FLUSH	BIT(1)
#define EMIT_BARRIER	(EMIT_INVALIDATE | EMIT_FLUSH)
	int		(*emit_bb_start)(struct drm_i915_gem_request *req,
					 u64 offset, u32 length,
					 unsigned int dispatch_flags);
#define I915_DISPATCH_SECURE BIT(0)
#define I915_DISPATCH_PINNED BIT(1)
#define I915_DISPATCH_RS     BIT(2)
	void		(*emit_breadcrumb)(struct drm_i915_gem_request *req,
					   u32 *cs);
	int		emit_breadcrumb_sz;

	/* Pass the request to the hardware queue (e.g. directly into
	 * the legacy ringbuffer or to the end of an execlist).
	 *
	 * This is called from an atomic context with irqs disabled; must
	 * be irq safe.
	 */
	void		(*submit_request)(struct drm_i915_gem_request *req);

	/* Call when the priority on a request has changed and it and its
	 * dependencies may need rescheduling. Note the request itself may
	 * not be ready to run!
	 *
	 * Called under the struct_mutex.
	 */
	void		(*schedule)(struct drm_i915_gem_request *request,
				    int priority);

	/*
	 * Cancel all requests on the hardware, or queued for execution.
	 * This should only cancel the ready requests that have been
	 * submitted to the engine (via the engine->submit_request callback).
	 * This is called when marking the device as wedged.
	 */
	void		(*cancel_requests)(struct intel_engine_cs *engine);

	/* Some chipsets are not quite as coherent as advertised and need
	 * an expensive kick to force a true read of the up-to-date seqno.
	 * However, the up-to-date seqno is not always required and the last
	 * seen value is good enough. Note that the seqno will always be
	 * monotonic, even if not coherent.
	 */
	void		(*irq_seqno_barrier)(struct intel_engine_cs *engine);
	void		(*cleanup)(struct intel_engine_cs *engine);

	/* GEN8 signal/wait table - never trust comments!
	 *	  signal to	signal to    signal to   signal to      signal to
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
	 *  ie. transpose of g(x, y)
	 *
	 *	 sync from	sync from    sync from    sync from	sync from
	 *	    RCS		   VCS          BCS        VECS		 VCS2
	 *      --------------------------------------------------------------------
	 *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
	 *	|-------------------------------------------------------------------
	 *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
	 *	|-------------------------------------------------------------------
	 *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
	 *	|-------------------------------------------------------------------
	 * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
	 *	|-------------------------------------------------------------------
	 * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
	 *	|-------------------------------------------------------------------
	 *
	 * Generalization:
	 *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
	 *  ie. transpose of f(x, y)
	 */
	struct {
		union {
#define GEN6_SEMAPHORE_LAST	VECS_HW
#define GEN6_NUM_SEMAPHORES	(GEN6_SEMAPHORE_LAST + 1)
#define GEN6_SEMAPHORES_MASK	GENMASK(GEN6_SEMAPHORE_LAST, 0)
			struct {
				/* our mbox written by others */
				u32		wait[GEN6_NUM_SEMAPHORES];
				/* mboxes this ring signals to */
				i915_reg_t	signal[GEN6_NUM_SEMAPHORES];
			} mbox;
			u64		signal_ggtt[I915_NUM_ENGINES];
		};

		/* AKA wait() */
		int	(*sync_to)(struct drm_i915_gem_request *req,
				   struct drm_i915_gem_request *signal);
		u32	*(*signal)(struct drm_i915_gem_request *req, u32 *cs);
	} semaphore;

	struct intel_engine_execlists execlists;

	/* Contexts are pinned whilst they are active on the GPU. The last
	 * context executed remains active whilst the GPU is idle - the
	 * switch away and write to the context object only occurs on the
	 * next execution.  Contexts are only unpinned on retirement of the
	 * following request ensuring that we can always write to the object
	 * on the context switch even after idling. Across suspend, we switch
	 * to the kernel context and trash it as the save may not happen
	 * before the hardware is powered down.
	 */
	struct i915_gem_context *last_retired_context;

	/* We track the current MI_SET_CONTEXT in order to eliminate
	 * redudant context switches. This presumes that requests are not
	 * reordered! Or when they are the tracking is updated along with
	 * the emission of individual requests into the legacy command
	 * stream (ring).
	 */
	struct i915_gem_context *legacy_active_context;

	/* status_notifier: list of callbacks for context-switch changes */
	struct atomic_notifier_head context_status_notifier;

	struct intel_engine_hangcheck hangcheck;

	bool needs_cmd_parser;

	/*
	 * Table of commands the command parser needs to know about
	 * for this engine.
	 */
	DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);

	/*
	 * Table of registers allowed in commands that read/write registers.
	 */
	const struct drm_i915_reg_table *reg_tables;
	int reg_table_count;

	/*
	 * Returns the bitmask for the length field of the specified command.
	 * Return 0 for an unrecognized/invalid command.
	 *
	 * If the command parser finds an entry for a command in the engine's
	 * cmd_tables, it gets the command's length based on the table entry.
	 * If not, it calls this function to determine the per-engine length
	 * field encoding for the command (i.e. different opcode ranges use
	 * certain bits to encode the command length in the header).
	 */
	u32 (*get_cmd_length_mask)(u32 cmd_header);
};

static inline void
execlists_set_active(struct intel_engine_execlists *execlists,
		     unsigned int bit)
{
	__set_bit(bit, (unsigned long *)&execlists->active);
}

static inline void
execlists_clear_active(struct intel_engine_execlists *execlists,
		       unsigned int bit)
{
	__clear_bit(bit, (unsigned long *)&execlists->active);
}

static inline bool
execlists_is_active(const struct intel_engine_execlists *execlists,
		    unsigned int bit)
{
	return test_bit(bit, (unsigned long *)&execlists->active);
}

void
execlists_cancel_port_requests(struct intel_engine_execlists * const execlists);

void
execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists);

static inline unsigned int
execlists_num_ports(const struct intel_engine_execlists * const execlists)
{
	return execlists->port_mask + 1;
}

static inline void
execlists_port_complete(struct intel_engine_execlists * const execlists,
			struct execlist_port * const port)
{
	const unsigned int m = execlists->port_mask;

	GEM_BUG_ON(port_index(port, execlists) != 0);
	GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_USER));

	memmove(port, port + 1, m * sizeof(struct execlist_port));
	memset(port + m, 0, sizeof(struct execlist_port));
}

static inline unsigned int
intel_engine_flag(const struct intel_engine_cs *engine)
{
	return BIT(engine->id);
}

static inline u32
intel_read_status_page(struct intel_engine_cs *engine, int reg)
{
	/* Ensure that the compiler doesn't optimize away the load. */
	return READ_ONCE(engine->status_page.page_addr[reg]);
}

static inline void
intel_write_status_page(struct intel_engine_cs *engine, int reg, u32 value)
{
	/* Writing into the status page should be done sparingly. Since
	 * we do when we are uncertain of the device state, we take a bit
	 * of extra paranoia to try and ensure that the HWS takes the value
	 * we give and that it doesn't end up trapped inside the CPU!
	 */
	if (static_cpu_has(X86_FEATURE_CLFLUSH)) {
		mb();
		clflush(&engine->status_page.page_addr[reg]);
		engine->status_page.page_addr[reg] = value;
		clflush(&engine->status_page.page_addr[reg]);
		mb();
	} else {
		WRITE_ONCE(engine->status_page.page_addr[reg], value);
	}
}

/*
 * Reads a dword out of the status page, which is written to from the command
 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 * MI_STORE_DATA_IMM.
 *
 * The following dwords have a reserved meaning:
 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 * 0x04: ring 0 head pointer
 * 0x05: ring 1 head pointer (915-class)
 * 0x06: ring 2 head pointer (915-class)
 * 0x10-0x1b: Context status DWords (GM45)
 * 0x1f: Last written status offset. (GM45)
 * 0x20-0x2f: Reserved (Gen6+)
 *
 * The area from dword 0x30 to 0x3ff is available for driver usage.
 */
#define I915_GEM_HWS_INDEX		0x30
#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
#define I915_GEM_HWS_PREEMPT_INDEX	0x32
#define I915_GEM_HWS_PREEMPT_ADDR (I915_GEM_HWS_PREEMPT_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
#define I915_GEM_HWS_SCRATCH_INDEX	0x40
#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)

#define I915_HWS_CSB_BUF0_INDEX		0x10
#define I915_HWS_CSB_WRITE_INDEX	0x1f
#define CNL_HWS_CSB_WRITE_INDEX		0x2f

struct intel_ring *
intel_engine_create_ring(struct intel_engine_cs *engine, int size);
int intel_ring_pin(struct intel_ring *ring,
		   struct drm_i915_private *i915,
		   unsigned int offset_bias);
void intel_ring_reset(struct intel_ring *ring, u32 tail);
unsigned int intel_ring_update_space(struct intel_ring *ring);
void intel_ring_unpin(struct intel_ring *ring);
void intel_ring_free(struct intel_ring *ring);

void intel_engine_stop(struct intel_engine_cs *engine);
void intel_engine_cleanup(struct intel_engine_cs *engine);

void intel_legacy_submission_resume(struct drm_i915_private *dev_priv);

int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);

u32 __must_check *intel_ring_begin(struct drm_i915_gem_request *req,
				   unsigned int n);

static inline void
intel_ring_advance(struct drm_i915_gem_request *req, u32 *cs)
{
	/* Dummy function.
	 *
	 * This serves as a placeholder in the code so that the reader
	 * can compare against the preceding intel_ring_begin() and
	 * check that the number of dwords emitted matches the space
	 * reserved for the command packet (i.e. the value passed to
	 * intel_ring_begin()).
	 */
	GEM_BUG_ON((req->ring->vaddr + req->ring->emit) != cs);
}

static inline u32
intel_ring_wrap(const struct intel_ring *ring, u32 pos)
{
	return pos & (ring->size - 1);
}

static inline u32
intel_ring_offset(const struct drm_i915_gem_request *req, void *addr)
{
	/* Don't write ring->size (equivalent to 0) as that hangs some GPUs. */
	u32 offset = addr - req->ring->vaddr;
	GEM_BUG_ON(offset > req->ring->size);
	return intel_ring_wrap(req->ring, offset);
}

static inline void
assert_ring_tail_valid(const struct intel_ring *ring, unsigned int tail)
{
	/* We could combine these into a single tail operation, but keeping
	 * them as seperate tests will help identify the cause should one
	 * ever fire.
	 */
	GEM_BUG_ON(!IS_ALIGNED(tail, 8));
	GEM_BUG_ON(tail >= ring->size);

	/*
	 * "Ring Buffer Use"
	 *	Gen2 BSpec "1. Programming Environment" / 1.4.4.6
	 *	Gen3 BSpec "1c Memory Interface Functions" / 2.3.4.5
	 *	Gen4+ BSpec "1c Memory Interface and Command Stream" / 5.3.4.5
	 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the
	 * same cacheline, the Head Pointer must not be greater than the Tail
	 * Pointer."
	 *
	 * We use ring->head as the last known location of the actual RING_HEAD,
	 * it may have advanced but in the worst case it is equally the same
	 * as ring->head and so we should never program RING_TAIL to advance
	 * into the same cacheline as ring->head.
	 */
#define cacheline(a) round_down(a, CACHELINE_BYTES)
	GEM_BUG_ON(cacheline(tail) == cacheline(ring->head) &&
		   tail < ring->head);
#undef cacheline
}

static inline unsigned int
intel_ring_set_tail(struct intel_ring *ring, unsigned int tail)
{
	/* Whilst writes to the tail are strictly order, there is no
	 * serialisation between readers and the writers. The tail may be
	 * read by i915_gem_request_retire() just as it is being updated
	 * by execlists, as although the breadcrumb is complete, the context
	 * switch hasn't been seen.
	 */
	assert_ring_tail_valid(ring, tail);
	ring->tail = tail;
	return tail;
}

void intel_engine_init_global_seqno(struct intel_engine_cs *engine, u32 seqno);

void intel_engine_setup_common(struct intel_engine_cs *engine);
int intel_engine_init_common(struct intel_engine_cs *engine);
int intel_engine_create_scratch(struct intel_engine_cs *engine, int size);
void intel_engine_cleanup_common(struct intel_engine_cs *engine);

int intel_init_render_ring_buffer(struct intel_engine_cs *engine);
int intel_init_bsd_ring_buffer(struct intel_engine_cs *engine);
int intel_init_blt_ring_buffer(struct intel_engine_cs *engine);
int intel_init_vebox_ring_buffer(struct intel_engine_cs *engine);

u64 intel_engine_get_active_head(struct intel_engine_cs *engine);
u64 intel_engine_get_last_batch_head(struct intel_engine_cs *engine);

static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
{
	return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}

static inline u32 intel_engine_last_submit(struct intel_engine_cs *engine)
{
	/* We are only peeking at the tail of the submit queue (and not the
	 * queue itself) in order to gain a hint as to the current active
	 * state of the engine. Callers are not expected to be taking
	 * engine->timeline->lock, nor are they expected to be concerned
	 * wtih serialising this hint with anything, so document it as
	 * a hint and nothing more.
	 */
	return READ_ONCE(engine->timeline->seqno);
}

int init_workarounds_ring(struct intel_engine_cs *engine);
int intel_ring_workarounds_emit(struct drm_i915_gem_request *req);

void intel_engine_get_instdone(struct intel_engine_cs *engine,
			       struct intel_instdone *instdone);

/*
 * Arbitrary size for largest possible 'add request' sequence. The code paths
 * are complex and variable. Empirical measurement shows that the worst case
 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 * we need to allocate double the largest single packet within that emission
 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
 */
#define MIN_SPACE_FOR_ADD_REQUEST 336

static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
{
	return engine->status_page.ggtt_offset + I915_GEM_HWS_INDEX_ADDR;
}

static inline u32 intel_hws_preempt_done_address(struct intel_engine_cs *engine)
{
	return engine->status_page.ggtt_offset + I915_GEM_HWS_PREEMPT_ADDR;
}

/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);

static inline void intel_wait_init(struct intel_wait *wait,
				   struct drm_i915_gem_request *rq)
{
	wait->tsk = current;
	wait->request = rq;
}

static inline void intel_wait_init_for_seqno(struct intel_wait *wait, u32 seqno)
{
	wait->tsk = current;
	wait->seqno = seqno;
}

static inline bool intel_wait_has_seqno(const struct intel_wait *wait)
{
	return wait->seqno;
}

static inline bool
intel_wait_update_seqno(struct intel_wait *wait, u32 seqno)
{
	wait->seqno = seqno;
	return intel_wait_has_seqno(wait);
}

static inline bool
intel_wait_update_request(struct intel_wait *wait,
			  const struct drm_i915_gem_request *rq)
{
	return intel_wait_update_seqno(wait, i915_gem_request_global_seqno(rq));
}

static inline bool
intel_wait_check_seqno(const struct intel_wait *wait, u32 seqno)
{
	return wait->seqno == seqno;
}

static inline bool
intel_wait_check_request(const struct intel_wait *wait,
			 const struct drm_i915_gem_request *rq)
{
	return intel_wait_check_seqno(wait, i915_gem_request_global_seqno(rq));
}

static inline bool intel_wait_complete(const struct intel_wait *wait)
{
	return RB_EMPTY_NODE(&wait->node);
}

bool intel_engine_add_wait(struct intel_engine_cs *engine,
			   struct intel_wait *wait);
void intel_engine_remove_wait(struct intel_engine_cs *engine,
			      struct intel_wait *wait);
void intel_engine_enable_signaling(struct drm_i915_gem_request *request,
				   bool wakeup);
void intel_engine_cancel_signaling(struct drm_i915_gem_request *request);

static inline bool intel_engine_has_waiter(const struct intel_engine_cs *engine)
{
	return READ_ONCE(engine->breadcrumbs.irq_wait);
}

unsigned int intel_engine_wakeup(struct intel_engine_cs *engine);
#define ENGINE_WAKEUP_WAITER BIT(0)
#define ENGINE_WAKEUP_ASLEEP BIT(1)

void intel_engine_pin_breadcrumbs_irq(struct intel_engine_cs *engine);
void intel_engine_unpin_breadcrumbs_irq(struct intel_engine_cs *engine);

void __intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_disarm_breadcrumbs(struct intel_engine_cs *engine);

void intel_engine_reset_breadcrumbs(struct intel_engine_cs *engine);
void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
bool intel_breadcrumbs_busy(struct intel_engine_cs *engine);

static inline u32 *gen8_emit_pipe_control(u32 *batch, u32 flags, u32 offset)
{
	memset(batch, 0, 6 * sizeof(u32));

	batch[0] = GFX_OP_PIPE_CONTROL(6);
	batch[1] = flags;
	batch[2] = offset;

	return batch + 6;
}

static inline u32 *
gen8_emit_ggtt_write_rcs(u32 *cs, u32 value, u32 gtt_offset)
{
	/* We're using qword write, offset should be aligned to 8 bytes. */
	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));

	/* w/a for post sync ops following a GPGPU operation we
	 * need a prior CS_STALL, which is emitted by the flush
	 * following the batch.
	 */
	*cs++ = GFX_OP_PIPE_CONTROL(6);
	*cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
		PIPE_CONTROL_QW_WRITE;
	*cs++ = gtt_offset;
	*cs++ = 0;
	*cs++ = value;
	/* We're thrashing one dword of HWS. */
	*cs++ = 0;

	return cs;
}

static inline u32 *
gen8_emit_ggtt_write(u32 *cs, u32 value, u32 gtt_offset)
{
	/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
	GEM_BUG_ON(gtt_offset & (1 << 5));
	/* Offset should be aligned to 8 bytes for both (QW/DW) write types */
	GEM_BUG_ON(!IS_ALIGNED(gtt_offset, 8));

	*cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
	*cs++ = gtt_offset | MI_FLUSH_DW_USE_GTT;
	*cs++ = 0;
	*cs++ = value;

	return cs;
}

bool intel_engine_is_idle(struct intel_engine_cs *engine);
bool intel_engines_are_idle(struct drm_i915_private *dev_priv);

bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine);

void intel_engines_park(struct drm_i915_private *i915);
void intel_engines_unpark(struct drm_i915_private *i915);

void intel_engines_reset_default_submission(struct drm_i915_private *i915);
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915);

bool intel_engine_can_store_dword(struct intel_engine_cs *engine);

void intel_engine_dump(struct intel_engine_cs *engine, struct drm_printer *p);

#endif /* _INTEL_RINGBUFFER_H_ */