summaryrefslogtreecommitdiff
path: root/drivers/dma/fsldma.c
blob: 507b29716bbd426b2db1b0f20da89c8b8ce8838e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
/*
 * Freescale MPC85xx, MPC83xx DMA Engine support
 *
 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
 *
 * Author:
 *   Zhang Wei <wei.zhang@freescale.com>, Jul 2007
 *   Ebony Zhu <ebony.zhu@freescale.com>, May 2007
 *
 * Description:
 *   DMA engine driver for Freescale MPC8540 DMA controller, which is
 *   also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
 *   The support for MPC8349 DMA contorller is also added.
 *
 * This driver instructs the DMA controller to issue the PCI Read Multiple
 * command for PCI read operations, instead of using the default PCI Read Line
 * command. Please be aware that this setting may result in read pre-fetching
 * on some platforms.
 *
 * This is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include <linux/of_platform.h>

#include <asm/fsldma.h>
#include "fsldma.h"

static void dma_init(struct fsldma_chan *fsl_chan)
{
	/* Reset the channel */
	DMA_OUT(fsl_chan, &fsl_chan->regs->mr, 0, 32);

	switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
	case FSL_DMA_IP_85XX:
		/* Set the channel to below modes:
		 * EIE - Error interrupt enable
		 * EOSIE - End of segments interrupt enable (basic mode)
		 * EOLNIE - End of links interrupt enable
		 */
		DMA_OUT(fsl_chan, &fsl_chan->regs->mr, FSL_DMA_MR_EIE
				| FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
		break;
	case FSL_DMA_IP_83XX:
		/* Set the channel to below modes:
		 * EOTIE - End-of-transfer interrupt enable
		 * PRC_RM - PCI read multiple
		 */
		DMA_OUT(fsl_chan, &fsl_chan->regs->mr, FSL_DMA_MR_EOTIE
				| FSL_DMA_MR_PRC_RM, 32);
		break;
	}

}

static void set_sr(struct fsldma_chan *fsl_chan, u32 val)
{
	DMA_OUT(fsl_chan, &fsl_chan->regs->sr, val, 32);
}

static u32 get_sr(struct fsldma_chan *fsl_chan)
{
	return DMA_IN(fsl_chan, &fsl_chan->regs->sr, 32);
}

static void set_desc_cnt(struct fsldma_chan *fsl_chan,
				struct fsl_dma_ld_hw *hw, u32 count)
{
	hw->count = CPU_TO_DMA(fsl_chan, count, 32);
}

static void set_desc_src(struct fsldma_chan *fsl_chan,
				struct fsl_dma_ld_hw *hw, dma_addr_t src)
{
	u64 snoop_bits;

	snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
		? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
	hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
}

static void set_desc_dst(struct fsldma_chan *fsl_chan,
				struct fsl_dma_ld_hw *hw, dma_addr_t dst)
{
	u64 snoop_bits;

	snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
		? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
	hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dst, 64);
}

static void set_desc_next(struct fsldma_chan *fsl_chan,
				struct fsl_dma_ld_hw *hw, dma_addr_t next)
{
	u64 snoop_bits;

	snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
		? FSL_DMA_SNEN : 0;
	hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
}

static void set_cdar(struct fsldma_chan *fsl_chan, dma_addr_t addr)
{
	DMA_OUT(fsl_chan, &fsl_chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
}

static dma_addr_t get_cdar(struct fsldma_chan *fsl_chan)
{
	return DMA_IN(fsl_chan, &fsl_chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
}

static void set_ndar(struct fsldma_chan *fsl_chan, dma_addr_t addr)
{
	DMA_OUT(fsl_chan, &fsl_chan->regs->ndar, addr, 64);
}

static dma_addr_t get_ndar(struct fsldma_chan *fsl_chan)
{
	return DMA_IN(fsl_chan, &fsl_chan->regs->ndar, 64);
}

static u32 get_bcr(struct fsldma_chan *fsl_chan)
{
	return DMA_IN(fsl_chan, &fsl_chan->regs->bcr, 32);
}

static int dma_is_idle(struct fsldma_chan *fsl_chan)
{
	u32 sr = get_sr(fsl_chan);
	return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
}

static void dma_start(struct fsldma_chan *fsl_chan)
{
	u32 mode;

	mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);

	if ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
		if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
			DMA_OUT(fsl_chan, &fsl_chan->regs->bcr, 0, 32);
			mode |= FSL_DMA_MR_EMP_EN;
		} else {
			mode &= ~FSL_DMA_MR_EMP_EN;
		}
	}

	if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
		mode |= FSL_DMA_MR_EMS_EN;
	else
		mode |= FSL_DMA_MR_CS;

	DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
}

static void dma_halt(struct fsldma_chan *fsl_chan)
{
	u32 mode;
	int i;

	mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
	mode |= FSL_DMA_MR_CA;
	DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);

	mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
	DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);

	for (i = 0; i < 100; i++) {
		if (dma_is_idle(fsl_chan))
			break;
		udelay(10);
	}

	if (i >= 100 && !dma_is_idle(fsl_chan))
		dev_err(fsl_chan->dev, "DMA halt timeout!\n");
}

static void set_ld_eol(struct fsldma_chan *fsl_chan,
			struct fsl_desc_sw *desc)
{
	u64 snoop_bits;

	snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
		? FSL_DMA_SNEN : 0;

	desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
		DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
			| snoop_bits, 64);
}

static void append_ld_queue(struct fsldma_chan *fsl_chan,
		struct fsl_desc_sw *new_desc)
{
	struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);

	if (list_empty(&fsl_chan->ld_queue))
		return;

	/* Link to the new descriptor physical address and
	 * Enable End-of-segment interrupt for
	 * the last link descriptor.
	 * (the previous node's next link descriptor)
	 *
	 * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
	 */
	queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
			new_desc->async_tx.phys | FSL_DMA_EOSIE |
			(((fsl_chan->feature & FSL_DMA_IP_MASK)
				== FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
}

/**
 * fsl_chan_set_src_loop_size - Set source address hold transfer size
 * @fsl_chan : Freescale DMA channel
 * @size     : Address loop size, 0 for disable loop
 *
 * The set source address hold transfer size. The source
 * address hold or loop transfer size is when the DMA transfer
 * data from source address (SA), if the loop size is 4, the DMA will
 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
 * SA + 1 ... and so on.
 */
static void fsl_chan_set_src_loop_size(struct fsldma_chan *fsl_chan, int size)
{
	u32 mode;

	mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);

	switch (size) {
	case 0:
		mode &= ~FSL_DMA_MR_SAHE;
		break;
	case 1:
	case 2:
	case 4:
	case 8:
		mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
		break;
	}

	DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
}

/**
 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
 * @fsl_chan : Freescale DMA channel
 * @size     : Address loop size, 0 for disable loop
 *
 * The set destination address hold transfer size. The destination
 * address hold or loop transfer size is when the DMA transfer
 * data to destination address (TA), if the loop size is 4, the DMA will
 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
 * TA + 1 ... and so on.
 */
static void fsl_chan_set_dst_loop_size(struct fsldma_chan *fsl_chan, int size)
{
	u32 mode;

	mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);

	switch (size) {
	case 0:
		mode &= ~FSL_DMA_MR_DAHE;
		break;
	case 1:
	case 2:
	case 4:
	case 8:
		mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
		break;
	}

	DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
}

/**
 * fsl_chan_set_request_count - Set DMA Request Count for external control
 * @fsl_chan : Freescale DMA channel
 * @size     : Number of bytes to transfer in a single request
 *
 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 * The DMA request count is how many bytes are allowed to transfer before
 * pausing the channel, after which a new assertion of DREQ# resumes channel
 * operation.
 *
 * A size of 0 disables external pause control. The maximum size is 1024.
 */
static void fsl_chan_set_request_count(struct fsldma_chan *fsl_chan, int size)
{
	u32 mode;

	BUG_ON(size > 1024);

	mode = DMA_IN(fsl_chan, &fsl_chan->regs->mr, 32);
	mode |= (__ilog2(size) << 24) & 0x0f000000;

	DMA_OUT(fsl_chan, &fsl_chan->regs->mr, mode, 32);
}

/**
 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
 * @fsl_chan : Freescale DMA channel
 * @enable   : 0 is disabled, 1 is enabled.
 *
 * The Freescale DMA channel can be controlled by the external signal DREQ#.
 * The DMA Request Count feature should be used in addition to this feature
 * to set the number of bytes to transfer before pausing the channel.
 */
static void fsl_chan_toggle_ext_pause(struct fsldma_chan *fsl_chan, int enable)
{
	if (enable)
		fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
	else
		fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
}

/**
 * fsl_chan_toggle_ext_start - Toggle channel external start status
 * @fsl_chan : Freescale DMA channel
 * @enable   : 0 is disabled, 1 is enabled.
 *
 * If enable the external start, the channel can be started by an
 * external DMA start pin. So the dma_start() does not start the
 * transfer immediately. The DMA channel will wait for the
 * control pin asserted.
 */
static void fsl_chan_toggle_ext_start(struct fsldma_chan *fsl_chan, int enable)
{
	if (enable)
		fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
	else
		fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
}

static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
{
	struct fsldma_chan *fsl_chan = to_fsl_chan(tx->chan);
	struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
	struct fsl_desc_sw *child;
	unsigned long flags;
	dma_cookie_t cookie;

	/* cookie increment and adding to ld_queue must be atomic */
	spin_lock_irqsave(&fsl_chan->desc_lock, flags);

	cookie = fsl_chan->common.cookie;
	list_for_each_entry(child, &desc->tx_list, node) {
		cookie++;
		if (cookie < 0)
			cookie = 1;

		desc->async_tx.cookie = cookie;
	}

	fsl_chan->common.cookie = cookie;
	append_ld_queue(fsl_chan, desc);
	list_splice_init(&desc->tx_list, fsl_chan->ld_queue.prev);

	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);

	return cookie;
}

/**
 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
 * @fsl_chan : Freescale DMA channel
 *
 * Return - The descriptor allocated. NULL for failed.
 */
static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
					struct fsldma_chan *fsl_chan)
{
	dma_addr_t pdesc;
	struct fsl_desc_sw *desc_sw;

	desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
	if (desc_sw) {
		memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
		INIT_LIST_HEAD(&desc_sw->tx_list);
		dma_async_tx_descriptor_init(&desc_sw->async_tx,
						&fsl_chan->common);
		desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
		desc_sw->async_tx.phys = pdesc;
	}

	return desc_sw;
}


/**
 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
 * @fsl_chan : Freescale DMA channel
 *
 * This function will create a dma pool for descriptor allocation.
 *
 * Return - The number of descriptors allocated.
 */
static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
{
	struct fsldma_chan *fsl_chan = to_fsl_chan(chan);

	/* Has this channel already been allocated? */
	if (fsl_chan->desc_pool)
		return 1;

	/* We need the descriptor to be aligned to 32bytes
	 * for meeting FSL DMA specification requirement.
	 */
	fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
			fsl_chan->dev, sizeof(struct fsl_desc_sw),
			32, 0);
	if (!fsl_chan->desc_pool) {
		dev_err(fsl_chan->dev, "No memory for channel %d "
			"descriptor dma pool.\n", fsl_chan->id);
		return 0;
	}

	return 1;
}

/**
 * fsl_dma_free_chan_resources - Free all resources of the channel.
 * @fsl_chan : Freescale DMA channel
 */
static void fsl_dma_free_chan_resources(struct dma_chan *chan)
{
	struct fsldma_chan *fsl_chan = to_fsl_chan(chan);
	struct fsl_desc_sw *desc, *_desc;
	unsigned long flags;

	dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
	spin_lock_irqsave(&fsl_chan->desc_lock, flags);
	list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
#ifdef FSL_DMA_LD_DEBUG
		dev_dbg(fsl_chan->dev,
				"LD %p will be released.\n", desc);
#endif
		list_del(&desc->node);
		/* free link descriptor */
		dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
	}
	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
	dma_pool_destroy(fsl_chan->desc_pool);

	fsl_chan->desc_pool = NULL;
}

static struct dma_async_tx_descriptor *
fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags)
{
	struct fsldma_chan *fsl_chan;
	struct fsl_desc_sw *new;

	if (!chan)
		return NULL;

	fsl_chan = to_fsl_chan(chan);

	new = fsl_dma_alloc_descriptor(fsl_chan);
	if (!new) {
		dev_err(fsl_chan->dev, "No free memory for link descriptor\n");
		return NULL;
	}

	new->async_tx.cookie = -EBUSY;
	new->async_tx.flags = flags;

	/* Insert the link descriptor to the LD ring */
	list_add_tail(&new->node, &new->tx_list);

	/* Set End-of-link to the last link descriptor of new list*/
	set_ld_eol(fsl_chan, new);

	return &new->async_tx;
}

static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
	struct dma_chan *chan, dma_addr_t dma_dst, dma_addr_t dma_src,
	size_t len, unsigned long flags)
{
	struct fsldma_chan *fsl_chan;
	struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
	struct list_head *list;
	size_t copy;

	if (!chan)
		return NULL;

	if (!len)
		return NULL;

	fsl_chan = to_fsl_chan(chan);

	do {

		/* Allocate the link descriptor from DMA pool */
		new = fsl_dma_alloc_descriptor(fsl_chan);
		if (!new) {
			dev_err(fsl_chan->dev,
					"No free memory for link descriptor\n");
			goto fail;
		}
#ifdef FSL_DMA_LD_DEBUG
		dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
#endif

		copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);

		set_desc_cnt(fsl_chan, &new->hw, copy);
		set_desc_src(fsl_chan, &new->hw, dma_src);
		set_desc_dst(fsl_chan, &new->hw, dma_dst);

		if (!first)
			first = new;
		else
			set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);

		new->async_tx.cookie = 0;
		async_tx_ack(&new->async_tx);

		prev = new;
		len -= copy;
		dma_src += copy;
		dma_dst += copy;

		/* Insert the link descriptor to the LD ring */
		list_add_tail(&new->node, &first->tx_list);
	} while (len);

	new->async_tx.flags = flags; /* client is in control of this ack */
	new->async_tx.cookie = -EBUSY;

	/* Set End-of-link to the last link descriptor of new list*/
	set_ld_eol(fsl_chan, new);

	return &first->async_tx;

fail:
	if (!first)
		return NULL;

	list = &first->tx_list;
	list_for_each_entry_safe_reverse(new, prev, list, node) {
		list_del(&new->node);
		dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
	}

	return NULL;
}

/**
 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
 * @chan: DMA channel
 * @sgl: scatterlist to transfer to/from
 * @sg_len: number of entries in @scatterlist
 * @direction: DMA direction
 * @flags: DMAEngine flags
 *
 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
 * DMA_SLAVE API, this gets the device-specific information from the
 * chan->private variable.
 */
static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
	struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
	enum dma_data_direction direction, unsigned long flags)
{
	struct fsldma_chan *fsl_chan;
	struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
	struct fsl_dma_slave *slave;
	struct list_head *tx_list;
	size_t copy;

	int i;
	struct scatterlist *sg;
	size_t sg_used;
	size_t hw_used;
	struct fsl_dma_hw_addr *hw;
	dma_addr_t dma_dst, dma_src;

	if (!chan)
		return NULL;

	if (!chan->private)
		return NULL;

	fsl_chan = to_fsl_chan(chan);
	slave = chan->private;

	if (list_empty(&slave->addresses))
		return NULL;

	hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry);
	hw_used = 0;

	/*
	 * Build the hardware transaction to copy from the scatterlist to
	 * the hardware, or from the hardware to the scatterlist
	 *
	 * If you are copying from the hardware to the scatterlist and it
	 * takes two hardware entries to fill an entire page, then both
	 * hardware entries will be coalesced into the same page
	 *
	 * If you are copying from the scatterlist to the hardware and a
	 * single page can fill two hardware entries, then the data will
	 * be read out of the page into the first hardware entry, and so on
	 */
	for_each_sg(sgl, sg, sg_len, i) {
		sg_used = 0;

		/* Loop until the entire scatterlist entry is used */
		while (sg_used < sg_dma_len(sg)) {

			/*
			 * If we've used up the current hardware address/length
			 * pair, we need to load a new one
			 *
			 * This is done in a while loop so that descriptors with
			 * length == 0 will be skipped
			 */
			while (hw_used >= hw->length) {

				/*
				 * If the current hardware entry is the last
				 * entry in the list, we're finished
				 */
				if (list_is_last(&hw->entry, &slave->addresses))
					goto finished;

				/* Get the next hardware address/length pair */
				hw = list_entry(hw->entry.next,
						struct fsl_dma_hw_addr, entry);
				hw_used = 0;
			}

			/* Allocate the link descriptor from DMA pool */
			new = fsl_dma_alloc_descriptor(fsl_chan);
			if (!new) {
				dev_err(fsl_chan->dev, "No free memory for "
						       "link descriptor\n");
				goto fail;
			}
#ifdef FSL_DMA_LD_DEBUG
			dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
#endif

			/*
			 * Calculate the maximum number of bytes to transfer,
			 * making sure it is less than the DMA controller limit
			 */
			copy = min_t(size_t, sg_dma_len(sg) - sg_used,
					     hw->length - hw_used);
			copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);

			/*
			 * DMA_FROM_DEVICE
			 * from the hardware to the scatterlist
			 *
			 * DMA_TO_DEVICE
			 * from the scatterlist to the hardware
			 */
			if (direction == DMA_FROM_DEVICE) {
				dma_src = hw->address + hw_used;
				dma_dst = sg_dma_address(sg) + sg_used;
			} else {
				dma_src = sg_dma_address(sg) + sg_used;
				dma_dst = hw->address + hw_used;
			}

			/* Fill in the descriptor */
			set_desc_cnt(fsl_chan, &new->hw, copy);
			set_desc_src(fsl_chan, &new->hw, dma_src);
			set_desc_dst(fsl_chan, &new->hw, dma_dst);

			/*
			 * If this is not the first descriptor, chain the
			 * current descriptor after the previous descriptor
			 */
			if (!first) {
				first = new;
			} else {
				set_desc_next(fsl_chan, &prev->hw,
					      new->async_tx.phys);
			}

			new->async_tx.cookie = 0;
			async_tx_ack(&new->async_tx);

			prev = new;
			sg_used += copy;
			hw_used += copy;

			/* Insert the link descriptor into the LD ring */
			list_add_tail(&new->node, &first->tx_list);
		}
	}

finished:

	/* All of the hardware address/length pairs had length == 0 */
	if (!first || !new)
		return NULL;

	new->async_tx.flags = flags;
	new->async_tx.cookie = -EBUSY;

	/* Set End-of-link to the last link descriptor of new list */
	set_ld_eol(fsl_chan, new);

	/* Enable extra controller features */
	if (fsl_chan->set_src_loop_size)
		fsl_chan->set_src_loop_size(fsl_chan, slave->src_loop_size);

	if (fsl_chan->set_dst_loop_size)
		fsl_chan->set_dst_loop_size(fsl_chan, slave->dst_loop_size);

	if (fsl_chan->toggle_ext_start)
		fsl_chan->toggle_ext_start(fsl_chan, slave->external_start);

	if (fsl_chan->toggle_ext_pause)
		fsl_chan->toggle_ext_pause(fsl_chan, slave->external_pause);

	if (fsl_chan->set_request_count)
		fsl_chan->set_request_count(fsl_chan, slave->request_count);

	return &first->async_tx;

fail:
	/* If first was not set, then we failed to allocate the very first
	 * descriptor, and we're done */
	if (!first)
		return NULL;

	/*
	 * First is set, so all of the descriptors we allocated have been added
	 * to first->tx_list, INCLUDING "first" itself. Therefore we
	 * must traverse the list backwards freeing each descriptor in turn
	 *
	 * We're re-using variables for the loop, oh well
	 */
	tx_list = &first->tx_list;
	list_for_each_entry_safe_reverse(new, prev, tx_list, node) {
		list_del_init(&new->node);
		dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
	}

	return NULL;
}

static void fsl_dma_device_terminate_all(struct dma_chan *chan)
{
	struct fsldma_chan *fsl_chan;
	struct fsl_desc_sw *desc, *tmp;
	unsigned long flags;

	if (!chan)
		return;

	fsl_chan = to_fsl_chan(chan);

	/* Halt the DMA engine */
	dma_halt(fsl_chan);

	spin_lock_irqsave(&fsl_chan->desc_lock, flags);

	/* Remove and free all of the descriptors in the LD queue */
	list_for_each_entry_safe(desc, tmp, &fsl_chan->ld_queue, node) {
		list_del(&desc->node);
		dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
	}

	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
}

/**
 * fsl_dma_update_completed_cookie - Update the completed cookie.
 * @fsl_chan : Freescale DMA channel
 */
static void fsl_dma_update_completed_cookie(struct fsldma_chan *fsl_chan)
{
	struct fsl_desc_sw *cur_desc, *desc;
	dma_addr_t ld_phy;

	ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;

	if (ld_phy) {
		cur_desc = NULL;
		list_for_each_entry(desc, &fsl_chan->ld_queue, node)
			if (desc->async_tx.phys == ld_phy) {
				cur_desc = desc;
				break;
			}

		if (cur_desc && cur_desc->async_tx.cookie) {
			if (dma_is_idle(fsl_chan))
				fsl_chan->completed_cookie =
					cur_desc->async_tx.cookie;
			else
				fsl_chan->completed_cookie =
					cur_desc->async_tx.cookie - 1;
		}
	}
}

/**
 * fsl_chan_ld_cleanup - Clean up link descriptors
 * @fsl_chan : Freescale DMA channel
 *
 * This function clean up the ld_queue of DMA channel.
 * If 'in_intr' is set, the function will move the link descriptor to
 * the recycle list. Otherwise, free it directly.
 */
static void fsl_chan_ld_cleanup(struct fsldma_chan *fsl_chan)
{
	struct fsl_desc_sw *desc, *_desc;
	unsigned long flags;

	spin_lock_irqsave(&fsl_chan->desc_lock, flags);

	dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
			fsl_chan->completed_cookie);
	list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
		dma_async_tx_callback callback;
		void *callback_param;

		if (dma_async_is_complete(desc->async_tx.cookie,
			    fsl_chan->completed_cookie, fsl_chan->common.cookie)
				== DMA_IN_PROGRESS)
			break;

		callback = desc->async_tx.callback;
		callback_param = desc->async_tx.callback_param;

		/* Remove from ld_queue list */
		list_del(&desc->node);

		dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
				desc);
		dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);

		/* Run the link descriptor callback function */
		if (callback) {
			spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
			dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
					desc);
			callback(callback_param);
			spin_lock_irqsave(&fsl_chan->desc_lock, flags);
		}
	}
	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
}

/**
 * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
 * @fsl_chan : Freescale DMA channel
 */
static void fsl_chan_xfer_ld_queue(struct fsldma_chan *fsl_chan)
{
	struct list_head *ld_node;
	dma_addr_t next_dst_addr;
	unsigned long flags;

	spin_lock_irqsave(&fsl_chan->desc_lock, flags);

	if (!dma_is_idle(fsl_chan))
		goto out_unlock;

	dma_halt(fsl_chan);

	/* If there are some link descriptors
	 * not transfered in queue. We need to start it.
	 */

	/* Find the first un-transfer desciptor */
	for (ld_node = fsl_chan->ld_queue.next;
		(ld_node != &fsl_chan->ld_queue)
			&& (dma_async_is_complete(
				to_fsl_desc(ld_node)->async_tx.cookie,
				fsl_chan->completed_cookie,
				fsl_chan->common.cookie) == DMA_SUCCESS);
		ld_node = ld_node->next);

	if (ld_node != &fsl_chan->ld_queue) {
		/* Get the ld start address from ld_queue */
		next_dst_addr = to_fsl_desc(ld_node)->async_tx.phys;
		dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%llx\n",
				(unsigned long long)next_dst_addr);
		set_cdar(fsl_chan, next_dst_addr);
		dma_start(fsl_chan);
	} else {
		set_cdar(fsl_chan, 0);
		set_ndar(fsl_chan, 0);
	}

out_unlock:
	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
}

/**
 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
 * @fsl_chan : Freescale DMA channel
 */
static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
{
	struct fsldma_chan *fsl_chan = to_fsl_chan(chan);

#ifdef FSL_DMA_LD_DEBUG
	struct fsl_desc_sw *ld;
	unsigned long flags;

	spin_lock_irqsave(&fsl_chan->desc_lock, flags);
	if (list_empty(&fsl_chan->ld_queue)) {
		spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
		return;
	}

	dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
	list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
		int i;
		dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
				fsl_chan->id, ld->async_tx.phys);
		for (i = 0; i < 8; i++)
			dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
					i, *(((u32 *)&ld->hw) + i));
	}
	dev_dbg(fsl_chan->dev, "----------------\n");
	spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
#endif

	fsl_chan_xfer_ld_queue(fsl_chan);
}

/**
 * fsl_dma_is_complete - Determine the DMA status
 * @fsl_chan : Freescale DMA channel
 */
static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
					dma_cookie_t cookie,
					dma_cookie_t *done,
					dma_cookie_t *used)
{
	struct fsldma_chan *fsl_chan = to_fsl_chan(chan);
	dma_cookie_t last_used;
	dma_cookie_t last_complete;

	fsl_chan_ld_cleanup(fsl_chan);

	last_used = chan->cookie;
	last_complete = fsl_chan->completed_cookie;

	if (done)
		*done = last_complete;

	if (used)
		*used = last_used;

	return dma_async_is_complete(cookie, last_complete, last_used);
}

static irqreturn_t fsldma_chan_irq(int irq, void *data)
{
	struct fsldma_chan *fsl_chan = data;
	u32 stat;
	int update_cookie = 0;
	int xfer_ld_q = 0;

	stat = get_sr(fsl_chan);
	dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
						fsl_chan->id, stat);
	set_sr(fsl_chan, stat);		/* Clear the event register */

	stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
	if (!stat)
		return IRQ_NONE;

	if (stat & FSL_DMA_SR_TE)
		dev_err(fsl_chan->dev, "Transfer Error!\n");

	/* Programming Error
	 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
	 * triger a PE interrupt.
	 */
	if (stat & FSL_DMA_SR_PE) {
		dev_dbg(fsl_chan->dev, "event: Programming Error INT\n");
		if (get_bcr(fsl_chan) == 0) {
			/* BCR register is 0, this is a DMA_INTERRUPT async_tx.
			 * Now, update the completed cookie, and continue the
			 * next uncompleted transfer.
			 */
			update_cookie = 1;
			xfer_ld_q = 1;
		}
		stat &= ~FSL_DMA_SR_PE;
	}

	/* If the link descriptor segment transfer finishes,
	 * we will recycle the used descriptor.
	 */
	if (stat & FSL_DMA_SR_EOSI) {
		dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
		dev_dbg(fsl_chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n",
			(unsigned long long)get_cdar(fsl_chan),
			(unsigned long long)get_ndar(fsl_chan));
		stat &= ~FSL_DMA_SR_EOSI;
		update_cookie = 1;
	}

	/* For MPC8349, EOCDI event need to update cookie
	 * and start the next transfer if it exist.
	 */
	if (stat & FSL_DMA_SR_EOCDI) {
		dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n");
		stat &= ~FSL_DMA_SR_EOCDI;
		update_cookie = 1;
		xfer_ld_q = 1;
	}

	/* If it current transfer is the end-of-transfer,
	 * we should clear the Channel Start bit for
	 * prepare next transfer.
	 */
	if (stat & FSL_DMA_SR_EOLNI) {
		dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
		stat &= ~FSL_DMA_SR_EOLNI;
		xfer_ld_q = 1;
	}

	if (update_cookie)
		fsl_dma_update_completed_cookie(fsl_chan);
	if (xfer_ld_q)
		fsl_chan_xfer_ld_queue(fsl_chan);
	if (stat)
		dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
					stat);

	dev_dbg(fsl_chan->dev, "event: Exit\n");
	tasklet_schedule(&fsl_chan->tasklet);
	return IRQ_HANDLED;
}

static irqreturn_t fsldma_irq(int irq, void *data)
{
	struct fsldma_device *fdev = data;
	int ch_nr;
	u32 gsr;

	gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
			: in_le32(fdev->regs);
	ch_nr = (32 - ffs(gsr)) / 8;

	return fdev->chan[ch_nr] ? fsldma_chan_irq(irq,
			fdev->chan[ch_nr]) : IRQ_NONE;
}

static void dma_do_tasklet(unsigned long data)
{
	struct fsldma_chan *fsl_chan = (struct fsldma_chan *)data;
	fsl_chan_ld_cleanup(fsl_chan);
}

/*----------------------------------------------------------------------------*/
/* OpenFirmware Subsystem                                                     */
/*----------------------------------------------------------------------------*/

static int __devinit fsl_dma_chan_probe(struct fsldma_device *fdev,
	struct device_node *node, u32 feature, const char *compatible)
{
	struct fsldma_chan *fchan;
	struct resource res;
	int err;

	/* alloc channel */
	fchan = kzalloc(sizeof(*fchan), GFP_KERNEL);
	if (!fchan) {
		dev_err(fdev->dev, "no free memory for DMA channels!\n");
		err = -ENOMEM;
		goto out_return;
	}

	/* ioremap registers for use */
	fchan->regs = of_iomap(node, 0);
	if (!fchan->regs) {
		dev_err(fdev->dev, "unable to ioremap registers\n");
		err = -ENOMEM;
		goto out_free_fchan;
	}

	err = of_address_to_resource(node, 0, &res);
	if (err) {
		dev_err(fdev->dev, "unable to find 'reg' property\n");
		goto out_iounmap_regs;
	}

	fchan->feature = feature;
	if (!fdev->feature)
		fdev->feature = fchan->feature;

	/*
	 * If the DMA device's feature is different than the feature
	 * of its channels, report the bug
	 */
	WARN_ON(fdev->feature != fchan->feature);

	fchan->dev = fdev->dev;
	fchan->id = ((res.start - 0x100) & 0xfff) >> 7;
	if (fchan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
		dev_err(fdev->dev, "too many channels for device\n");
		err = -EINVAL;
		goto out_iounmap_regs;
	}

	fdev->chan[fchan->id] = fchan;
	tasklet_init(&fchan->tasklet, dma_do_tasklet, (unsigned long)fchan);

	/* Initialize the channel */
	dma_init(fchan);

	/* Clear cdar registers */
	set_cdar(fchan, 0);

	switch (fchan->feature & FSL_DMA_IP_MASK) {
	case FSL_DMA_IP_85XX:
		fchan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
	case FSL_DMA_IP_83XX:
		fchan->toggle_ext_start = fsl_chan_toggle_ext_start;
		fchan->set_src_loop_size = fsl_chan_set_src_loop_size;
		fchan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
		fchan->set_request_count = fsl_chan_set_request_count;
	}

	spin_lock_init(&fchan->desc_lock);
	INIT_LIST_HEAD(&fchan->ld_queue);

	fchan->common.device = &fdev->common;

	/* Add the channel to DMA device channel list */
	list_add_tail(&fchan->common.device_node, &fdev->common.channels);
	fdev->common.chancnt++;

	fchan->irq = irq_of_parse_and_map(node, 0);
	if (fchan->irq != NO_IRQ) {
		err = request_irq(fchan->irq, &fsldma_chan_irq,
				  IRQF_SHARED, "fsldma-channel", fchan);
		if (err) {
			dev_err(fdev->dev, "unable to request IRQ "
					   "for channel %d\n", fchan->id);
			goto out_list_del;
		}
	}

	dev_info(fdev->dev, "#%d (%s), irq %d\n", fchan->id, compatible,
		 fchan->irq != NO_IRQ ? fchan->irq : fdev->irq);

	return 0;

out_list_del:
	irq_dispose_mapping(fchan->irq);
	list_del_init(&fchan->common.device_node);
out_iounmap_regs:
	iounmap(fchan->regs);
out_free_fchan:
	kfree(fchan);
out_return:
	return err;
}

static void fsl_dma_chan_remove(struct fsldma_chan *fchan)
{
	if (fchan->irq != NO_IRQ) {
		free_irq(fchan->irq, fchan);
		irq_dispose_mapping(fchan->irq);
	}

	list_del(&fchan->common.device_node);
	iounmap(fchan->regs);
	kfree(fchan);
}

static int __devinit fsldma_of_probe(struct of_device *op,
			const struct of_device_id *match)
{
	struct fsldma_device *fdev;
	struct device_node *child;
	int err;

	fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
	if (!fdev) {
		dev_err(&op->dev, "No enough memory for 'priv'\n");
		err = -ENOMEM;
		goto out_return;
	}

	fdev->dev = &op->dev;
	INIT_LIST_HEAD(&fdev->common.channels);

	/* ioremap the registers for use */
	fdev->regs = of_iomap(op->node, 0);
	if (!fdev->regs) {
		dev_err(&op->dev, "unable to ioremap registers\n");
		err = -ENOMEM;
		goto out_free_fdev;
	}

	dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
	dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
	dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
	fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
	fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
	fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
	fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
	fdev->common.device_is_tx_complete = fsl_dma_is_complete;
	fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
	fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
	fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
	fdev->common.dev = &op->dev;

	fdev->irq = irq_of_parse_and_map(op->node, 0);
	if (fdev->irq != NO_IRQ) {
		err = request_irq(fdev->irq, &fsldma_irq, IRQF_SHARED,
				  "fsldma-device", fdev);
		if (err) {
			dev_err(&op->dev, "unable to request IRQ\n");
			goto out_iounmap_regs;
		}
	}

	dev_set_drvdata(&op->dev, fdev);

	/*
	 * We cannot use of_platform_bus_probe() because there is no
	 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
	 * channel object.
	 */
	for_each_child_of_node(op->node, child) {
		if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
			fsl_dma_chan_probe(fdev, child,
				FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
				"fsl,eloplus-dma-channel");
		}

		if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
			fsl_dma_chan_probe(fdev, child,
				FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
				"fsl,elo-dma-channel");
		}
	}

	dma_async_device_register(&fdev->common);
	return 0;

out_iounmap_regs:
	iounmap(fdev->regs);
out_free_fdev:
	kfree(fdev);
out_return:
	return err;
}

static int fsldma_of_remove(struct of_device *op)
{
	struct fsldma_device *fdev;
	unsigned int i;

	fdev = dev_get_drvdata(&op->dev);
	dma_async_device_unregister(&fdev->common);

	for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
		if (fdev->chan[i])
			fsl_dma_chan_remove(fdev->chan[i]);
	}

	if (fdev->irq != NO_IRQ)
		free_irq(fdev->irq, fdev);

	iounmap(fdev->regs);
	dev_set_drvdata(&op->dev, NULL);
	kfree(fdev);

	return 0;
}

static struct of_device_id fsldma_of_ids[] = {
	{ .compatible = "fsl,eloplus-dma", },
	{ .compatible = "fsl,elo-dma", },
	{}
};

static struct of_platform_driver fsldma_of_driver = {
	.name		= "fsl-elo-dma",
	.match_table	= fsldma_of_ids,
	.probe		= fsldma_of_probe,
	.remove		= fsldma_of_remove,
};

/*----------------------------------------------------------------------------*/
/* Module Init / Exit                                                         */
/*----------------------------------------------------------------------------*/

static __init int fsldma_init(void)
{
	int ret;

	pr_info("Freescale Elo / Elo Plus DMA driver\n");

	ret = of_register_platform_driver(&fsldma_of_driver);
	if (ret)
		pr_err("fsldma: failed to register platform driver\n");

	return ret;
}

static void __exit fsldma_exit(void)
{
	of_unregister_platform_driver(&fsldma_of_driver);
}

subsys_initcall(fsldma_init);
module_exit(fsldma_exit);

MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
MODULE_LICENSE("GPL");