1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#define NUM_STEPS 5
#define H2G_DELAY 50000
#define delay_for_h2g() usleep_range(H2G_DELAY, H2G_DELAY + 10000)
#define FREQUENCY_REQ_UNIT DIV_ROUND_CLOSEST(GT_FREQUENCY_MULTIPLIER, \
GEN9_FREQ_SCALER)
enum test_type {
VARY_MIN,
VARY_MAX,
MAX_GRANTED,
SLPC_POWER,
TILE_INTERACTION,
};
struct slpc_thread {
struct kthread_worker *worker;
struct kthread_work work;
struct intel_gt *gt;
int result;
};
static int slpc_set_min_freq(struct intel_guc_slpc *slpc, u32 freq)
{
int ret;
ret = intel_guc_slpc_set_min_freq(slpc, freq);
if (ret)
pr_err("Could not set min frequency to [%u]\n", freq);
else /* Delay to ensure h2g completes */
delay_for_h2g();
return ret;
}
static int slpc_set_max_freq(struct intel_guc_slpc *slpc, u32 freq)
{
int ret;
ret = intel_guc_slpc_set_max_freq(slpc, freq);
if (ret)
pr_err("Could not set maximum frequency [%u]\n",
freq);
else /* Delay to ensure h2g completes */
delay_for_h2g();
return ret;
}
static int slpc_set_freq(struct intel_gt *gt, u32 freq)
{
int err;
struct intel_guc_slpc *slpc = >->uc.guc.slpc;
err = slpc_set_max_freq(slpc, freq);
if (err) {
pr_err("Unable to update max freq");
return err;
}
err = slpc_set_min_freq(slpc, freq);
if (err) {
pr_err("Unable to update min freq");
return err;
}
return err;
}
static u64 measure_power_at_freq(struct intel_gt *gt, int *freq, u64 *power)
{
int err = 0;
err = slpc_set_freq(gt, *freq);
if (err)
return err;
*freq = intel_rps_read_actual_frequency(>->rps);
*power = measure_power(>->rps, freq);
return err;
}
static int vary_max_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps,
u32 *max_act_freq)
{
u32 step, max_freq, req_freq;
u32 act_freq;
int err = 0;
/* Go from max to min in 5 steps */
step = (slpc->rp0_freq - slpc->min_freq) / NUM_STEPS;
*max_act_freq = slpc->min_freq;
for (max_freq = slpc->rp0_freq; max_freq > slpc->min_freq;
max_freq -= step) {
err = slpc_set_max_freq(slpc, max_freq);
if (err)
break;
req_freq = intel_rps_read_punit_req_frequency(rps);
/* GuC requests freq in multiples of 50/3 MHz */
if (req_freq > (max_freq + FREQUENCY_REQ_UNIT)) {
pr_err("SWReq is %d, should be at most %d\n", req_freq,
max_freq + FREQUENCY_REQ_UNIT);
err = -EINVAL;
}
act_freq = intel_rps_read_actual_frequency(rps);
if (act_freq > *max_act_freq)
*max_act_freq = act_freq;
if (err)
break;
}
return err;
}
static int vary_min_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps,
u32 *max_act_freq)
{
u32 step, min_freq, req_freq;
u32 act_freq;
int err = 0;
/* Go from min to max in 5 steps */
step = (slpc->rp0_freq - slpc->min_freq) / NUM_STEPS;
*max_act_freq = slpc->min_freq;
for (min_freq = slpc->min_freq; min_freq < slpc->rp0_freq;
min_freq += step) {
err = slpc_set_min_freq(slpc, min_freq);
if (err)
break;
req_freq = intel_rps_read_punit_req_frequency(rps);
/* GuC requests freq in multiples of 50/3 MHz */
if (req_freq < (min_freq - FREQUENCY_REQ_UNIT)) {
pr_err("SWReq is %d, should be at least %d\n", req_freq,
min_freq - FREQUENCY_REQ_UNIT);
err = -EINVAL;
}
act_freq = intel_rps_read_actual_frequency(rps);
if (act_freq > *max_act_freq)
*max_act_freq = act_freq;
if (err)
break;
}
return err;
}
static int slpc_power(struct intel_gt *gt, struct intel_engine_cs *engine)
{
struct intel_guc_slpc *slpc = >->uc.guc.slpc;
struct {
u64 power;
int freq;
} min, max;
int err = 0;
/*
* Our fundamental assumption is that running at lower frequency
* actually saves power. Let's see if our RAPL measurement supports
* that theory.
*/
if (!librapl_supported(gt->i915))
return 0;
min.freq = slpc->min_freq;
err = measure_power_at_freq(gt, &min.freq, &min.power);
if (err)
return err;
max.freq = slpc->rp0_freq;
err = measure_power_at_freq(gt, &max.freq, &max.power);
if (err)
return err;
pr_info("%s: min:%llumW @ %uMHz, max:%llumW @ %uMHz\n",
engine->name,
min.power, min.freq,
max.power, max.freq);
if (10 * min.freq >= 9 * max.freq) {
pr_notice("Could not control frequency, ran at [%uMHz, %uMhz]\n",
min.freq, max.freq);
}
if (11 * min.power > 10 * max.power) {
pr_err("%s: did not conserve power when setting lower frequency!\n",
engine->name);
err = -EINVAL;
}
/* Restore min/max frequencies */
slpc_set_max_freq(slpc, slpc->rp0_freq);
slpc_set_min_freq(slpc, slpc->min_freq);
return err;
}
static int max_granted_freq(struct intel_guc_slpc *slpc, struct intel_rps *rps, u32 *max_act_freq)
{
struct intel_gt *gt = rps_to_gt(rps);
u32 perf_limit_reasons;
int err = 0;
err = slpc_set_min_freq(slpc, slpc->rp0_freq);
if (err)
return err;
*max_act_freq = intel_rps_read_actual_frequency(rps);
if (*max_act_freq != slpc->rp0_freq) {
/* Check if there was some throttling by pcode */
perf_limit_reasons = intel_uncore_read(gt->uncore,
intel_gt_perf_limit_reasons_reg(gt));
/* If not, this is an error */
if (!(perf_limit_reasons & GT0_PERF_LIMIT_REASONS_MASK)) {
pr_err("Pcode did not grant max freq\n");
err = -EINVAL;
} else {
pr_info("Pcode throttled frequency 0x%x\n", perf_limit_reasons);
}
}
return err;
}
static int run_test(struct intel_gt *gt, int test_type)
{
struct intel_guc_slpc *slpc = >->uc.guc.slpc;
struct intel_rps *rps = >->rps;
struct intel_engine_cs *engine;
enum intel_engine_id id;
struct igt_spinner spin;
u32 slpc_min_freq, slpc_max_freq;
int err = 0;
if (!intel_uc_uses_guc_slpc(>->uc))
return 0;
if (slpc->min_freq == slpc->rp0_freq) {
pr_err("Min/Max are fused to the same value\n");
return -EINVAL;
}
if (igt_spinner_init(&spin, gt))
return -ENOMEM;
if (intel_guc_slpc_get_max_freq(slpc, &slpc_max_freq)) {
pr_err("Could not get SLPC max freq\n");
return -EIO;
}
if (intel_guc_slpc_get_min_freq(slpc, &slpc_min_freq)) {
pr_err("Could not get SLPC min freq\n");
return -EIO;
}
/*
* Set min frequency to RPn so that we can test the whole
* range of RPn-RP0. This also turns off efficient freq
* usage and makes results more predictable.
*/
err = slpc_set_min_freq(slpc, slpc->min_freq);
if (err) {
pr_err("Unable to update min freq!");
return err;
}
intel_gt_pm_wait_for_idle(gt);
intel_gt_pm_get(gt);
for_each_engine(engine, gt, id) {
struct i915_request *rq;
u32 max_act_freq;
if (!intel_engine_can_store_dword(engine))
continue;
st_engine_heartbeat_disable(engine);
rq = igt_spinner_create_request(&spin,
engine->kernel_context,
MI_NOOP);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
st_engine_heartbeat_enable(engine);
break;
}
i915_request_add(rq);
if (!igt_wait_for_spinner(&spin, rq)) {
pr_err("%s: Spinner did not start\n",
engine->name);
igt_spinner_end(&spin);
st_engine_heartbeat_enable(engine);
intel_gt_set_wedged(engine->gt);
err = -EIO;
break;
}
switch (test_type) {
case VARY_MIN:
err = vary_min_freq(slpc, rps, &max_act_freq);
break;
case VARY_MAX:
err = vary_max_freq(slpc, rps, &max_act_freq);
break;
case MAX_GRANTED:
case TILE_INTERACTION:
/* Media engines have a different RP0 */
if (gt->type != GT_MEDIA && (engine->class == VIDEO_DECODE_CLASS ||
engine->class == VIDEO_ENHANCEMENT_CLASS)) {
igt_spinner_end(&spin);
st_engine_heartbeat_enable(engine);
err = 0;
continue;
}
err = max_granted_freq(slpc, rps, &max_act_freq);
break;
case SLPC_POWER:
err = slpc_power(gt, engine);
break;
}
if (test_type != SLPC_POWER) {
pr_info("Max actual frequency for %s was %d\n",
engine->name, max_act_freq);
/* Actual frequency should rise above min */
if (max_act_freq <= slpc->min_freq) {
pr_err("Actual freq did not rise above min\n");
pr_err("Perf Limit Reasons: 0x%x\n",
intel_uncore_read(gt->uncore,
intel_gt_perf_limit_reasons_reg(gt)));
err = -EINVAL;
}
}
igt_spinner_end(&spin);
st_engine_heartbeat_enable(engine);
if (err)
break;
}
/* Restore min/max frequencies */
slpc_set_max_freq(slpc, slpc_max_freq);
slpc_set_min_freq(slpc, slpc_min_freq);
if (igt_flush_test(gt->i915))
err = -EIO;
intel_gt_pm_put(gt);
igt_spinner_fini(&spin);
intel_gt_pm_wait_for_idle(gt);
return err;
}
static int live_slpc_vary_min(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_gt *gt;
unsigned int i;
int ret;
for_each_gt(gt, i915, i) {
ret = run_test(gt, VARY_MIN);
if (ret)
return ret;
}
return ret;
}
static int live_slpc_vary_max(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_gt *gt;
unsigned int i;
int ret;
for_each_gt(gt, i915, i) {
ret = run_test(gt, VARY_MAX);
if (ret)
return ret;
}
return ret;
}
/* check if pcode can grant RP0 */
static int live_slpc_max_granted(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_gt *gt;
unsigned int i;
int ret;
for_each_gt(gt, i915, i) {
ret = run_test(gt, MAX_GRANTED);
if (ret)
return ret;
}
return ret;
}
static int live_slpc_power(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_gt *gt;
unsigned int i;
int ret;
for_each_gt(gt, i915, i) {
ret = run_test(gt, SLPC_POWER);
if (ret)
return ret;
}
return ret;
}
static void slpc_spinner_thread(struct kthread_work *work)
{
struct slpc_thread *thread = container_of(work, typeof(*thread), work);
thread->result = run_test(thread->gt, TILE_INTERACTION);
}
static int live_slpc_tile_interaction(void *arg)
{
struct drm_i915_private *i915 = arg;
struct intel_gt *gt;
struct slpc_thread *threads;
int i = 0, ret = 0;
threads = kcalloc(I915_MAX_GT, sizeof(*threads), GFP_KERNEL);
if (!threads)
return -ENOMEM;
for_each_gt(gt, i915, i) {
threads[i].worker = kthread_create_worker(0, "igt/slpc_parallel:%d", gt->info.id);
if (IS_ERR(threads[i].worker)) {
ret = PTR_ERR(threads[i].worker);
break;
}
threads[i].gt = gt;
kthread_init_work(&threads[i].work, slpc_spinner_thread);
kthread_queue_work(threads[i].worker, &threads[i].work);
}
for_each_gt(gt, i915, i) {
int status;
if (IS_ERR_OR_NULL(threads[i].worker))
continue;
kthread_flush_work(&threads[i].work);
status = READ_ONCE(threads[i].result);
if (status && !ret) {
pr_err("%s GT %d failed ", __func__, gt->info.id);
ret = status;
}
kthread_destroy_worker(threads[i].worker);
}
kfree(threads);
return ret;
}
int intel_slpc_live_selftests(struct drm_i915_private *i915)
{
static const struct i915_subtest tests[] = {
SUBTEST(live_slpc_vary_max),
SUBTEST(live_slpc_vary_min),
SUBTEST(live_slpc_max_granted),
SUBTEST(live_slpc_power),
SUBTEST(live_slpc_tile_interaction),
};
struct intel_gt *gt;
unsigned int i;
for_each_gt(gt, i915, i) {
if (intel_gt_is_wedged(gt))
return 0;
}
return i915_live_subtests(tests, i915);
}
|