summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/i915/i915_gem_userptr.c
blob: 21ea92886a56e7f9fd2242020a4365623f9c0371 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
/*
 * Copyright © 2012-2014 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 */

#include "drmP.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "i915_trace.h"
#include "intel_drv.h"
#include <linux/mmu_context.h>
#include <linux/mmu_notifier.h>
#include <linux/mempolicy.h>
#include <linux/swap.h>

#if defined(CONFIG_MMU_NOTIFIER)
#include <linux/interval_tree.h>

struct i915_mmu_notifier {
	spinlock_t lock;
	struct hlist_node node;
	struct mmu_notifier mn;
	struct rb_root objects;
	struct drm_device *dev;
	struct mm_struct *mm;
	struct work_struct work;
	unsigned long count;
	unsigned long serial;
};

struct i915_mmu_object {
	struct i915_mmu_notifier *mmu;
	struct interval_tree_node it;
	struct drm_i915_gem_object *obj;
};

static void i915_gem_userptr_mn_invalidate_range_start(struct mmu_notifier *_mn,
						       struct mm_struct *mm,
						       unsigned long start,
						       unsigned long end)
{
	struct i915_mmu_notifier *mn = container_of(_mn, struct i915_mmu_notifier, mn);
	struct interval_tree_node *it = NULL;
	unsigned long serial = 0;

	end--; /* interval ranges are inclusive, but invalidate range is exclusive */
	while (start < end) {
		struct drm_i915_gem_object *obj;

		obj = NULL;
		spin_lock(&mn->lock);
		if (serial == mn->serial)
			it = interval_tree_iter_next(it, start, end);
		else
			it = interval_tree_iter_first(&mn->objects, start, end);
		if (it != NULL) {
			obj = container_of(it, struct i915_mmu_object, it)->obj;
			drm_gem_object_reference(&obj->base);
			serial = mn->serial;
		}
		spin_unlock(&mn->lock);
		if (obj == NULL)
			return;

		mutex_lock(&mn->dev->struct_mutex);
		/* Cancel any active worker and force us to re-evaluate gup */
		obj->userptr.work = NULL;

		if (obj->pages != NULL) {
			struct drm_i915_private *dev_priv = to_i915(mn->dev);
			struct i915_vma *vma, *tmp;
			bool was_interruptible;

			was_interruptible = dev_priv->mm.interruptible;
			dev_priv->mm.interruptible = false;

			list_for_each_entry_safe(vma, tmp, &obj->vma_list, vma_link) {
				int ret = i915_vma_unbind(vma);
				WARN_ON(ret && ret != -EIO);
			}
			WARN_ON(i915_gem_object_put_pages(obj));

			dev_priv->mm.interruptible = was_interruptible;
		}

		start = obj->userptr.ptr + obj->base.size;

		drm_gem_object_unreference(&obj->base);
		mutex_unlock(&mn->dev->struct_mutex);
	}
}

static const struct mmu_notifier_ops i915_gem_userptr_notifier = {
	.invalidate_range_start = i915_gem_userptr_mn_invalidate_range_start,
};

static struct i915_mmu_notifier *
__i915_mmu_notifier_lookup(struct drm_device *dev, struct mm_struct *mm)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_mmu_notifier *mmu;

	/* Protected by dev->struct_mutex */
	hash_for_each_possible(dev_priv->mmu_notifiers, mmu, node, (unsigned long)mm)
		if (mmu->mm == mm)
			return mmu;

	return NULL;
}

static struct i915_mmu_notifier *
i915_mmu_notifier_get(struct drm_device *dev, struct mm_struct *mm)
{
	struct drm_i915_private *dev_priv = to_i915(dev);
	struct i915_mmu_notifier *mmu;
	int ret;

	lockdep_assert_held(&dev->struct_mutex);

	mmu = __i915_mmu_notifier_lookup(dev, mm);
	if (mmu)
		return mmu;

	mmu = kmalloc(sizeof(*mmu), GFP_KERNEL);
	if (mmu == NULL)
		return ERR_PTR(-ENOMEM);

	spin_lock_init(&mmu->lock);
	mmu->dev = dev;
	mmu->mn.ops = &i915_gem_userptr_notifier;
	mmu->mm = mm;
	mmu->objects = RB_ROOT;
	mmu->count = 0;
	mmu->serial = 0;

	/* Protected by mmap_sem (write-lock) */
	ret = __mmu_notifier_register(&mmu->mn, mm);
	if (ret) {
		kfree(mmu);
		return ERR_PTR(ret);
	}

	/* Protected by dev->struct_mutex */
	hash_add(dev_priv->mmu_notifiers, &mmu->node, (unsigned long)mm);
	return mmu;
}

static void
__i915_mmu_notifier_destroy_worker(struct work_struct *work)
{
	struct i915_mmu_notifier *mmu = container_of(work, typeof(*mmu), work);
	mmu_notifier_unregister(&mmu->mn, mmu->mm);
	kfree(mmu);
}

static void
__i915_mmu_notifier_destroy(struct i915_mmu_notifier *mmu)
{
	lockdep_assert_held(&mmu->dev->struct_mutex);

	/* Protected by dev->struct_mutex */
	hash_del(&mmu->node);

	/* Our lock ordering is: mmap_sem, mmu_notifier_scru, struct_mutex.
	 * We enter the function holding struct_mutex, therefore we need
	 * to drop our mutex prior to calling mmu_notifier_unregister in
	 * order to prevent lock inversion (and system-wide deadlock)
	 * between the mmap_sem and struct-mutex. Hence we defer the
	 * unregistration to a workqueue where we hold no locks.
	 */
	INIT_WORK(&mmu->work, __i915_mmu_notifier_destroy_worker);
	schedule_work(&mmu->work);
}

static void __i915_mmu_notifier_update_serial(struct i915_mmu_notifier *mmu)
{
	if (++mmu->serial == 0)
		mmu->serial = 1;
}

static void
i915_mmu_notifier_del(struct i915_mmu_notifier *mmu,
		      struct i915_mmu_object *mn)
{
	lockdep_assert_held(&mmu->dev->struct_mutex);

	spin_lock(&mmu->lock);
	interval_tree_remove(&mn->it, &mmu->objects);
	__i915_mmu_notifier_update_serial(mmu);
	spin_unlock(&mmu->lock);

	/* Protected against _add() by dev->struct_mutex */
	if (--mmu->count == 0)
		__i915_mmu_notifier_destroy(mmu);
}

static int
i915_mmu_notifier_add(struct i915_mmu_notifier *mmu,
		      struct i915_mmu_object *mn)
{
	struct interval_tree_node *it;
	int ret;

	ret = i915_mutex_lock_interruptible(mmu->dev);
	if (ret)
		return ret;

	/* Make sure we drop the final active reference (and thereby
	 * remove the objects from the interval tree) before we do
	 * the check for overlapping objects.
	 */
	i915_gem_retire_requests(mmu->dev);

	/* Disallow overlapping userptr objects */
	spin_lock(&mmu->lock);
	it = interval_tree_iter_first(&mmu->objects,
				      mn->it.start, mn->it.last);
	if (it) {
		struct drm_i915_gem_object *obj;

		/* We only need to check the first object in the range as it
		 * either has cancelled gup work queued and we need to
		 * return back to the user to give time for the gup-workers
		 * to flush their object references upon which the object will
		 * be removed from the interval-tree, or the the range is
		 * still in use by another client and the overlap is invalid.
		 */

		obj = container_of(it, struct i915_mmu_object, it)->obj;
		ret = obj->userptr.workers ? -EAGAIN : -EINVAL;
	} else {
		interval_tree_insert(&mn->it, &mmu->objects);
		__i915_mmu_notifier_update_serial(mmu);
		ret = 0;
	}
	spin_unlock(&mmu->lock);
	mutex_unlock(&mmu->dev->struct_mutex);

	return ret;
}

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
	struct i915_mmu_object *mn;

	mn = obj->userptr.mn;
	if (mn == NULL)
		return;

	i915_mmu_notifier_del(mn->mmu, mn);
	obj->userptr.mn = NULL;
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
	struct i915_mmu_notifier *mmu;
	struct i915_mmu_object *mn;
	int ret;

	if (flags & I915_USERPTR_UNSYNCHRONIZED)
		return capable(CAP_SYS_ADMIN) ? 0 : -EPERM;

	down_write(&obj->userptr.mm->mmap_sem);
	ret = i915_mutex_lock_interruptible(obj->base.dev);
	if (ret == 0) {
		mmu = i915_mmu_notifier_get(obj->base.dev, obj->userptr.mm);
		if (!IS_ERR(mmu))
			mmu->count++; /* preemptive add to act as a refcount */
		else
			ret = PTR_ERR(mmu);
		mutex_unlock(&obj->base.dev->struct_mutex);
	}
	up_write(&obj->userptr.mm->mmap_sem);
	if (ret)
		return ret;

	mn = kzalloc(sizeof(*mn), GFP_KERNEL);
	if (mn == NULL) {
		ret = -ENOMEM;
		goto destroy_mmu;
	}

	mn->mmu = mmu;
	mn->it.start = obj->userptr.ptr;
	mn->it.last = mn->it.start + obj->base.size - 1;
	mn->obj = obj;

	ret = i915_mmu_notifier_add(mmu, mn);
	if (ret)
		goto free_mn;

	obj->userptr.mn = mn;
	return 0;

free_mn:
	kfree(mn);
destroy_mmu:
	mutex_lock(&obj->base.dev->struct_mutex);
	if (--mmu->count == 0)
		__i915_mmu_notifier_destroy(mmu);
	mutex_unlock(&obj->base.dev->struct_mutex);
	return ret;
}

#else

static void
i915_gem_userptr_release__mmu_notifier(struct drm_i915_gem_object *obj)
{
}

static int
i915_gem_userptr_init__mmu_notifier(struct drm_i915_gem_object *obj,
				    unsigned flags)
{
	if ((flags & I915_USERPTR_UNSYNCHRONIZED) == 0)
		return -ENODEV;

	if (!capable(CAP_SYS_ADMIN))
		return -EPERM;

	return 0;
}
#endif

struct get_pages_work {
	struct work_struct work;
	struct drm_i915_gem_object *obj;
	struct task_struct *task;
};


#if IS_ENABLED(CONFIG_SWIOTLB)
#define swiotlb_active() swiotlb_nr_tbl()
#else
#define swiotlb_active() 0
#endif

static int
st_set_pages(struct sg_table **st, struct page **pvec, int num_pages)
{
	struct scatterlist *sg;
	int ret, n;

	*st = kmalloc(sizeof(**st), GFP_KERNEL);
	if (*st == NULL)
		return -ENOMEM;

	if (swiotlb_active()) {
		ret = sg_alloc_table(*st, num_pages, GFP_KERNEL);
		if (ret)
			goto err;

		for_each_sg((*st)->sgl, sg, num_pages, n)
			sg_set_page(sg, pvec[n], PAGE_SIZE, 0);
	} else {
		ret = sg_alloc_table_from_pages(*st, pvec, num_pages,
						0, num_pages << PAGE_SHIFT,
						GFP_KERNEL);
		if (ret)
			goto err;
	}

	return 0;

err:
	kfree(*st);
	*st = NULL;
	return ret;
}

static void
__i915_gem_userptr_get_pages_worker(struct work_struct *_work)
{
	struct get_pages_work *work = container_of(_work, typeof(*work), work);
	struct drm_i915_gem_object *obj = work->obj;
	struct drm_device *dev = obj->base.dev;
	const int num_pages = obj->base.size >> PAGE_SHIFT;
	struct page **pvec;
	int pinned, ret;

	ret = -ENOMEM;
	pinned = 0;

	pvec = kmalloc(num_pages*sizeof(struct page *),
		       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
	if (pvec == NULL)
		pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
	if (pvec != NULL) {
		struct mm_struct *mm = obj->userptr.mm;

		down_read(&mm->mmap_sem);
		while (pinned < num_pages) {
			ret = get_user_pages(work->task, mm,
					     obj->userptr.ptr + pinned * PAGE_SIZE,
					     num_pages - pinned,
					     !obj->userptr.read_only, 0,
					     pvec + pinned, NULL);
			if (ret < 0)
				break;

			pinned += ret;
		}
		up_read(&mm->mmap_sem);
	}

	mutex_lock(&dev->struct_mutex);
	if (obj->userptr.work != &work->work) {
		ret = 0;
	} else if (pinned == num_pages) {
		ret = st_set_pages(&obj->pages, pvec, num_pages);
		if (ret == 0) {
			list_add_tail(&obj->global_list, &to_i915(dev)->mm.unbound_list);
			pinned = 0;
		}
	}

	obj->userptr.work = ERR_PTR(ret);
	obj->userptr.workers--;
	drm_gem_object_unreference(&obj->base);
	mutex_unlock(&dev->struct_mutex);

	release_pages(pvec, pinned, 0);
	drm_free_large(pvec);

	put_task_struct(work->task);
	kfree(work);
}

static int
i915_gem_userptr_get_pages(struct drm_i915_gem_object *obj)
{
	const int num_pages = obj->base.size >> PAGE_SHIFT;
	struct page **pvec;
	int pinned, ret;

	/* If userspace should engineer that these pages are replaced in
	 * the vma between us binding this page into the GTT and completion
	 * of rendering... Their loss. If they change the mapping of their
	 * pages they need to create a new bo to point to the new vma.
	 *
	 * However, that still leaves open the possibility of the vma
	 * being copied upon fork. Which falls under the same userspace
	 * synchronisation issue as a regular bo, except that this time
	 * the process may not be expecting that a particular piece of
	 * memory is tied to the GPU.
	 *
	 * Fortunately, we can hook into the mmu_notifier in order to
	 * discard the page references prior to anything nasty happening
	 * to the vma (discard or cloning) which should prevent the more
	 * egregious cases from causing harm.
	 */

	pvec = NULL;
	pinned = 0;
	if (obj->userptr.mm == current->mm) {
		pvec = kmalloc(num_pages*sizeof(struct page *),
			       GFP_TEMPORARY | __GFP_NOWARN | __GFP_NORETRY);
		if (pvec == NULL) {
			pvec = drm_malloc_ab(num_pages, sizeof(struct page *));
			if (pvec == NULL)
				return -ENOMEM;
		}

		pinned = __get_user_pages_fast(obj->userptr.ptr, num_pages,
					       !obj->userptr.read_only, pvec);
	}
	if (pinned < num_pages) {
		if (pinned < 0) {
			ret = pinned;
			pinned = 0;
		} else {
			/* Spawn a worker so that we can acquire the
			 * user pages without holding our mutex. Access
			 * to the user pages requires mmap_sem, and we have
			 * a strict lock ordering of mmap_sem, struct_mutex -
			 * we already hold struct_mutex here and so cannot
			 * call gup without encountering a lock inversion.
			 *
			 * Userspace will keep on repeating the operation
			 * (thanks to EAGAIN) until either we hit the fast
			 * path or the worker completes. If the worker is
			 * cancelled or superseded, the task is still run
			 * but the results ignored. (This leads to
			 * complications that we may have a stray object
			 * refcount that we need to be wary of when
			 * checking for existing objects during creation.)
			 * If the worker encounters an error, it reports
			 * that error back to this function through
			 * obj->userptr.work = ERR_PTR.
			 */
			ret = -EAGAIN;
			if (obj->userptr.work == NULL &&
			    obj->userptr.workers < I915_GEM_USERPTR_MAX_WORKERS) {
				struct get_pages_work *work;

				work = kmalloc(sizeof(*work), GFP_KERNEL);
				if (work != NULL) {
					obj->userptr.work = &work->work;
					obj->userptr.workers++;

					work->obj = obj;
					drm_gem_object_reference(&obj->base);

					work->task = current;
					get_task_struct(work->task);

					INIT_WORK(&work->work, __i915_gem_userptr_get_pages_worker);
					schedule_work(&work->work);
				} else
					ret = -ENOMEM;
			} else {
				if (IS_ERR(obj->userptr.work)) {
					ret = PTR_ERR(obj->userptr.work);
					obj->userptr.work = NULL;
				}
			}
		}
	} else {
		ret = st_set_pages(&obj->pages, pvec, num_pages);
		if (ret == 0) {
			obj->userptr.work = NULL;
			pinned = 0;
		}
	}

	release_pages(pvec, pinned, 0);
	drm_free_large(pvec);
	return ret;
}

static void
i915_gem_userptr_put_pages(struct drm_i915_gem_object *obj)
{
	struct scatterlist *sg;
	int i;

	BUG_ON(obj->userptr.work != NULL);

	if (obj->madv != I915_MADV_WILLNEED)
		obj->dirty = 0;

	for_each_sg(obj->pages->sgl, sg, obj->pages->nents, i) {
		struct page *page = sg_page(sg);

		if (obj->dirty)
			set_page_dirty(page);

		mark_page_accessed(page);
		page_cache_release(page);
	}
	obj->dirty = 0;

	sg_free_table(obj->pages);
	kfree(obj->pages);
}

static void
i915_gem_userptr_release(struct drm_i915_gem_object *obj)
{
	i915_gem_userptr_release__mmu_notifier(obj);

	if (obj->userptr.mm) {
		mmput(obj->userptr.mm);
		obj->userptr.mm = NULL;
	}
}

static int
i915_gem_userptr_dmabuf_export(struct drm_i915_gem_object *obj)
{
	if (obj->userptr.mn)
		return 0;

	return i915_gem_userptr_init__mmu_notifier(obj, 0);
}

static const struct drm_i915_gem_object_ops i915_gem_userptr_ops = {
	.dmabuf_export = i915_gem_userptr_dmabuf_export,
	.get_pages = i915_gem_userptr_get_pages,
	.put_pages = i915_gem_userptr_put_pages,
	.release = i915_gem_userptr_release,
};

/**
 * Creates a new mm object that wraps some normal memory from the process
 * context - user memory.
 *
 * We impose several restrictions upon the memory being mapped
 * into the GPU.
 * 1. It must be page aligned (both start/end addresses, i.e ptr and size).
 * 2. It cannot overlap any other userptr object in the same address space.
 * 3. It must be normal system memory, not a pointer into another map of IO
 *    space (e.g. it must not be a GTT mmapping of another object).
 * 4. We only allow a bo as large as we could in theory map into the GTT,
 *    that is we limit the size to the total size of the GTT.
 * 5. The bo is marked as being snoopable. The backing pages are left
 *    accessible directly by the CPU, but reads and writes by the GPU may
 *    incur the cost of a snoop (unless you have an LLC architecture).
 *
 * Synchronisation between multiple users and the GPU is left to userspace
 * through the normal set-domain-ioctl. The kernel will enforce that the
 * GPU relinquishes the VMA before it is returned back to the system
 * i.e. upon free(), munmap() or process termination. However, the userspace
 * malloc() library may not immediately relinquish the VMA after free() and
 * instead reuse it whilst the GPU is still reading and writing to the VMA.
 * Caveat emptor.
 *
 * Also note, that the object created here is not currently a "first class"
 * object, in that several ioctls are banned. These are the CPU access
 * ioctls: mmap(), pwrite and pread. In practice, you are expected to use
 * direct access via your pointer rather than use those ioctls.
 *
 * If you think this is a good interface to use to pass GPU memory between
 * drivers, please use dma-buf instead. In fact, wherever possible use
 * dma-buf instead.
 */
int
i915_gem_userptr_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_gem_userptr *args = data;
	struct drm_i915_gem_object *obj;
	int ret;
	u32 handle;

	if (args->flags & ~(I915_USERPTR_READ_ONLY |
			    I915_USERPTR_UNSYNCHRONIZED))
		return -EINVAL;

	if (offset_in_page(args->user_ptr | args->user_size))
		return -EINVAL;

	if (args->user_size > dev_priv->gtt.base.total)
		return -E2BIG;

	if (!access_ok(args->flags & I915_USERPTR_READ_ONLY ? VERIFY_READ : VERIFY_WRITE,
		       (char __user *)(unsigned long)args->user_ptr, args->user_size))
		return -EFAULT;

	if (args->flags & I915_USERPTR_READ_ONLY) {
		/* On almost all of the current hw, we cannot tell the GPU that a
		 * page is readonly, so this is just a placeholder in the uAPI.
		 */
		return -ENODEV;
	}

	/* Allocate the new object */
	obj = i915_gem_object_alloc(dev);
	if (obj == NULL)
		return -ENOMEM;

	drm_gem_private_object_init(dev, &obj->base, args->user_size);
	i915_gem_object_init(obj, &i915_gem_userptr_ops);
	obj->cache_level = I915_CACHE_LLC;
	obj->base.write_domain = I915_GEM_DOMAIN_CPU;
	obj->base.read_domains = I915_GEM_DOMAIN_CPU;

	obj->userptr.ptr = args->user_ptr;
	obj->userptr.read_only = !!(args->flags & I915_USERPTR_READ_ONLY);

	/* And keep a pointer to the current->mm for resolving the user pages
	 * at binding. This means that we need to hook into the mmu_notifier
	 * in order to detect if the mmu is destroyed.
	 */
	ret = -ENOMEM;
	if ((obj->userptr.mm = get_task_mm(current)))
		ret = i915_gem_userptr_init__mmu_notifier(obj, args->flags);
	if (ret == 0)
		ret = drm_gem_handle_create(file, &obj->base, &handle);

	/* drop reference from allocate - handle holds it now */
	drm_gem_object_unreference_unlocked(&obj->base);
	if (ret)
		return ret;

	args->handle = handle;
	return 0;
}

int
i915_gem_init_userptr(struct drm_device *dev)
{
#if defined(CONFIG_MMU_NOTIFIER)
	struct drm_i915_private *dev_priv = to_i915(dev);
	hash_init(dev_priv->mmu_notifiers);
#endif
	return 0;
}