1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
|
/*
* Crypto acceleration support for Rockchip RK3288
*
* Copyright (c) 2015, Fuzhou Rockchip Electronics Co., Ltd
*
* Author: Zain Wang <zain.wang@rock-chips.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* Some ideas are from marvell/cesa.c and s5p-sss.c driver.
*/
#include "rk3288_crypto.h"
/*
* IC can not process zero message hash,
* so we put the fixed hash out when met zero message.
*/
static int zero_message_process(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
int rk_digest_size = crypto_ahash_digestsize(tfm);
switch (rk_digest_size) {
case SHA1_DIGEST_SIZE:
memcpy(req->result, sha1_zero_message_hash, rk_digest_size);
break;
case SHA256_DIGEST_SIZE:
memcpy(req->result, sha256_zero_message_hash, rk_digest_size);
break;
case MD5_DIGEST_SIZE:
memcpy(req->result, md5_zero_message_hash, rk_digest_size);
break;
default:
return -EINVAL;
}
return 0;
}
static void rk_ahash_crypto_complete(struct rk_crypto_info *dev, int err)
{
if (dev->ahash_req->base.complete)
dev->ahash_req->base.complete(&dev->ahash_req->base, err);
}
static void rk_ahash_reg_init(struct rk_crypto_info *dev)
{
int reg_status = 0;
reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL) |
RK_CRYPTO_HASH_FLUSH | _SBF(0xffff, 16);
CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
reg_status = CRYPTO_READ(dev, RK_CRYPTO_CTRL);
reg_status &= (~RK_CRYPTO_HASH_FLUSH);
reg_status |= _SBF(0xffff, 16);
CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, reg_status);
memset_io(dev->reg + RK_CRYPTO_HASH_DOUT_0, 0, 32);
CRYPTO_WRITE(dev, RK_CRYPTO_INTENA, RK_CRYPTO_HRDMA_ERR_ENA |
RK_CRYPTO_HRDMA_DONE_ENA);
CRYPTO_WRITE(dev, RK_CRYPTO_INTSTS, RK_CRYPTO_HRDMA_ERR_INT |
RK_CRYPTO_HRDMA_DONE_INT);
CRYPTO_WRITE(dev, RK_CRYPTO_HASH_CTRL, dev->mode |
RK_CRYPTO_HASH_SWAP_DO);
CRYPTO_WRITE(dev, RK_CRYPTO_CONF, RK_CRYPTO_BYTESWAP_HRFIFO |
RK_CRYPTO_BYTESWAP_BRFIFO |
RK_CRYPTO_BYTESWAP_BTFIFO);
CRYPTO_WRITE(dev, RK_CRYPTO_HASH_MSG_LEN, dev->total);
}
static int rk_ahash_init(struct ahash_request *req)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_init(&rctx->fallback_req);
}
static int rk_ahash_update(struct ahash_request *req)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
return crypto_ahash_update(&rctx->fallback_req);
}
static int rk_ahash_final(struct ahash_request *req)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.result = req->result;
return crypto_ahash_final(&rctx->fallback_req);
}
static int rk_ahash_finup(struct ahash_request *req)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
rctx->fallback_req.nbytes = req->nbytes;
rctx->fallback_req.src = req->src;
rctx->fallback_req.result = req->result;
return crypto_ahash_finup(&rctx->fallback_req);
}
static int rk_ahash_import(struct ahash_request *req, const void *in)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_import(&rctx->fallback_req, in);
}
static int rk_ahash_export(struct ahash_request *req, void *out)
{
struct rk_ahash_rctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *ctx = crypto_ahash_ctx(tfm);
ahash_request_set_tfm(&rctx->fallback_req, ctx->fallback_tfm);
rctx->fallback_req.base.flags = req->base.flags &
CRYPTO_TFM_REQ_MAY_SLEEP;
return crypto_ahash_export(&rctx->fallback_req, out);
}
static int rk_ahash_digest(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct rk_ahash_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
struct crypto_async_request *async_req, *backlog;
struct rk_crypto_info *dev = NULL;
unsigned long flags;
int ret;
if (!req->nbytes)
return zero_message_process(req);
dev = tctx->dev;
dev->total = req->nbytes;
dev->left_bytes = req->nbytes;
dev->aligned = 0;
dev->mode = 0;
dev->align_size = 4;
dev->sg_dst = NULL;
dev->sg_src = req->src;
dev->first = req->src;
dev->nents = sg_nents(req->src);
switch (crypto_ahash_digestsize(tfm)) {
case SHA1_DIGEST_SIZE:
dev->mode = RK_CRYPTO_HASH_SHA1;
break;
case SHA256_DIGEST_SIZE:
dev->mode = RK_CRYPTO_HASH_SHA256;
break;
case MD5_DIGEST_SIZE:
dev->mode = RK_CRYPTO_HASH_MD5;
break;
default:
return -EINVAL;
}
rk_ahash_reg_init(dev);
spin_lock_irqsave(&dev->lock, flags);
ret = crypto_enqueue_request(&dev->queue, &req->base);
backlog = crypto_get_backlog(&dev->queue);
async_req = crypto_dequeue_request(&dev->queue);
spin_unlock_irqrestore(&dev->lock, flags);
if (!async_req) {
dev_err(dev->dev, "async_req is NULL !!\n");
return ret;
}
if (backlog) {
backlog->complete(backlog, -EINPROGRESS);
backlog = NULL;
}
dev->ahash_req = ahash_request_cast(async_req);
tasklet_schedule(&dev->queue_task);
/*
* it will take some time to process date after last dma transmission.
*
* waiting time is relative with the last date len,
* so cannot set a fixed time here.
* 10-50 makes system not call here frequently wasting
* efficiency, and make it response quickly when dma
* complete.
*/
while (!CRYPTO_READ(dev, RK_CRYPTO_HASH_STS))
usleep_range(10, 50);
memcpy_fromio(req->result, dev->reg + RK_CRYPTO_HASH_DOUT_0,
crypto_ahash_digestsize(tfm));
return 0;
}
static void crypto_ahash_dma_start(struct rk_crypto_info *dev)
{
CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAS, dev->addr_in);
CRYPTO_WRITE(dev, RK_CRYPTO_HRDMAL, (dev->count + 3) / 4);
CRYPTO_WRITE(dev, RK_CRYPTO_CTRL, RK_CRYPTO_HASH_START |
(RK_CRYPTO_HASH_START << 16));
}
static int rk_ahash_set_data_start(struct rk_crypto_info *dev)
{
int err;
err = dev->load_data(dev, dev->sg_src, NULL);
if (!err)
crypto_ahash_dma_start(dev);
return err;
}
static int rk_ahash_start(struct rk_crypto_info *dev)
{
return rk_ahash_set_data_start(dev);
}
static int rk_ahash_crypto_rx(struct rk_crypto_info *dev)
{
int err = 0;
dev->unload_data(dev);
if (dev->left_bytes) {
if (dev->aligned) {
if (sg_is_last(dev->sg_src)) {
dev_warn(dev->dev, "[%s:%d], Lack of data\n",
__func__, __LINE__);
err = -ENOMEM;
goto out_rx;
}
dev->sg_src = sg_next(dev->sg_src);
}
err = rk_ahash_set_data_start(dev);
} else {
dev->complete(dev, 0);
}
out_rx:
return err;
}
static int rk_cra_hash_init(struct crypto_tfm *tfm)
{
struct rk_ahash_ctx *tctx = crypto_tfm_ctx(tfm);
struct rk_crypto_tmp *algt;
struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
const char *alg_name = crypto_tfm_alg_name(tfm);
algt = container_of(alg, struct rk_crypto_tmp, alg.hash);
tctx->dev = algt->dev;
tctx->dev->addr_vir = (void *)__get_free_page(GFP_KERNEL);
if (!tctx->dev->addr_vir) {
dev_err(tctx->dev->dev, "failed to kmalloc for addr_vir\n");
return -ENOMEM;
}
tctx->dev->start = rk_ahash_start;
tctx->dev->update = rk_ahash_crypto_rx;
tctx->dev->complete = rk_ahash_crypto_complete;
/* for fallback */
tctx->fallback_tfm = crypto_alloc_ahash(alg_name, 0,
CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(tctx->fallback_tfm)) {
dev_err(tctx->dev->dev, "Could not load fallback driver.\n");
return PTR_ERR(tctx->fallback_tfm);
}
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct rk_ahash_rctx) +
crypto_ahash_reqsize(tctx->fallback_tfm));
return tctx->dev->enable_clk(tctx->dev);
}
static void rk_cra_hash_exit(struct crypto_tfm *tfm)
{
struct rk_ahash_ctx *tctx = crypto_tfm_ctx(tfm);
free_page((unsigned long)tctx->dev->addr_vir);
return tctx->dev->disable_clk(tctx->dev);
}
struct rk_crypto_tmp rk_ahash_sha1 = {
.type = ALG_TYPE_HASH,
.alg.hash = {
.init = rk_ahash_init,
.update = rk_ahash_update,
.final = rk_ahash_final,
.finup = rk_ahash_finup,
.export = rk_ahash_export,
.import = rk_ahash_import,
.digest = rk_ahash_digest,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct sha1_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "rk-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct rk_ahash_ctx),
.cra_alignmask = 3,
.cra_init = rk_cra_hash_init,
.cra_exit = rk_cra_hash_exit,
.cra_module = THIS_MODULE,
}
}
}
};
struct rk_crypto_tmp rk_ahash_sha256 = {
.type = ALG_TYPE_HASH,
.alg.hash = {
.init = rk_ahash_init,
.update = rk_ahash_update,
.final = rk_ahash_final,
.finup = rk_ahash_finup,
.export = rk_ahash_export,
.import = rk_ahash_import,
.digest = rk_ahash_digest,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct sha256_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "rk-sha256",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct rk_ahash_ctx),
.cra_alignmask = 3,
.cra_init = rk_cra_hash_init,
.cra_exit = rk_cra_hash_exit,
.cra_module = THIS_MODULE,
}
}
}
};
struct rk_crypto_tmp rk_ahash_md5 = {
.type = ALG_TYPE_HASH,
.alg.hash = {
.init = rk_ahash_init,
.update = rk_ahash_update,
.final = rk_ahash_final,
.finup = rk_ahash_finup,
.export = rk_ahash_export,
.import = rk_ahash_import,
.digest = rk_ahash_digest,
.halg = {
.digestsize = MD5_DIGEST_SIZE,
.statesize = sizeof(struct md5_state),
.base = {
.cra_name = "md5",
.cra_driver_name = "rk-md5",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct rk_ahash_ctx),
.cra_alignmask = 3,
.cra_init = rk_cra_hash_init,
.cra_exit = rk_cra_hash_exit,
.cra_module = THIS_MODULE,
}
}
}
};
|