summaryrefslogtreecommitdiff
path: root/drivers/firmware/efi/libstub/fdt.c
blob: 7cfc51935c4b73e02f1577ccb9ec26e4d06862ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
// SPDX-License-Identifier: GPL-2.0
/*
 * FDT related Helper functions used by the EFI stub on multiple
 * architectures. This should be #included by the EFI stub
 * implementation files.
 *
 * Copyright 2013 Linaro Limited; author Roy Franz
 */

#include <linux/efi.h>
#include <linux/libfdt.h>
#include <asm/efi.h>

#include "efistub.h"

#define EFI_DT_ADDR_CELLS_DEFAULT 2
#define EFI_DT_SIZE_CELLS_DEFAULT 2

static void fdt_update_cell_size(efi_system_table_t *sys_table, void *fdt)
{
	int offset;

	offset = fdt_path_offset(fdt, "/");
	/* Set the #address-cells and #size-cells values for an empty tree */

	fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
	fdt_setprop_u32(fdt, offset, "#size-cells",    EFI_DT_SIZE_CELLS_DEFAULT);
}

static efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
			       unsigned long orig_fdt_size,
			       void *fdt, int new_fdt_size, char *cmdline_ptr,
			       u64 initrd_addr, u64 initrd_size)
{
	int node, num_rsv;
	int status;
	u32 fdt_val32;
	u64 fdt_val64;

	/* Do some checks on provided FDT, if it exists: */
	if (orig_fdt) {
		if (fdt_check_header(orig_fdt)) {
			pr_efi_err(sys_table, "Device Tree header not valid!\n");
			return EFI_LOAD_ERROR;
		}
		/*
		 * We don't get the size of the FDT if we get if from a
		 * configuration table:
		 */
		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
			pr_efi_err(sys_table, "Truncated device tree! foo!\n");
			return EFI_LOAD_ERROR;
		}
	}

	if (orig_fdt) {
		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
	} else {
		status = fdt_create_empty_tree(fdt, new_fdt_size);
		if (status == 0) {
			/*
			 * Any failure from the following function is
			 * non-critical:
			 */
			fdt_update_cell_size(sys_table, fdt);
		}
	}

	if (status != 0)
		goto fdt_set_fail;

	/*
	 * Delete all memory reserve map entries. When booting via UEFI,
	 * kernel will use the UEFI memory map to find reserved regions.
	 */
	num_rsv = fdt_num_mem_rsv(fdt);
	while (num_rsv-- > 0)
		fdt_del_mem_rsv(fdt, num_rsv);

	node = fdt_subnode_offset(fdt, 0, "chosen");
	if (node < 0) {
		node = fdt_add_subnode(fdt, 0, "chosen");
		if (node < 0) {
			/* 'node' is an error code when negative: */
			status = node;
			goto fdt_set_fail;
		}
	}

	if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
				     strlen(cmdline_ptr) + 1);
		if (status)
			goto fdt_set_fail;
	}

	/* Set initrd address/end in device tree, if present */
	if (initrd_size != 0) {
		u64 initrd_image_end;
		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);

		status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
		if (status)
			goto fdt_set_fail;

		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
		status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
		if (status)
			goto fdt_set_fail;
	}

	/* Add FDT entries for EFI runtime services in chosen node. */
	node = fdt_subnode_offset(fdt, 0, "chosen");
	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);

	status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
	if (status)
		goto fdt_set_fail;

	fdt_val64 = U64_MAX; /* placeholder */

	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
	if (status)
		goto fdt_set_fail;

	fdt_val32 = U32_MAX; /* placeholder */

	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
	if (status)
		goto fdt_set_fail;

	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
	if (status)
		goto fdt_set_fail;

	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
	if (status)
		goto fdt_set_fail;

	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
		efi_status_t efi_status;

		efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
						  (u8 *)&fdt_val64);
		if (efi_status == EFI_SUCCESS) {
			status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
			if (status)
				goto fdt_set_fail;
		} else if (efi_status != EFI_NOT_FOUND) {
			return efi_status;
		}
	}

	/* Shrink the FDT back to its minimum size: */
	fdt_pack(fdt);

	return EFI_SUCCESS;

fdt_set_fail:
	if (status == -FDT_ERR_NOSPACE)
		return EFI_BUFFER_TOO_SMALL;

	return EFI_LOAD_ERROR;
}

static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
{
	int node = fdt_path_offset(fdt, "/chosen");
	u64 fdt_val64;
	u32 fdt_val32;
	int err;

	if (node < 0)
		return EFI_LOAD_ERROR;

	fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);

	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
	if (err)
		return EFI_LOAD_ERROR;

	fdt_val32 = cpu_to_fdt32(*map->map_size);

	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
	if (err)
		return EFI_LOAD_ERROR;

	fdt_val32 = cpu_to_fdt32(*map->desc_size);

	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
	if (err)
		return EFI_LOAD_ERROR;

	fdt_val32 = cpu_to_fdt32(*map->desc_ver);

	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
	if (err)
		return EFI_LOAD_ERROR;

	return EFI_SUCCESS;
}

#ifndef EFI_FDT_ALIGN
# define EFI_FDT_ALIGN EFI_PAGE_SIZE
#endif

struct exit_boot_struct {
	efi_memory_desc_t	*runtime_map;
	int			*runtime_entry_count;
	void			*new_fdt_addr;
};

static efi_status_t exit_boot_func(efi_system_table_t *sys_table_arg,
				   struct efi_boot_memmap *map,
				   void *priv)
{
	struct exit_boot_struct *p = priv;
	/*
	 * Update the memory map with virtual addresses. The function will also
	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
	 * entries so that we can pass it straight to SetVirtualAddressMap()
	 */
	efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
			p->runtime_map, p->runtime_entry_count);

	return update_fdt_memmap(p->new_fdt_addr, map);
}

#ifndef MAX_FDT_SIZE
# define MAX_FDT_SIZE SZ_2M
#endif

/*
 * Allocate memory for a new FDT, then add EFI, commandline, and
 * initrd related fields to the FDT.  This routine increases the
 * FDT allocation size until the allocated memory is large
 * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
 * which are fixed at 4K bytes, so in most cases the first
 * allocation should succeed.
 * EFI boot services are exited at the end of this function.
 * There must be no allocations between the get_memory_map()
 * call and the exit_boot_services() call, so the exiting of
 * boot services is very tightly tied to the creation of the FDT
 * with the final memory map in it.
 */

efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
					    void *handle,
					    unsigned long *new_fdt_addr,
					    unsigned long max_addr,
					    u64 initrd_addr, u64 initrd_size,
					    char *cmdline_ptr,
					    unsigned long fdt_addr,
					    unsigned long fdt_size)
{
	unsigned long map_size, desc_size, buff_size;
	u32 desc_ver;
	unsigned long mmap_key;
	efi_memory_desc_t *memory_map, *runtime_map;
	efi_status_t status;
	int runtime_entry_count;
	struct efi_boot_memmap map;
	struct exit_boot_struct priv;

	map.map		= &runtime_map;
	map.map_size	= &map_size;
	map.desc_size	= &desc_size;
	map.desc_ver	= &desc_ver;
	map.key_ptr	= &mmap_key;
	map.buff_size	= &buff_size;

	/*
	 * Get a copy of the current memory map that we will use to prepare
	 * the input for SetVirtualAddressMap(). We don't have to worry about
	 * subsequent allocations adding entries, since they could not affect
	 * the number of EFI_MEMORY_RUNTIME regions.
	 */
	status = efi_get_memory_map(sys_table, &map);
	if (status != EFI_SUCCESS) {
		pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
		return status;
	}

	pr_efi(sys_table, "Exiting boot services and installing virtual address map...\n");

	map.map = &memory_map;
	status = efi_high_alloc(sys_table, MAX_FDT_SIZE, EFI_FDT_ALIGN,
				new_fdt_addr, max_addr);
	if (status != EFI_SUCCESS) {
		pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
		goto fail;
	}

	/*
	 * Now that we have done our final memory allocation (and free)
	 * we can get the memory map key needed for exit_boot_services().
	 */
	status = efi_get_memory_map(sys_table, &map);
	if (status != EFI_SUCCESS)
		goto fail_free_new_fdt;

	status = update_fdt(sys_table, (void *)fdt_addr, fdt_size,
			    (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
			    initrd_addr, initrd_size);

	if (status != EFI_SUCCESS) {
		pr_efi_err(sys_table, "Unable to construct new device tree.\n");
		goto fail_free_new_fdt;
	}

	runtime_entry_count		= 0;
	priv.runtime_map		= runtime_map;
	priv.runtime_entry_count	= &runtime_entry_count;
	priv.new_fdt_addr		= (void *)*new_fdt_addr;

	status = efi_exit_boot_services(sys_table, handle, &map, &priv, exit_boot_func);

	if (status == EFI_SUCCESS) {
		efi_set_virtual_address_map_t *svam;

		/* Install the new virtual address map */
		svam = sys_table->runtime->set_virtual_address_map;
		status = svam(runtime_entry_count * desc_size, desc_size,
			      desc_ver, runtime_map);

		/*
		 * We are beyond the point of no return here, so if the call to
		 * SetVirtualAddressMap() failed, we need to signal that to the
		 * incoming kernel but proceed normally otherwise.
		 */
		if (status != EFI_SUCCESS) {
			int l;

			/*
			 * Set the virtual address field of all
			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
			 * the incoming kernel that no virtual translation has
			 * been installed.
			 */
			for (l = 0; l < map_size; l += desc_size) {
				efi_memory_desc_t *p = (void *)memory_map + l;

				if (p->attribute & EFI_MEMORY_RUNTIME)
					p->virt_addr = 0;
			}
		}
		return EFI_SUCCESS;
	}

	pr_efi_err(sys_table, "Exit boot services failed.\n");

fail_free_new_fdt:
	efi_free(sys_table, MAX_FDT_SIZE, *new_fdt_addr);

fail:
	sys_table->boottime->free_pool(runtime_map);

	return EFI_LOAD_ERROR;
}

void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
{
	efi_guid_t fdt_guid = DEVICE_TREE_GUID;
	efi_config_table_t *tables;
	int i;

	tables = (efi_config_table_t *)sys_table->tables;

	for (i = 0; i < sys_table->nr_tables; i++) {
		void *fdt;

		if (efi_guidcmp(tables[i].guid, fdt_guid) != 0)
			continue;

		fdt = (void *)tables[i].table;
		if (fdt_check_header(fdt) != 0) {
			pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
			return NULL;
		}
		*fdt_size = fdt_totalsize(fdt);
		return fdt;
	}

	return NULL;
}