1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Arm Firmware Framework for ARMv8-A(FFA) interface driver
*
* The Arm FFA specification[1] describes a software architecture to
* leverages the virtualization extension to isolate software images
* provided by an ecosystem of vendors from each other and describes
* interfaces that standardize communication between the various software
* images including communication between images in the Secure world and
* Normal world. Any Hypervisor could use the FFA interfaces to enable
* communication between VMs it manages.
*
* The Hypervisor a.k.a Partition managers in FFA terminology can assign
* system resources(Memory regions, Devices, CPU cycles) to the partitions
* and manage isolation amongst them.
*
* [1] https://developer.arm.com/docs/den0077/latest
*
* Copyright (C) 2021 ARM Ltd.
*/
#define DRIVER_NAME "ARM FF-A"
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
#include <linux/arm_ffa.h>
#include <linux/bitfield.h>
#include <linux/device.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/uuid.h>
#include "common.h"
#define FFA_DRIVER_VERSION FFA_VERSION_1_0
#define FFA_MIN_VERSION FFA_VERSION_1_0
#define SENDER_ID_MASK GENMASK(31, 16)
#define RECEIVER_ID_MASK GENMASK(15, 0)
#define SENDER_ID(x) ((u16)(FIELD_GET(SENDER_ID_MASK, (x))))
#define RECEIVER_ID(x) ((u16)(FIELD_GET(RECEIVER_ID_MASK, (x))))
#define PACK_TARGET_INFO(s, r) \
(FIELD_PREP(SENDER_ID_MASK, (s)) | FIELD_PREP(RECEIVER_ID_MASK, (r)))
/*
* Keeping RX TX buffer size as 4K for now
* 64K may be preferred to keep it min a page in 64K PAGE_SIZE config
*/
#define RXTX_BUFFER_SIZE SZ_4K
static ffa_fn *invoke_ffa_fn;
static const int ffa_linux_errmap[] = {
/* better than switch case as long as return value is continuous */
0, /* FFA_RET_SUCCESS */
-EOPNOTSUPP, /* FFA_RET_NOT_SUPPORTED */
-EINVAL, /* FFA_RET_INVALID_PARAMETERS */
-ENOMEM, /* FFA_RET_NO_MEMORY */
-EBUSY, /* FFA_RET_BUSY */
-EINTR, /* FFA_RET_INTERRUPTED */
-EACCES, /* FFA_RET_DENIED */
-EAGAIN, /* FFA_RET_RETRY */
-ECANCELED, /* FFA_RET_ABORTED */
-ENODATA, /* FFA_RET_NO_DATA */
};
static inline int ffa_to_linux_errno(int errno)
{
int err_idx = -errno;
if (err_idx >= 0 && err_idx < ARRAY_SIZE(ffa_linux_errmap))
return ffa_linux_errmap[err_idx];
return -EINVAL;
}
struct ffa_drv_info {
u32 version;
u16 vm_id;
struct mutex rx_lock; /* lock to protect Rx buffer */
struct mutex tx_lock; /* lock to protect Tx buffer */
void *rx_buffer;
void *tx_buffer;
bool mem_ops_native;
bool bitmap_created;
};
static struct ffa_drv_info *drv_info;
/*
* The driver must be able to support all the versions from the earliest
* supported FFA_MIN_VERSION to the latest supported FFA_DRIVER_VERSION.
* The specification states that if firmware supports a FFA implementation
* that is incompatible with and at a greater version number than specified
* by the caller(FFA_DRIVER_VERSION passed as parameter to FFA_VERSION),
* it must return the NOT_SUPPORTED error code.
*/
static u32 ffa_compatible_version_find(u32 version)
{
u16 major = FFA_MAJOR_VERSION(version), minor = FFA_MINOR_VERSION(version);
u16 drv_major = FFA_MAJOR_VERSION(FFA_DRIVER_VERSION);
u16 drv_minor = FFA_MINOR_VERSION(FFA_DRIVER_VERSION);
if ((major < drv_major) || (major == drv_major && minor <= drv_minor))
return version;
pr_info("Firmware version higher than driver version, downgrading\n");
return FFA_DRIVER_VERSION;
}
static int ffa_version_check(u32 *version)
{
ffa_value_t ver;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_VERSION, .a1 = FFA_DRIVER_VERSION,
}, &ver);
if (ver.a0 == FFA_RET_NOT_SUPPORTED) {
pr_info("FFA_VERSION returned not supported\n");
return -EOPNOTSUPP;
}
if (ver.a0 < FFA_MIN_VERSION) {
pr_err("Incompatible v%d.%d! Earliest supported v%d.%d\n",
FFA_MAJOR_VERSION(ver.a0), FFA_MINOR_VERSION(ver.a0),
FFA_MAJOR_VERSION(FFA_MIN_VERSION),
FFA_MINOR_VERSION(FFA_MIN_VERSION));
return -EINVAL;
}
pr_info("Driver version %d.%d\n", FFA_MAJOR_VERSION(FFA_DRIVER_VERSION),
FFA_MINOR_VERSION(FFA_DRIVER_VERSION));
pr_info("Firmware version %d.%d found\n", FFA_MAJOR_VERSION(ver.a0),
FFA_MINOR_VERSION(ver.a0));
*version = ffa_compatible_version_find(ver.a0);
return 0;
}
static int ffa_rx_release(void)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_RX_RELEASE,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
/* check for ret.a0 == FFA_RX_RELEASE ? */
return 0;
}
static int ffa_rxtx_map(phys_addr_t tx_buf, phys_addr_t rx_buf, u32 pg_cnt)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_FN_NATIVE(RXTX_MAP),
.a1 = tx_buf, .a2 = rx_buf, .a3 = pg_cnt,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
static int ffa_rxtx_unmap(u16 vm_id)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_RXTX_UNMAP, .a1 = PACK_TARGET_INFO(vm_id, 0),
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
#define PARTITION_INFO_GET_RETURN_COUNT_ONLY BIT(0)
/* buffer must be sizeof(struct ffa_partition_info) * num_partitions */
static int
__ffa_partition_info_get(u32 uuid0, u32 uuid1, u32 uuid2, u32 uuid3,
struct ffa_partition_info *buffer, int num_partitions)
{
int idx, count, flags = 0, sz, buf_sz;
ffa_value_t partition_info;
if (drv_info->version > FFA_VERSION_1_0 &&
(!buffer || !num_partitions)) /* Just get the count for now */
flags = PARTITION_INFO_GET_RETURN_COUNT_ONLY;
mutex_lock(&drv_info->rx_lock);
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_PARTITION_INFO_GET,
.a1 = uuid0, .a2 = uuid1, .a3 = uuid2, .a4 = uuid3,
.a5 = flags,
}, &partition_info);
if (partition_info.a0 == FFA_ERROR) {
mutex_unlock(&drv_info->rx_lock);
return ffa_to_linux_errno((int)partition_info.a2);
}
count = partition_info.a2;
if (drv_info->version > FFA_VERSION_1_0) {
buf_sz = sz = partition_info.a3;
if (sz > sizeof(*buffer))
buf_sz = sizeof(*buffer);
} else {
/* FFA_VERSION_1_0 lacks size in the response */
buf_sz = sz = 8;
}
if (buffer && count <= num_partitions)
for (idx = 0; idx < count; idx++)
memcpy(buffer + idx, drv_info->rx_buffer + idx * sz,
buf_sz);
ffa_rx_release();
mutex_unlock(&drv_info->rx_lock);
return count;
}
/* buffer is allocated and caller must free the same if returned count > 0 */
static int
ffa_partition_probe(const uuid_t *uuid, struct ffa_partition_info **buffer)
{
int count;
u32 uuid0_4[4];
struct ffa_partition_info *pbuf;
export_uuid((u8 *)uuid0_4, uuid);
count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
uuid0_4[3], NULL, 0);
if (count <= 0)
return count;
pbuf = kcalloc(count, sizeof(*pbuf), GFP_KERNEL);
if (!pbuf)
return -ENOMEM;
count = __ffa_partition_info_get(uuid0_4[0], uuid0_4[1], uuid0_4[2],
uuid0_4[3], pbuf, count);
if (count <= 0)
kfree(pbuf);
else
*buffer = pbuf;
return count;
}
#define VM_ID_MASK GENMASK(15, 0)
static int ffa_id_get(u16 *vm_id)
{
ffa_value_t id;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_ID_GET,
}, &id);
if (id.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)id.a2);
*vm_id = FIELD_GET(VM_ID_MASK, (id.a2));
return 0;
}
static int ffa_msg_send_direct_req(u16 src_id, u16 dst_id, bool mode_32bit,
struct ffa_send_direct_data *data)
{
u32 req_id, resp_id, src_dst_ids = PACK_TARGET_INFO(src_id, dst_id);
ffa_value_t ret;
if (mode_32bit) {
req_id = FFA_MSG_SEND_DIRECT_REQ;
resp_id = FFA_MSG_SEND_DIRECT_RESP;
} else {
req_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_REQ);
resp_id = FFA_FN_NATIVE(MSG_SEND_DIRECT_RESP);
}
invoke_ffa_fn((ffa_value_t){
.a0 = req_id, .a1 = src_dst_ids, .a2 = 0,
.a3 = data->data0, .a4 = data->data1, .a5 = data->data2,
.a6 = data->data3, .a7 = data->data4,
}, &ret);
while (ret.a0 == FFA_INTERRUPT)
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_RUN, .a1 = ret.a1,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
if (ret.a0 == resp_id) {
data->data0 = ret.a3;
data->data1 = ret.a4;
data->data2 = ret.a5;
data->data3 = ret.a6;
data->data4 = ret.a7;
return 0;
}
return -EINVAL;
}
static int ffa_mem_first_frag(u32 func_id, phys_addr_t buf, u32 buf_sz,
u32 frag_len, u32 len, u64 *handle)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = func_id, .a1 = len, .a2 = frag_len,
.a3 = buf, .a4 = buf_sz,
}, &ret);
while (ret.a0 == FFA_MEM_OP_PAUSE)
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_OP_RESUME,
.a1 = ret.a1, .a2 = ret.a2,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
if (ret.a0 == FFA_SUCCESS) {
if (handle)
*handle = PACK_HANDLE(ret.a2, ret.a3);
} else if (ret.a0 == FFA_MEM_FRAG_RX) {
if (handle)
*handle = PACK_HANDLE(ret.a1, ret.a2);
} else {
return -EOPNOTSUPP;
}
return frag_len;
}
static int ffa_mem_next_frag(u64 handle, u32 frag_len)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_FRAG_TX,
.a1 = HANDLE_LOW(handle), .a2 = HANDLE_HIGH(handle),
.a3 = frag_len,
}, &ret);
while (ret.a0 == FFA_MEM_OP_PAUSE)
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_OP_RESUME,
.a1 = ret.a1, .a2 = ret.a2,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
if (ret.a0 == FFA_MEM_FRAG_RX)
return ret.a3;
else if (ret.a0 == FFA_SUCCESS)
return 0;
return -EOPNOTSUPP;
}
static int
ffa_transmit_fragment(u32 func_id, phys_addr_t buf, u32 buf_sz, u32 frag_len,
u32 len, u64 *handle, bool first)
{
if (!first)
return ffa_mem_next_frag(*handle, frag_len);
return ffa_mem_first_frag(func_id, buf, buf_sz, frag_len, len, handle);
}
static u32 ffa_get_num_pages_sg(struct scatterlist *sg)
{
u32 num_pages = 0;
do {
num_pages += sg->length / FFA_PAGE_SIZE;
} while ((sg = sg_next(sg)));
return num_pages;
}
static u8 ffa_memory_attributes_get(u32 func_id)
{
/*
* For the memory lend or donate operation, if the receiver is a PE or
* a proxy endpoint, the owner/sender must not specify the attributes
*/
if (func_id == FFA_FN_NATIVE(MEM_LEND) ||
func_id == FFA_MEM_LEND)
return 0;
return FFA_MEM_NORMAL | FFA_MEM_WRITE_BACK | FFA_MEM_INNER_SHAREABLE;
}
static int
ffa_setup_and_transmit(u32 func_id, void *buffer, u32 max_fragsize,
struct ffa_mem_ops_args *args)
{
int rc = 0;
bool first = true;
phys_addr_t addr = 0;
struct ffa_composite_mem_region *composite;
struct ffa_mem_region_addr_range *constituents;
struct ffa_mem_region_attributes *ep_mem_access;
struct ffa_mem_region *mem_region = buffer;
u32 idx, frag_len, length, buf_sz = 0, num_entries = sg_nents(args->sg);
mem_region->tag = args->tag;
mem_region->flags = args->flags;
mem_region->sender_id = drv_info->vm_id;
mem_region->attributes = ffa_memory_attributes_get(func_id);
ep_mem_access = &mem_region->ep_mem_access[0];
for (idx = 0; idx < args->nattrs; idx++, ep_mem_access++) {
ep_mem_access->receiver = args->attrs[idx].receiver;
ep_mem_access->attrs = args->attrs[idx].attrs;
ep_mem_access->composite_off = COMPOSITE_OFFSET(args->nattrs);
ep_mem_access->flag = 0;
ep_mem_access->reserved = 0;
}
mem_region->handle = 0;
mem_region->reserved_0 = 0;
mem_region->reserved_1 = 0;
mem_region->ep_count = args->nattrs;
composite = buffer + COMPOSITE_OFFSET(args->nattrs);
composite->total_pg_cnt = ffa_get_num_pages_sg(args->sg);
composite->addr_range_cnt = num_entries;
composite->reserved = 0;
length = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, num_entries);
frag_len = COMPOSITE_CONSTITUENTS_OFFSET(args->nattrs, 0);
if (frag_len > max_fragsize)
return -ENXIO;
if (!args->use_txbuf) {
addr = virt_to_phys(buffer);
buf_sz = max_fragsize / FFA_PAGE_SIZE;
}
constituents = buffer + frag_len;
idx = 0;
do {
if (frag_len == max_fragsize) {
rc = ffa_transmit_fragment(func_id, addr, buf_sz,
frag_len, length,
&args->g_handle, first);
if (rc < 0)
return -ENXIO;
first = false;
idx = 0;
frag_len = 0;
constituents = buffer;
}
if ((void *)constituents - buffer > max_fragsize) {
pr_err("Memory Region Fragment > Tx Buffer size\n");
return -EFAULT;
}
constituents->address = sg_phys(args->sg);
constituents->pg_cnt = args->sg->length / FFA_PAGE_SIZE;
constituents->reserved = 0;
constituents++;
frag_len += sizeof(struct ffa_mem_region_addr_range);
} while ((args->sg = sg_next(args->sg)));
return ffa_transmit_fragment(func_id, addr, buf_sz, frag_len,
length, &args->g_handle, first);
}
static int ffa_memory_ops(u32 func_id, struct ffa_mem_ops_args *args)
{
int ret;
void *buffer;
if (!args->use_txbuf) {
buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
} else {
buffer = drv_info->tx_buffer;
mutex_lock(&drv_info->tx_lock);
}
ret = ffa_setup_and_transmit(func_id, buffer, RXTX_BUFFER_SIZE, args);
if (args->use_txbuf)
mutex_unlock(&drv_info->tx_lock);
else
free_pages_exact(buffer, RXTX_BUFFER_SIZE);
return ret < 0 ? ret : 0;
}
static int ffa_memory_reclaim(u64 g_handle, u32 flags)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_MEM_RECLAIM,
.a1 = HANDLE_LOW(g_handle), .a2 = HANDLE_HIGH(g_handle),
.a3 = flags,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
static int ffa_features(u32 func_feat_id, u32 input_props,
u32 *if_props_1, u32 *if_props_2)
{
ffa_value_t id;
if (!ARM_SMCCC_IS_FAST_CALL(func_feat_id) && input_props) {
pr_err("%s: Invalid Parameters: %x, %x", __func__,
func_feat_id, input_props);
return ffa_to_linux_errno(FFA_RET_INVALID_PARAMETERS);
}
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_FEATURES, .a1 = func_feat_id, .a2 = input_props,
}, &id);
if (id.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)id.a2);
if (if_props_1)
*if_props_1 = id.a2;
if (if_props_2)
*if_props_2 = id.a3;
return 0;
}
static int ffa_notification_bitmap_create(void)
{
ffa_value_t ret;
u16 vcpu_count = nr_cpu_ids;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_NOTIFICATION_BITMAP_CREATE,
.a1 = drv_info->vm_id, .a2 = vcpu_count,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
static int ffa_notification_bitmap_destroy(void)
{
ffa_value_t ret;
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_NOTIFICATION_BITMAP_DESTROY,
.a1 = drv_info->vm_id,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
#define NOTIFICATION_LOW_MASK GENMASK(31, 0)
#define NOTIFICATION_HIGH_MASK GENMASK(63, 32)
#define NOTIFICATION_BITMAP_HIGH(x) \
((u32)(FIELD_GET(NOTIFICATION_HIGH_MASK, (x))))
#define NOTIFICATION_BITMAP_LOW(x) \
((u32)(FIELD_GET(NOTIFICATION_LOW_MASK, (x))))
#define PACK_NOTIFICATION_BITMAP(low, high) \
(FIELD_PREP(NOTIFICATION_LOW_MASK, (low)) | \
FIELD_PREP(NOTIFICATION_HIGH_MASK, (high)))
#define RECEIVER_VCPU_MASK GENMASK(31, 16)
#define PACK_NOTIFICATION_GET_RECEIVER_INFO(vcpu_r, r) \
(FIELD_PREP(RECEIVER_VCPU_MASK, (vcpu_r)) | \
FIELD_PREP(RECEIVER_ID_MASK, (r)))
static int ffa_notification_bind_common(u16 dst_id, u64 bitmap,
u32 flags, bool is_bind)
{
ffa_value_t ret;
u32 func, src_dst_ids = PACK_TARGET_INFO(dst_id, drv_info->vm_id);
func = is_bind ? FFA_NOTIFICATION_BIND : FFA_NOTIFICATION_UNBIND;
invoke_ffa_fn((ffa_value_t){
.a0 = func, .a1 = src_dst_ids, .a2 = flags,
.a3 = NOTIFICATION_BITMAP_LOW(bitmap),
.a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
else if (ret.a0 != FFA_SUCCESS)
return -EINVAL;
return 0;
}
static
int ffa_notification_set(u16 src_id, u16 dst_id, u32 flags, u64 bitmap)
{
ffa_value_t ret;
u32 src_dst_ids = PACK_TARGET_INFO(dst_id, src_id);
invoke_ffa_fn((ffa_value_t) {
.a0 = FFA_NOTIFICATION_SET, .a1 = src_dst_ids, .a2 = flags,
.a3 = NOTIFICATION_BITMAP_LOW(bitmap),
.a4 = NOTIFICATION_BITMAP_HIGH(bitmap),
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
else if (ret.a0 != FFA_SUCCESS)
return -EINVAL;
return 0;
}
struct ffa_notify_bitmaps {
u64 sp_map;
u64 vm_map;
u64 arch_map;
};
static int ffa_notification_get(u32 flags, struct ffa_notify_bitmaps *notify)
{
ffa_value_t ret;
u16 src_id = drv_info->vm_id;
u16 cpu_id = smp_processor_id();
u32 rec_vcpu_ids = PACK_NOTIFICATION_GET_RECEIVER_INFO(cpu_id, src_id);
invoke_ffa_fn((ffa_value_t){
.a0 = FFA_NOTIFICATION_GET, .a1 = rec_vcpu_ids, .a2 = flags,
}, &ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
else if (ret.a0 != FFA_SUCCESS)
return -EINVAL; /* Something else went wrong. */
notify->sp_map = PACK_NOTIFICATION_BITMAP(ret.a2, ret.a3);
notify->vm_map = PACK_NOTIFICATION_BITMAP(ret.a4, ret.a5);
notify->arch_map = PACK_NOTIFICATION_BITMAP(ret.a6, ret.a7);
return 0;
}
static int ffa_run(struct ffa_device *dev, u16 vcpu)
{
ffa_value_t ret;
u32 target = dev->vm_id << 16 | vcpu;
invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = target, }, &ret);
while (ret.a0 == FFA_INTERRUPT)
invoke_ffa_fn((ffa_value_t){ .a0 = FFA_RUN, .a1 = ret.a1, },
&ret);
if (ret.a0 == FFA_ERROR)
return ffa_to_linux_errno((int)ret.a2);
return 0;
}
static void ffa_set_up_mem_ops_native_flag(void)
{
if (!ffa_features(FFA_FN_NATIVE(MEM_LEND), 0, NULL, NULL) ||
!ffa_features(FFA_FN_NATIVE(MEM_SHARE), 0, NULL, NULL))
drv_info->mem_ops_native = true;
}
static u32 ffa_api_version_get(void)
{
return drv_info->version;
}
static int ffa_partition_info_get(const char *uuid_str,
struct ffa_partition_info *buffer)
{
int count;
uuid_t uuid;
struct ffa_partition_info *pbuf;
if (uuid_parse(uuid_str, &uuid)) {
pr_err("invalid uuid (%s)\n", uuid_str);
return -ENODEV;
}
count = ffa_partition_probe(&uuid, &pbuf);
if (count <= 0)
return -ENOENT;
memcpy(buffer, pbuf, sizeof(*pbuf) * count);
kfree(pbuf);
return 0;
}
static void ffa_mode_32bit_set(struct ffa_device *dev)
{
dev->mode_32bit = true;
}
static int ffa_sync_send_receive(struct ffa_device *dev,
struct ffa_send_direct_data *data)
{
return ffa_msg_send_direct_req(drv_info->vm_id, dev->vm_id,
dev->mode_32bit, data);
}
static int ffa_memory_share(struct ffa_mem_ops_args *args)
{
if (drv_info->mem_ops_native)
return ffa_memory_ops(FFA_FN_NATIVE(MEM_SHARE), args);
return ffa_memory_ops(FFA_MEM_SHARE, args);
}
static int ffa_memory_lend(struct ffa_mem_ops_args *args)
{
/* Note that upon a successful MEM_LEND request the caller
* must ensure that the memory region specified is not accessed
* until a successful MEM_RECALIM call has been made.
* On systems with a hypervisor present this will been enforced,
* however on systems without a hypervisor the responsibility
* falls to the calling kernel driver to prevent access.
*/
if (drv_info->mem_ops_native)
return ffa_memory_ops(FFA_FN_NATIVE(MEM_LEND), args);
return ffa_memory_ops(FFA_MEM_LEND, args);
}
static const struct ffa_info_ops ffa_drv_info_ops = {
.api_version_get = ffa_api_version_get,
.partition_info_get = ffa_partition_info_get,
};
static const struct ffa_msg_ops ffa_drv_msg_ops = {
.mode_32bit_set = ffa_mode_32bit_set,
.sync_send_receive = ffa_sync_send_receive,
};
static const struct ffa_mem_ops ffa_drv_mem_ops = {
.memory_reclaim = ffa_memory_reclaim,
.memory_share = ffa_memory_share,
.memory_lend = ffa_memory_lend,
};
static const struct ffa_cpu_ops ffa_drv_cpu_ops = {
.run = ffa_run,
};
static const struct ffa_ops ffa_drv_ops = {
.info_ops = &ffa_drv_info_ops,
.msg_ops = &ffa_drv_msg_ops,
.mem_ops = &ffa_drv_mem_ops,
.cpu_ops = &ffa_drv_cpu_ops,
};
void ffa_device_match_uuid(struct ffa_device *ffa_dev, const uuid_t *uuid)
{
int count, idx;
struct ffa_partition_info *pbuf, *tpbuf;
/*
* FF-A v1.1 provides UUID for each partition as part of the discovery
* API, the discovered UUID must be populated in the device's UUID and
* there is no need to copy the same from the driver table.
*/
if (drv_info->version > FFA_VERSION_1_0)
return;
count = ffa_partition_probe(uuid, &pbuf);
if (count <= 0)
return;
for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++)
if (tpbuf->id == ffa_dev->vm_id)
uuid_copy(&ffa_dev->uuid, uuid);
kfree(pbuf);
}
static void ffa_setup_partitions(void)
{
int count, idx;
uuid_t uuid;
struct ffa_device *ffa_dev;
struct ffa_partition_info *pbuf, *tpbuf;
count = ffa_partition_probe(&uuid_null, &pbuf);
if (count <= 0) {
pr_info("%s: No partitions found, error %d\n", __func__, count);
return;
}
for (idx = 0, tpbuf = pbuf; idx < count; idx++, tpbuf++) {
import_uuid(&uuid, (u8 *)tpbuf->uuid);
/* Note that if the UUID will be uuid_null, that will require
* ffa_device_match() to find the UUID of this partition id
* with help of ffa_device_match_uuid(). FF-A v1.1 and above
* provides UUID here for each partition as part of the
* discovery API and the same is passed.
*/
ffa_dev = ffa_device_register(&uuid, tpbuf->id, &ffa_drv_ops);
if (!ffa_dev) {
pr_err("%s: failed to register partition ID 0x%x\n",
__func__, tpbuf->id);
continue;
}
if (drv_info->version > FFA_VERSION_1_0 &&
!(tpbuf->properties & FFA_PARTITION_AARCH64_EXEC))
ffa_mode_32bit_set(ffa_dev);
}
kfree(pbuf);
}
static int ffa_notifications_setup(void)
{
int ret;
ret = ffa_features(FFA_NOTIFICATION_BITMAP_CREATE, 0, NULL, NULL);
if (ret) {
pr_err("Notifications not supported, continuing with it ..\n");
return 0;
}
ret = ffa_notification_bitmap_create();
if (ret) {
pr_err("notification_bitmap_create error %d\n", ret);
return ret;
}
drv_info->bitmap_created = true;
return 0;
}
static void ffa_notifications_cleanup(void)
{
if (drv_info->bitmap_created) {
ffa_notification_bitmap_destroy();
drv_info->bitmap_created = false;
}
}
static int __init ffa_init(void)
{
int ret;
ret = ffa_transport_init(&invoke_ffa_fn);
if (ret)
return ret;
ret = arm_ffa_bus_init();
if (ret)
return ret;
drv_info = kzalloc(sizeof(*drv_info), GFP_KERNEL);
if (!drv_info) {
ret = -ENOMEM;
goto ffa_bus_exit;
}
ret = ffa_version_check(&drv_info->version);
if (ret)
goto free_drv_info;
if (ffa_id_get(&drv_info->vm_id)) {
pr_err("failed to obtain VM id for self\n");
ret = -ENODEV;
goto free_drv_info;
}
drv_info->rx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
if (!drv_info->rx_buffer) {
ret = -ENOMEM;
goto free_pages;
}
drv_info->tx_buffer = alloc_pages_exact(RXTX_BUFFER_SIZE, GFP_KERNEL);
if (!drv_info->tx_buffer) {
ret = -ENOMEM;
goto free_pages;
}
ret = ffa_rxtx_map(virt_to_phys(drv_info->tx_buffer),
virt_to_phys(drv_info->rx_buffer),
RXTX_BUFFER_SIZE / FFA_PAGE_SIZE);
if (ret) {
pr_err("failed to register FFA RxTx buffers\n");
goto free_pages;
}
mutex_init(&drv_info->rx_lock);
mutex_init(&drv_info->tx_lock);
ffa_setup_partitions();
ffa_set_up_mem_ops_native_flag();
return ffa_notifications_setup();
free_pages:
if (drv_info->tx_buffer)
free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
free_drv_info:
kfree(drv_info);
ffa_bus_exit:
arm_ffa_bus_exit();
return ret;
}
subsys_initcall(ffa_init);
static void __exit ffa_exit(void)
{
ffa_notifications_cleanup();
ffa_rxtx_unmap(drv_info->vm_id);
free_pages_exact(drv_info->tx_buffer, RXTX_BUFFER_SIZE);
free_pages_exact(drv_info->rx_buffer, RXTX_BUFFER_SIZE);
kfree(drv_info);
arm_ffa_bus_exit();
}
module_exit(ffa_exit);
MODULE_ALIAS("arm-ffa");
MODULE_AUTHOR("Sudeep Holla <sudeep.holla@arm.com>");
MODULE_DESCRIPTION("Arm FF-A interface driver");
MODULE_LICENSE("GPL v2");
|