1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2018 Chelsio Communications, Inc.
*
* Written by: Atul Gupta (atul.gupta@chelsio.com)
*/
#include <linux/module.h>
#include <linux/list.h>
#include <linux/workqueue.h>
#include <linux/skbuff.h>
#include <linux/timer.h>
#include <linux/notifier.h>
#include <linux/inetdevice.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/tls.h>
#include <net/tls.h>
#include "chtls.h"
#include "chtls_cm.h"
static void __set_tcb_field_direct(struct chtls_sock *csk,
struct cpl_set_tcb_field *req, u16 word,
u64 mask, u64 val, u8 cookie, int no_reply)
{
struct ulptx_idata *sc;
INIT_TP_WR_CPL(req, CPL_SET_TCB_FIELD, csk->tid);
req->wr.wr_mid |= htonl(FW_WR_FLOWID_V(csk->tid));
req->reply_ctrl = htons(NO_REPLY_V(no_reply) |
QUEUENO_V(csk->rss_qid));
req->word_cookie = htons(TCB_WORD_V(word) | TCB_COOKIE_V(cookie));
req->mask = cpu_to_be64(mask);
req->val = cpu_to_be64(val);
sc = (struct ulptx_idata *)(req + 1);
sc->cmd_more = htonl(ULPTX_CMD_V(ULP_TX_SC_NOOP));
sc->len = htonl(0);
}
static void __set_tcb_field(struct sock *sk, struct sk_buff *skb, u16 word,
u64 mask, u64 val, u8 cookie, int no_reply)
{
struct cpl_set_tcb_field *req;
struct chtls_sock *csk;
struct ulptx_idata *sc;
unsigned int wrlen;
wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
csk = rcu_dereference_sk_user_data(sk);
req = (struct cpl_set_tcb_field *)__skb_put(skb, wrlen);
__set_tcb_field_direct(csk, req, word, mask, val, cookie, no_reply);
set_wr_txq(skb, CPL_PRIORITY_CONTROL, csk->port_id);
}
/*
* Send control message to HW, message go as immediate data and packet
* is freed immediately.
*/
static int chtls_set_tcb_field(struct sock *sk, u16 word, u64 mask, u64 val)
{
struct cpl_set_tcb_field *req;
unsigned int credits_needed;
struct chtls_sock *csk;
struct ulptx_idata *sc;
struct sk_buff *skb;
unsigned int wrlen;
int ret;
wrlen = roundup(sizeof(*req) + sizeof(*sc), 16);
skb = alloc_skb(wrlen, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
credits_needed = DIV_ROUND_UP(wrlen, 16);
csk = rcu_dereference_sk_user_data(sk);
__set_tcb_field(sk, skb, word, mask, val, 0, 1);
skb_set_queue_mapping(skb, (csk->txq_idx << 1) | CPL_PRIORITY_DATA);
csk->wr_credits -= credits_needed;
csk->wr_unacked += credits_needed;
enqueue_wr(csk, skb);
ret = cxgb4_ofld_send(csk->egress_dev, skb);
if (ret < 0)
kfree_skb(skb);
return ret < 0 ? ret : 0;
}
/*
* Set one of the t_flags bits in the TCB.
*/
int chtls_set_tcb_tflag(struct sock *sk, unsigned int bit_pos, int val)
{
return chtls_set_tcb_field(sk, 1, 1ULL << bit_pos,
(u64)val << bit_pos);
}
static int chtls_set_tcb_keyid(struct sock *sk, int keyid)
{
return chtls_set_tcb_field(sk, 31, 0xFFFFFFFFULL, keyid);
}
static int chtls_set_tcb_seqno(struct sock *sk)
{
return chtls_set_tcb_field(sk, 28, ~0ULL, 0);
}
static int chtls_set_tcb_quiesce(struct sock *sk, int val)
{
return chtls_set_tcb_field(sk, 1, (1ULL << TF_RX_QUIESCE_S),
TF_RX_QUIESCE_V(val));
}
/* TLS Key bitmap processing */
int chtls_init_kmap(struct chtls_dev *cdev, struct cxgb4_lld_info *lldi)
{
unsigned int num_key_ctx, bsize;
int ksize;
num_key_ctx = (lldi->vr->key.size / TLS_KEY_CONTEXT_SZ);
bsize = BITS_TO_LONGS(num_key_ctx);
cdev->kmap.size = num_key_ctx;
cdev->kmap.available = bsize;
ksize = sizeof(*cdev->kmap.addr) * bsize;
cdev->kmap.addr = kvzalloc(ksize, GFP_KERNEL);
if (!cdev->kmap.addr)
return -ENOMEM;
cdev->kmap.start = lldi->vr->key.start;
spin_lock_init(&cdev->kmap.lock);
return 0;
}
static int get_new_keyid(struct chtls_sock *csk, u32 optname)
{
struct net_device *dev = csk->egress_dev;
struct chtls_dev *cdev = csk->cdev;
struct chtls_hws *hws;
struct adapter *adap;
int keyid;
adap = netdev2adap(dev);
hws = &csk->tlshws;
spin_lock_bh(&cdev->kmap.lock);
keyid = find_first_zero_bit(cdev->kmap.addr, cdev->kmap.size);
if (keyid < cdev->kmap.size) {
__set_bit(keyid, cdev->kmap.addr);
if (optname == TLS_RX)
hws->rxkey = keyid;
else
hws->txkey = keyid;
atomic_inc(&adap->chcr_stats.tls_key);
} else {
keyid = -1;
}
spin_unlock_bh(&cdev->kmap.lock);
return keyid;
}
void free_tls_keyid(struct sock *sk)
{
struct chtls_sock *csk = rcu_dereference_sk_user_data(sk);
struct net_device *dev = csk->egress_dev;
struct chtls_dev *cdev = csk->cdev;
struct chtls_hws *hws;
struct adapter *adap;
if (!cdev->kmap.addr)
return;
adap = netdev2adap(dev);
hws = &csk->tlshws;
spin_lock_bh(&cdev->kmap.lock);
if (hws->rxkey >= 0) {
__clear_bit(hws->rxkey, cdev->kmap.addr);
atomic_dec(&adap->chcr_stats.tls_key);
hws->rxkey = -1;
}
if (hws->txkey >= 0) {
__clear_bit(hws->txkey, cdev->kmap.addr);
atomic_dec(&adap->chcr_stats.tls_key);
hws->txkey = -1;
}
spin_unlock_bh(&cdev->kmap.lock);
}
unsigned int keyid_to_addr(int start_addr, int keyid)
{
return (start_addr + (keyid * TLS_KEY_CONTEXT_SZ)) >> 5;
}
static void chtls_rxkey_ivauth(struct _key_ctx *kctx)
{
kctx->iv_to_auth = cpu_to_be64(KEYCTX_TX_WR_IV_V(6ULL) |
KEYCTX_TX_WR_AAD_V(1ULL) |
KEYCTX_TX_WR_AADST_V(5ULL) |
KEYCTX_TX_WR_CIPHER_V(14ULL) |
KEYCTX_TX_WR_CIPHERST_V(0ULL) |
KEYCTX_TX_WR_AUTH_V(14ULL) |
KEYCTX_TX_WR_AUTHST_V(16ULL) |
KEYCTX_TX_WR_AUTHIN_V(16ULL));
}
static int chtls_key_info(struct chtls_sock *csk,
struct _key_ctx *kctx,
u32 keylen, u32 optname,
int cipher_type)
{
unsigned char key[AES_MAX_KEY_SIZE];
unsigned char *key_p, *salt;
unsigned char ghash_h[AEAD_H_SIZE];
int ck_size, key_ctx_size, kctx_mackey_size, salt_size;
struct crypto_aes_ctx aes;
int ret;
key_ctx_size = sizeof(struct _key_ctx) +
roundup(keylen, 16) + AEAD_H_SIZE;
/* GCM mode of AES supports 128 and 256 bit encryption, so
* prepare key context base on GCM cipher type
*/
switch (cipher_type) {
case TLS_CIPHER_AES_GCM_128: {
struct tls12_crypto_info_aes_gcm_128 *gcm_ctx_128 =
(struct tls12_crypto_info_aes_gcm_128 *)
&csk->tlshws.crypto_info;
memcpy(key, gcm_ctx_128->key, keylen);
key_p = gcm_ctx_128->key;
salt = gcm_ctx_128->salt;
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_128;
salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_128;
break;
}
case TLS_CIPHER_AES_GCM_256: {
struct tls12_crypto_info_aes_gcm_256 *gcm_ctx_256 =
(struct tls12_crypto_info_aes_gcm_256 *)
&csk->tlshws.crypto_info;
memcpy(key, gcm_ctx_256->key, keylen);
key_p = gcm_ctx_256->key;
salt = gcm_ctx_256->salt;
ck_size = CHCR_KEYCTX_CIPHER_KEY_SIZE_256;
salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
kctx_mackey_size = CHCR_KEYCTX_MAC_KEY_SIZE_256;
break;
}
default:
pr_err("GCM: Invalid key length %d\n", keylen);
return -EINVAL;
}
/* Calculate the H = CIPH(K, 0 repeated 16 times).
* It will go in key context
*/
ret = aes_expandkey(&aes, key, keylen);
if (ret)
return ret;
memset(ghash_h, 0, AEAD_H_SIZE);
aes_encrypt(&aes, ghash_h, ghash_h);
memzero_explicit(&aes, sizeof(aes));
csk->tlshws.keylen = key_ctx_size;
/* Copy the Key context */
if (optname == TLS_RX) {
int key_ctx;
key_ctx = ((key_ctx_size >> 4) << 3);
kctx->ctx_hdr = FILL_KEY_CRX_HDR(ck_size,
kctx_mackey_size,
0, 0, key_ctx);
chtls_rxkey_ivauth(kctx);
} else {
kctx->ctx_hdr = FILL_KEY_CTX_HDR(ck_size,
kctx_mackey_size,
0, 0, key_ctx_size >> 4);
}
memcpy(kctx->salt, salt, salt_size);
memcpy(kctx->key, key_p, keylen);
memcpy(kctx->key + keylen, ghash_h, AEAD_H_SIZE);
/* erase key info from driver */
memset(key_p, 0, keylen);
return 0;
}
static void chtls_set_scmd(struct chtls_sock *csk)
{
struct chtls_hws *hws = &csk->tlshws;
hws->scmd.seqno_numivs =
SCMD_SEQ_NO_CTRL_V(3) |
SCMD_PROTO_VERSION_V(0) |
SCMD_ENC_DEC_CTRL_V(0) |
SCMD_CIPH_AUTH_SEQ_CTRL_V(1) |
SCMD_CIPH_MODE_V(2) |
SCMD_AUTH_MODE_V(4) |
SCMD_HMAC_CTRL_V(0) |
SCMD_IV_SIZE_V(4) |
SCMD_NUM_IVS_V(1);
hws->scmd.ivgen_hdrlen =
SCMD_IV_GEN_CTRL_V(1) |
SCMD_KEY_CTX_INLINE_V(0) |
SCMD_TLS_FRAG_ENABLE_V(1);
}
int chtls_setkey(struct chtls_sock *csk, u32 keylen,
u32 optname, int cipher_type)
{
struct tls_key_req *kwr;
struct chtls_dev *cdev;
struct _key_ctx *kctx;
int wrlen, klen, len;
struct sk_buff *skb;
struct sock *sk;
int keyid;
int kaddr;
int ret;
cdev = csk->cdev;
sk = csk->sk;
klen = roundup((keylen + AEAD_H_SIZE) + sizeof(*kctx), 32);
wrlen = roundup(sizeof(*kwr), 16);
len = klen + wrlen;
/* Flush out-standing data before new key takes effect */
if (optname == TLS_TX) {
lock_sock(sk);
if (skb_queue_len(&csk->txq))
chtls_push_frames(csk, 0);
release_sock(sk);
}
skb = alloc_skb(len, GFP_KERNEL);
if (!skb)
return -ENOMEM;
keyid = get_new_keyid(csk, optname);
if (keyid < 0) {
ret = -ENOSPC;
goto out_nokey;
}
kaddr = keyid_to_addr(cdev->kmap.start, keyid);
kwr = (struct tls_key_req *)__skb_put_zero(skb, len);
kwr->wr.op_to_compl =
cpu_to_be32(FW_WR_OP_V(FW_ULPTX_WR) | FW_WR_COMPL_F |
FW_WR_ATOMIC_V(1U));
kwr->wr.flowid_len16 =
cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(len, 16) |
FW_WR_FLOWID_V(csk->tid)));
kwr->wr.protocol = 0;
kwr->wr.mfs = htons(TLS_MFS);
kwr->wr.reneg_to_write_rx = optname;
/* ulptx command */
kwr->req.cmd = cpu_to_be32(ULPTX_CMD_V(ULP_TX_MEM_WRITE) |
T5_ULP_MEMIO_ORDER_V(1) |
T5_ULP_MEMIO_IMM_V(1));
kwr->req.len16 = cpu_to_be32((csk->tid << 8) |
DIV_ROUND_UP(len - sizeof(kwr->wr), 16));
kwr->req.dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN_V(klen >> 5));
kwr->req.lock_addr = cpu_to_be32(ULP_MEMIO_ADDR_V(kaddr));
/* sub command */
kwr->sc_imm.cmd_more = cpu_to_be32(ULPTX_CMD_V(ULP_TX_SC_IMM));
kwr->sc_imm.len = cpu_to_be32(klen);
/* key info */
kctx = (struct _key_ctx *)(kwr + 1);
ret = chtls_key_info(csk, kctx, keylen, optname, cipher_type);
if (ret)
goto out_notcb;
set_wr_txq(skb, CPL_PRIORITY_DATA, csk->tlshws.txqid);
csk->wr_credits -= DIV_ROUND_UP(len, 16);
csk->wr_unacked += DIV_ROUND_UP(len, 16);
enqueue_wr(csk, skb);
cxgb4_ofld_send(csk->egress_dev, skb);
chtls_set_scmd(csk);
/* Clear quiesce for Rx key */
if (optname == TLS_RX) {
ret = chtls_set_tcb_keyid(sk, keyid);
if (ret)
goto out_notcb;
ret = chtls_set_tcb_field(sk, 0,
TCB_ULP_RAW_V(TCB_ULP_RAW_M),
TCB_ULP_RAW_V((TF_TLS_KEY_SIZE_V(1) |
TF_TLS_CONTROL_V(1) |
TF_TLS_ACTIVE_V(1) |
TF_TLS_ENABLE_V(1))));
if (ret)
goto out_notcb;
ret = chtls_set_tcb_seqno(sk);
if (ret)
goto out_notcb;
ret = chtls_set_tcb_quiesce(sk, 0);
if (ret)
goto out_notcb;
csk->tlshws.rxkey = keyid;
} else {
csk->tlshws.tx_seq_no = 0;
csk->tlshws.txkey = keyid;
}
return ret;
out_notcb:
free_tls_keyid(sk);
out_nokey:
kfree_skb(skb);
return ret;
}
|