1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
|
// SPDX-License-Identifier: GPL-2.0
/*
* R9A06G032 clock driver
*
* Copyright (C) 2018 Renesas Electronics Europe Limited
*
* Michel Pollet <michel.pollet@bp.renesas.com>, <buserror@gmail.com>
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/math64.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm_clock.h>
#include <linux/pm_domain.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <dt-bindings/clock/r9a06g032-sysctrl.h>
struct r9a06g032_gate {
u16 gate, reset, ready, midle,
scon, mirack, mistat;
};
/* This is used to describe a clock for instantiation */
struct r9a06g032_clkdesc {
const char *name;
uint32_t managed: 1;
uint32_t type: 3;
uint32_t index: 8;
uint32_t source : 8; /* source index + 1 (0 == none) */
/* these are used to populate the bitsel struct */
union {
struct r9a06g032_gate gate;
/* for dividers */
struct {
unsigned int div_min : 10, div_max : 10, reg: 10;
u16 div_table[4];
};
/* For fixed-factor ones */
struct {
u16 div, mul;
};
unsigned int factor;
unsigned int frequency;
/* for dual gate */
struct {
uint16_t group : 1, index: 3;
u16 sel, g1, r1, g2, r2;
} dual;
};
};
#define I_GATE(_clk, _rst, _rdy, _midle, _scon, _mirack, _mistat) \
{ .gate = _clk, .reset = _rst, \
.ready = _rdy, .midle = _midle, \
.scon = _scon, .mirack = _mirack, .mistat = _mistat }
#define D_GATE(_idx, _n, _src, ...) \
{ .type = K_GATE, .index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, .name = _n, \
.gate = I_GATE(__VA_ARGS__) }
#define D_MODULE(_idx, _n, _src, ...) \
{ .type = K_GATE, .index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, .name = _n, \
.managed = 1, .gate = I_GATE(__VA_ARGS__) }
#define D_ROOT(_idx, _n, _mul, _div) \
{ .type = K_FFC, .index = R9A06G032_##_idx, .name = _n, \
.div = _div, .mul = _mul }
#define D_FFC(_idx, _n, _src, _div) \
{ .type = K_FFC, .index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, .name = _n, \
.div = _div, .mul = 1}
#define D_DIV(_idx, _n, _src, _reg, _min, _max, ...) \
{ .type = K_DIV, .index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, .name = _n, \
.reg = _reg, .div_min = _min, .div_max = _max, \
.div_table = { __VA_ARGS__ } }
#define D_UGATE(_idx, _n, _src, _g, _gi, _g1, _r1, _g2, _r2) \
{ .type = K_DUALGATE, .index = R9A06G032_##_idx, \
.source = 1 + R9A06G032_##_src, .name = _n, \
.dual = { .group = _g, .index = _gi, \
.g1 = _g1, .r1 = _r1, .g2 = _g2, .r2 = _r2 }, }
enum { K_GATE = 0, K_FFC, K_DIV, K_BITSEL, K_DUALGATE };
/* Internal clock IDs */
#define R9A06G032_CLKOUT 0
#define R9A06G032_CLKOUT_D10 2
#define R9A06G032_CLKOUT_D16 3
#define R9A06G032_CLKOUT_D160 4
#define R9A06G032_CLKOUT_D1OR2 5
#define R9A06G032_CLKOUT_D20 6
#define R9A06G032_CLKOUT_D40 7
#define R9A06G032_CLKOUT_D5 8
#define R9A06G032_CLKOUT_D8 9
#define R9A06G032_DIV_ADC 10
#define R9A06G032_DIV_I2C 11
#define R9A06G032_DIV_NAND 12
#define R9A06G032_DIV_P1_PG 13
#define R9A06G032_DIV_P2_PG 14
#define R9A06G032_DIV_P3_PG 15
#define R9A06G032_DIV_P4_PG 16
#define R9A06G032_DIV_P5_PG 17
#define R9A06G032_DIV_P6_PG 18
#define R9A06G032_DIV_QSPI0 19
#define R9A06G032_DIV_QSPI1 20
#define R9A06G032_DIV_REF_SYNC 21
#define R9A06G032_DIV_SDIO0 22
#define R9A06G032_DIV_SDIO1 23
#define R9A06G032_DIV_SWITCH 24
#define R9A06G032_DIV_UART 25
#define R9A06G032_DIV_MOTOR 64
#define R9A06G032_CLK_DDRPHY_PLLCLK_D4 78
#define R9A06G032_CLK_ECAT100_D4 79
#define R9A06G032_CLK_HSR100_D2 80
#define R9A06G032_CLK_REF_SYNC_D4 81
#define R9A06G032_CLK_REF_SYNC_D8 82
#define R9A06G032_CLK_SERCOS100_D2 83
#define R9A06G032_DIV_CA7 84
#define R9A06G032_UART_GROUP_012 154
#define R9A06G032_UART_GROUP_34567 155
#define R9A06G032_CLOCK_COUNT (R9A06G032_UART_GROUP_34567 + 1)
static const struct r9a06g032_clkdesc r9a06g032_clocks[] = {
D_ROOT(CLKOUT, "clkout", 25, 1),
D_ROOT(CLK_PLL_USB, "clk_pll_usb", 12, 10),
D_FFC(CLKOUT_D10, "clkout_d10", CLKOUT, 10),
D_FFC(CLKOUT_D16, "clkout_d16", CLKOUT, 16),
D_FFC(CLKOUT_D160, "clkout_d160", CLKOUT, 160),
D_DIV(CLKOUT_D1OR2, "clkout_d1or2", CLKOUT, 0, 1, 2),
D_FFC(CLKOUT_D20, "clkout_d20", CLKOUT, 20),
D_FFC(CLKOUT_D40, "clkout_d40", CLKOUT, 40),
D_FFC(CLKOUT_D5, "clkout_d5", CLKOUT, 5),
D_FFC(CLKOUT_D8, "clkout_d8", CLKOUT, 8),
D_DIV(DIV_ADC, "div_adc", CLKOUT, 77, 50, 250),
D_DIV(DIV_I2C, "div_i2c", CLKOUT, 78, 12, 16),
D_DIV(DIV_NAND, "div_nand", CLKOUT, 82, 12, 32),
D_DIV(DIV_P1_PG, "div_p1_pg", CLKOUT, 68, 12, 200),
D_DIV(DIV_P2_PG, "div_p2_pg", CLKOUT, 62, 12, 128),
D_DIV(DIV_P3_PG, "div_p3_pg", CLKOUT, 64, 8, 128),
D_DIV(DIV_P4_PG, "div_p4_pg", CLKOUT, 66, 8, 128),
D_DIV(DIV_P5_PG, "div_p5_pg", CLKOUT, 71, 10, 40),
D_DIV(DIV_P6_PG, "div_p6_pg", CLKOUT, 18, 12, 64),
D_DIV(DIV_QSPI0, "div_qspi0", CLKOUT, 73, 3, 7),
D_DIV(DIV_QSPI1, "div_qspi1", CLKOUT, 25, 3, 7),
D_DIV(DIV_REF_SYNC, "div_ref_sync", CLKOUT, 56, 2, 16, 2, 4, 8, 16),
D_DIV(DIV_SDIO0, "div_sdio0", CLKOUT, 74, 20, 128),
D_DIV(DIV_SDIO1, "div_sdio1", CLKOUT, 75, 20, 128),
D_DIV(DIV_SWITCH, "div_switch", CLKOUT, 37, 5, 40),
D_DIV(DIV_UART, "div_uart", CLKOUT, 79, 12, 128),
D_GATE(CLK_25_PG4, "clk_25_pg4", CLKOUT_D40, 0x749, 0x74a, 0x74b, 0, 0xae3, 0, 0),
D_GATE(CLK_25_PG5, "clk_25_pg5", CLKOUT_D40, 0x74c, 0x74d, 0x74e, 0, 0xae4, 0, 0),
D_GATE(CLK_25_PG6, "clk_25_pg6", CLKOUT_D40, 0x74f, 0x750, 0x751, 0, 0xae5, 0, 0),
D_GATE(CLK_25_PG7, "clk_25_pg7", CLKOUT_D40, 0x752, 0x753, 0x754, 0, 0xae6, 0, 0),
D_GATE(CLK_25_PG8, "clk_25_pg8", CLKOUT_D40, 0x755, 0x756, 0x757, 0, 0xae7, 0, 0),
D_GATE(CLK_ADC, "clk_adc", DIV_ADC, 0x1ea, 0x1eb, 0, 0, 0, 0, 0),
D_GATE(CLK_ECAT100, "clk_ecat100", CLKOUT_D10, 0x405, 0, 0, 0, 0, 0, 0),
D_GATE(CLK_HSR100, "clk_hsr100", CLKOUT_D10, 0x483, 0, 0, 0, 0, 0, 0),
D_GATE(CLK_I2C0, "clk_i2c0", DIV_I2C, 0x1e6, 0x1e7, 0, 0, 0, 0, 0),
D_GATE(CLK_I2C1, "clk_i2c1", DIV_I2C, 0x1e8, 0x1e9, 0, 0, 0, 0, 0),
D_GATE(CLK_MII_REF, "clk_mii_ref", CLKOUT_D40, 0x342, 0, 0, 0, 0, 0, 0),
D_GATE(CLK_NAND, "clk_nand", DIV_NAND, 0x284, 0x285, 0, 0, 0, 0, 0),
D_GATE(CLK_NOUSBP2_PG6, "clk_nousbp2_pg6", DIV_P2_PG, 0x774, 0x775, 0, 0, 0, 0, 0),
D_GATE(CLK_P1_PG2, "clk_p1_pg2", DIV_P1_PG, 0x862, 0x863, 0, 0, 0, 0, 0),
D_GATE(CLK_P1_PG3, "clk_p1_pg3", DIV_P1_PG, 0x864, 0x865, 0, 0, 0, 0, 0),
D_GATE(CLK_P1_PG4, "clk_p1_pg4", DIV_P1_PG, 0x866, 0x867, 0, 0, 0, 0, 0),
D_GATE(CLK_P4_PG3, "clk_p4_pg3", DIV_P4_PG, 0x824, 0x825, 0, 0, 0, 0, 0),
D_GATE(CLK_P4_PG4, "clk_p4_pg4", DIV_P4_PG, 0x826, 0x827, 0, 0, 0, 0, 0),
D_GATE(CLK_P6_PG1, "clk_p6_pg1", DIV_P6_PG, 0x8a0, 0x8a1, 0x8a2, 0, 0xb60, 0, 0),
D_GATE(CLK_P6_PG2, "clk_p6_pg2", DIV_P6_PG, 0x8a3, 0x8a4, 0x8a5, 0, 0xb61, 0, 0),
D_GATE(CLK_P6_PG3, "clk_p6_pg3", DIV_P6_PG, 0x8a6, 0x8a7, 0x8a8, 0, 0xb62, 0, 0),
D_GATE(CLK_P6_PG4, "clk_p6_pg4", DIV_P6_PG, 0x8a9, 0x8aa, 0x8ab, 0, 0xb63, 0, 0),
D_MODULE(CLK_PCI_USB, "clk_pci_usb", CLKOUT_D40, 0xe6, 0, 0, 0, 0, 0, 0),
D_GATE(CLK_QSPI0, "clk_qspi0", DIV_QSPI0, 0x2a4, 0x2a5, 0, 0, 0, 0, 0),
D_GATE(CLK_QSPI1, "clk_qspi1", DIV_QSPI1, 0x484, 0x485, 0, 0, 0, 0, 0),
D_GATE(CLK_RGMII_REF, "clk_rgmii_ref", CLKOUT_D8, 0x340, 0, 0, 0, 0, 0, 0),
D_GATE(CLK_RMII_REF, "clk_rmii_ref", CLKOUT_D20, 0x341, 0, 0, 0, 0, 0, 0),
D_GATE(CLK_SDIO0, "clk_sdio0", DIV_SDIO0, 0x64, 0, 0, 0, 0, 0, 0),
D_GATE(CLK_SDIO1, "clk_sdio1", DIV_SDIO1, 0x644, 0, 0, 0, 0, 0, 0),
D_GATE(CLK_SERCOS100, "clk_sercos100", CLKOUT_D10, 0x425, 0, 0, 0, 0, 0, 0),
D_GATE(CLK_SLCD, "clk_slcd", DIV_P1_PG, 0x860, 0x861, 0, 0, 0, 0, 0),
D_GATE(CLK_SPI0, "clk_spi0", DIV_P3_PG, 0x7e0, 0x7e1, 0, 0, 0, 0, 0),
D_GATE(CLK_SPI1, "clk_spi1", DIV_P3_PG, 0x7e2, 0x7e3, 0, 0, 0, 0, 0),
D_GATE(CLK_SPI2, "clk_spi2", DIV_P3_PG, 0x7e4, 0x7e5, 0, 0, 0, 0, 0),
D_GATE(CLK_SPI3, "clk_spi3", DIV_P3_PG, 0x7e6, 0x7e7, 0, 0, 0, 0, 0),
D_GATE(CLK_SPI4, "clk_spi4", DIV_P4_PG, 0x820, 0x821, 0, 0, 0, 0, 0),
D_GATE(CLK_SPI5, "clk_spi5", DIV_P4_PG, 0x822, 0x823, 0, 0, 0, 0, 0),
D_GATE(CLK_SWITCH, "clk_switch", DIV_SWITCH, 0x982, 0x983, 0, 0, 0, 0, 0),
D_DIV(DIV_MOTOR, "div_motor", CLKOUT_D5, 84, 2, 8),
D_MODULE(HCLK_ECAT125, "hclk_ecat125", CLKOUT_D8, 0x400, 0x401, 0, 0x402, 0, 0x440, 0x441),
D_MODULE(HCLK_PINCONFIG, "hclk_pinconfig", CLKOUT_D40, 0x740, 0x741, 0x742, 0, 0xae0, 0, 0),
D_MODULE(HCLK_SERCOS, "hclk_sercos", CLKOUT_D10, 0x420, 0x422, 0, 0x421, 0, 0x460, 0x461),
D_MODULE(HCLK_SGPIO2, "hclk_sgpio2", DIV_P5_PG, 0x8c3, 0x8c4, 0x8c5, 0, 0xb41, 0, 0),
D_MODULE(HCLK_SGPIO3, "hclk_sgpio3", DIV_P5_PG, 0x8c6, 0x8c7, 0x8c8, 0, 0xb42, 0, 0),
D_MODULE(HCLK_SGPIO4, "hclk_sgpio4", DIV_P5_PG, 0x8c9, 0x8ca, 0x8cb, 0, 0xb43, 0, 0),
D_MODULE(HCLK_TIMER0, "hclk_timer0", CLKOUT_D40, 0x743, 0x744, 0x745, 0, 0xae1, 0, 0),
D_MODULE(HCLK_TIMER1, "hclk_timer1", CLKOUT_D40, 0x746, 0x747, 0x748, 0, 0xae2, 0, 0),
D_MODULE(HCLK_USBF, "hclk_usbf", CLKOUT_D8, 0xe3, 0, 0, 0xe4, 0, 0x102, 0x103),
D_MODULE(HCLK_USBH, "hclk_usbh", CLKOUT_D8, 0xe0, 0xe1, 0, 0xe2, 0, 0x100, 0x101),
D_MODULE(HCLK_USBPM, "hclk_usbpm", CLKOUT_D8, 0xe5, 0, 0, 0, 0, 0, 0),
D_GATE(CLK_48_PG_F, "clk_48_pg_f", CLK_48, 0x78c, 0x78d, 0, 0x78e, 0, 0xb04, 0xb05),
D_GATE(CLK_48_PG4, "clk_48_pg4", CLK_48, 0x789, 0x78a, 0x78b, 0, 0xb03, 0, 0),
D_FFC(CLK_DDRPHY_PLLCLK_D4, "clk_ddrphy_pllclk_d4", CLK_DDRPHY_PLLCLK, 4),
D_FFC(CLK_ECAT100_D4, "clk_ecat100_d4", CLK_ECAT100, 4),
D_FFC(CLK_HSR100_D2, "clk_hsr100_d2", CLK_HSR100, 2),
D_FFC(CLK_REF_SYNC_D4, "clk_ref_sync_d4", CLK_REF_SYNC, 4),
D_FFC(CLK_REF_SYNC_D8, "clk_ref_sync_d8", CLK_REF_SYNC, 8),
D_FFC(CLK_SERCOS100_D2, "clk_sercos100_d2", CLK_SERCOS100, 2),
D_DIV(DIV_CA7, "div_ca7", CLK_REF_SYNC, 57, 1, 4, 1, 2, 4),
D_MODULE(HCLK_CAN0, "hclk_can0", CLK_48, 0x783, 0x784, 0x785, 0, 0xb01, 0, 0),
D_MODULE(HCLK_CAN1, "hclk_can1", CLK_48, 0x786, 0x787, 0x788, 0, 0xb02, 0, 0),
D_MODULE(HCLK_DELTASIGMA, "hclk_deltasigma", DIV_MOTOR, 0x1ef, 0x1f0, 0x1f1, 0, 0, 0, 0),
D_MODULE(HCLK_PWMPTO, "hclk_pwmpto", DIV_MOTOR, 0x1ec, 0x1ed, 0x1ee, 0, 0, 0, 0),
D_MODULE(HCLK_RSV, "hclk_rsv", CLK_48, 0x780, 0x781, 0x782, 0, 0xb00, 0, 0),
D_MODULE(HCLK_SGPIO0, "hclk_sgpio0", DIV_MOTOR, 0x1e0, 0x1e1, 0x1e2, 0, 0, 0, 0),
D_MODULE(HCLK_SGPIO1, "hclk_sgpio1", DIV_MOTOR, 0x1e3, 0x1e4, 0x1e5, 0, 0, 0, 0),
D_DIV(RTOS_MDC, "rtos_mdc", CLK_REF_SYNC, 100, 80, 640, 80, 160, 320, 640),
D_GATE(CLK_CM3, "clk_cm3", CLK_REF_SYNC_D4, 0xba0, 0xba1, 0, 0xba2, 0, 0xbc0, 0xbc1),
D_GATE(CLK_DDRC, "clk_ddrc", CLK_DDRPHY_PLLCLK_D4, 0x323, 0x324, 0, 0, 0, 0, 0),
D_GATE(CLK_ECAT25, "clk_ecat25", CLK_ECAT100_D4, 0x403, 0x404, 0, 0, 0, 0, 0),
D_GATE(CLK_HSR50, "clk_hsr50", CLK_HSR100_D2, 0x484, 0x485, 0, 0, 0, 0, 0),
D_GATE(CLK_HW_RTOS, "clk_hw_rtos", CLK_REF_SYNC_D4, 0xc60, 0xc61, 0, 0, 0, 0, 0),
D_GATE(CLK_SERCOS50, "clk_sercos50", CLK_SERCOS100_D2, 0x424, 0x423, 0, 0, 0, 0, 0),
D_MODULE(HCLK_ADC, "hclk_adc", CLK_REF_SYNC_D8, 0x1af, 0x1b0, 0x1b1, 0, 0, 0, 0),
D_MODULE(HCLK_CM3, "hclk_cm3", CLK_REF_SYNC_D4, 0xc20, 0xc21, 0xc22, 0, 0, 0, 0),
D_MODULE(HCLK_CRYPTO_EIP150, "hclk_crypto_eip150", CLK_REF_SYNC_D4, 0x123, 0x124, 0x125, 0, 0x142, 0, 0),
D_MODULE(HCLK_CRYPTO_EIP93, "hclk_crypto_eip93", CLK_REF_SYNC_D4, 0x120, 0x121, 0, 0x122, 0, 0x140, 0x141),
D_MODULE(HCLK_DDRC, "hclk_ddrc", CLK_REF_SYNC_D4, 0x320, 0x322, 0, 0x321, 0, 0x3a0, 0x3a1),
D_MODULE(HCLK_DMA0, "hclk_dma0", CLK_REF_SYNC_D4, 0x260, 0x261, 0x262, 0x263, 0x2c0, 0x2c1, 0x2c2),
D_MODULE(HCLK_DMA1, "hclk_dma1", CLK_REF_SYNC_D4, 0x264, 0x265, 0x266, 0x267, 0x2c3, 0x2c4, 0x2c5),
D_MODULE(HCLK_GMAC0, "hclk_gmac0", CLK_REF_SYNC_D4, 0x360, 0x361, 0x362, 0x363, 0x3c0, 0x3c1, 0x3c2),
D_MODULE(HCLK_GMAC1, "hclk_gmac1", CLK_REF_SYNC_D4, 0x380, 0x381, 0x382, 0x383, 0x3e0, 0x3e1, 0x3e2),
D_MODULE(HCLK_GPIO0, "hclk_gpio0", CLK_REF_SYNC_D4, 0x212, 0x213, 0x214, 0, 0, 0, 0),
D_MODULE(HCLK_GPIO1, "hclk_gpio1", CLK_REF_SYNC_D4, 0x215, 0x216, 0x217, 0, 0, 0, 0),
D_MODULE(HCLK_GPIO2, "hclk_gpio2", CLK_REF_SYNC_D4, 0x229, 0x22a, 0x22b, 0, 0, 0, 0),
D_MODULE(HCLK_HSR, "hclk_hsr", CLK_HSR100_D2, 0x480, 0x482, 0, 0x481, 0, 0x4c0, 0x4c1),
D_MODULE(HCLK_I2C0, "hclk_i2c0", CLK_REF_SYNC_D8, 0x1a9, 0x1aa, 0x1ab, 0, 0, 0, 0),
D_MODULE(HCLK_I2C1, "hclk_i2c1", CLK_REF_SYNC_D8, 0x1ac, 0x1ad, 0x1ae, 0, 0, 0, 0),
D_MODULE(HCLK_LCD, "hclk_lcd", CLK_REF_SYNC_D4, 0x7a0, 0x7a1, 0x7a2, 0, 0xb20, 0, 0),
D_MODULE(HCLK_MSEBI_M, "hclk_msebi_m", CLK_REF_SYNC_D4, 0x164, 0x165, 0x166, 0, 0x183, 0, 0),
D_MODULE(HCLK_MSEBI_S, "hclk_msebi_s", CLK_REF_SYNC_D4, 0x160, 0x161, 0x162, 0x163, 0x180, 0x181, 0x182),
D_MODULE(HCLK_NAND, "hclk_nand", CLK_REF_SYNC_D4, 0x280, 0x281, 0x282, 0x283, 0x2e0, 0x2e1, 0x2e2),
D_MODULE(HCLK_PG_I, "hclk_pg_i", CLK_REF_SYNC_D4, 0x7ac, 0x7ad, 0, 0x7ae, 0, 0xb24, 0xb25),
D_MODULE(HCLK_PG19, "hclk_pg19", CLK_REF_SYNC_D4, 0x22c, 0x22d, 0x22e, 0, 0, 0, 0),
D_MODULE(HCLK_PG20, "hclk_pg20", CLK_REF_SYNC_D4, 0x22f, 0x230, 0x231, 0, 0, 0, 0),
D_MODULE(HCLK_PG3, "hclk_pg3", CLK_REF_SYNC_D4, 0x7a6, 0x7a7, 0x7a8, 0, 0xb22, 0, 0),
D_MODULE(HCLK_PG4, "hclk_pg4", CLK_REF_SYNC_D4, 0x7a9, 0x7aa, 0x7ab, 0, 0xb23, 0, 0),
D_MODULE(HCLK_QSPI0, "hclk_qspi0", CLK_REF_SYNC_D4, 0x2a0, 0x2a1, 0x2a2, 0x2a3, 0x300, 0x301, 0x302),
D_MODULE(HCLK_QSPI1, "hclk_qspi1", CLK_REF_SYNC_D4, 0x480, 0x481, 0x482, 0x483, 0x4c0, 0x4c1, 0x4c2),
D_MODULE(HCLK_ROM, "hclk_rom", CLK_REF_SYNC_D4, 0xaa0, 0xaa1, 0xaa2, 0, 0xb80, 0, 0),
D_MODULE(HCLK_RTC, "hclk_rtc", CLK_REF_SYNC_D8, 0xa00, 0, 0, 0, 0, 0, 0),
D_MODULE(HCLK_SDIO0, "hclk_sdio0", CLK_REF_SYNC_D4, 0x60, 0x61, 0x62, 0x63, 0x80, 0x81, 0x82),
D_MODULE(HCLK_SDIO1, "hclk_sdio1", CLK_REF_SYNC_D4, 0x640, 0x641, 0x642, 0x643, 0x660, 0x661, 0x662),
D_MODULE(HCLK_SEMAP, "hclk_semap", CLK_REF_SYNC_D4, 0x7a3, 0x7a4, 0x7a5, 0, 0xb21, 0, 0),
D_MODULE(HCLK_SPI0, "hclk_spi0", CLK_REF_SYNC_D4, 0x200, 0x201, 0x202, 0, 0, 0, 0),
D_MODULE(HCLK_SPI1, "hclk_spi1", CLK_REF_SYNC_D4, 0x203, 0x204, 0x205, 0, 0, 0, 0),
D_MODULE(HCLK_SPI2, "hclk_spi2", CLK_REF_SYNC_D4, 0x206, 0x207, 0x208, 0, 0, 0, 0),
D_MODULE(HCLK_SPI3, "hclk_spi3", CLK_REF_SYNC_D4, 0x209, 0x20a, 0x20b, 0, 0, 0, 0),
D_MODULE(HCLK_SPI4, "hclk_spi4", CLK_REF_SYNC_D4, 0x20c, 0x20d, 0x20e, 0, 0, 0, 0),
D_MODULE(HCLK_SPI5, "hclk_spi5", CLK_REF_SYNC_D4, 0x20f, 0x210, 0x211, 0, 0, 0, 0),
D_MODULE(HCLK_SWITCH, "hclk_switch", CLK_REF_SYNC_D4, 0x980, 0, 0x981, 0, 0, 0, 0),
D_MODULE(HCLK_SWITCH_RG, "hclk_switch_rg", CLK_REF_SYNC_D4, 0xc40, 0xc41, 0xc42, 0, 0, 0, 0),
D_MODULE(HCLK_UART0, "hclk_uart0", CLK_REF_SYNC_D8, 0x1a0, 0x1a1, 0x1a2, 0, 0, 0, 0),
D_MODULE(HCLK_UART1, "hclk_uart1", CLK_REF_SYNC_D8, 0x1a3, 0x1a4, 0x1a5, 0, 0, 0, 0),
D_MODULE(HCLK_UART2, "hclk_uart2", CLK_REF_SYNC_D8, 0x1a6, 0x1a7, 0x1a8, 0, 0, 0, 0),
D_MODULE(HCLK_UART3, "hclk_uart3", CLK_REF_SYNC_D4, 0x218, 0x219, 0x21a, 0, 0, 0, 0),
D_MODULE(HCLK_UART4, "hclk_uart4", CLK_REF_SYNC_D4, 0x21b, 0x21c, 0x21d, 0, 0, 0, 0),
D_MODULE(HCLK_UART5, "hclk_uart5", CLK_REF_SYNC_D4, 0x220, 0x221, 0x222, 0, 0, 0, 0),
D_MODULE(HCLK_UART6, "hclk_uart6", CLK_REF_SYNC_D4, 0x223, 0x224, 0x225, 0, 0, 0, 0),
D_MODULE(HCLK_UART7, "hclk_uart7", CLK_REF_SYNC_D4, 0x226, 0x227, 0x228, 0, 0, 0, 0),
/*
* These are not hardware clocks, but are needed to handle the special
* case where we have a 'selector bit' that doesn't just change the
* parent for a clock, but also the gate it's supposed to use.
*/
{
.index = R9A06G032_UART_GROUP_012,
.name = "uart_group_012",
.type = K_BITSEL,
.source = 1 + R9A06G032_DIV_UART,
/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG1_PR2 */
.dual.sel = ((0xec / 4) << 5) | 24,
.dual.group = 0,
},
{
.index = R9A06G032_UART_GROUP_34567,
.name = "uart_group_34567",
.type = K_BITSEL,
.source = 1 + R9A06G032_DIV_P2_PG,
/* R9A06G032_SYSCTRL_REG_PWRCTRL_PG0_0 */
.dual.sel = ((0x34 / 4) << 5) | 30,
.dual.group = 1,
},
D_UGATE(CLK_UART0, "clk_uart0", UART_GROUP_012, 0, 0, 0x1b2, 0x1b3, 0x1b4, 0x1b5),
D_UGATE(CLK_UART1, "clk_uart1", UART_GROUP_012, 0, 1, 0x1b6, 0x1b7, 0x1b8, 0x1b9),
D_UGATE(CLK_UART2, "clk_uart2", UART_GROUP_012, 0, 2, 0x1ba, 0x1bb, 0x1bc, 0x1bd),
D_UGATE(CLK_UART3, "clk_uart3", UART_GROUP_34567, 1, 0, 0x760, 0x761, 0x762, 0x763),
D_UGATE(CLK_UART4, "clk_uart4", UART_GROUP_34567, 1, 1, 0x764, 0x765, 0x766, 0x767),
D_UGATE(CLK_UART5, "clk_uart5", UART_GROUP_34567, 1, 2, 0x768, 0x769, 0x76a, 0x76b),
D_UGATE(CLK_UART6, "clk_uart6", UART_GROUP_34567, 1, 3, 0x76c, 0x76d, 0x76e, 0x76f),
D_UGATE(CLK_UART7, "clk_uart7", UART_GROUP_34567, 1, 4, 0x770, 0x771, 0x772, 0x773),
};
struct r9a06g032_priv {
struct clk_onecell_data data;
spinlock_t lock; /* protects concurrent access to gates */
void __iomem *reg;
};
/* register/bit pairs are encoded as an uint16_t */
static void
clk_rdesc_set(struct r9a06g032_priv *clocks,
u16 one, unsigned int on)
{
u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
u32 val = readl(reg);
val = (val & ~(1U << (one & 0x1f))) | ((!!on) << (one & 0x1f));
writel(val, reg);
}
static int
clk_rdesc_get(struct r9a06g032_priv *clocks,
uint16_t one)
{
u32 __iomem *reg = clocks->reg + (4 * (one >> 5));
u32 val = readl(reg);
return !!(val & (1U << (one & 0x1f)));
}
/*
* This implements the R9A06G032 clock gate 'driver'. We cannot use the system's
* clock gate framework as the gates on the R9A06G032 have a special enabling
* sequence, therefore we use this little proxy.
*/
struct r9a06g032_clk_gate {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
struct r9a06g032_gate gate;
};
#define to_r9a06g032_gate(_hw) container_of(_hw, struct r9a06g032_clk_gate, hw)
static int create_add_module_clock(struct of_phandle_args *clkspec,
struct device *dev)
{
struct clk *clk;
int error;
clk = of_clk_get_from_provider(clkspec);
if (IS_ERR(clk))
return PTR_ERR(clk);
error = pm_clk_create(dev);
if (error) {
clk_put(clk);
return error;
}
error = pm_clk_add_clk(dev, clk);
if (error) {
pm_clk_destroy(dev);
clk_put(clk);
}
return error;
}
static int r9a06g032_attach_dev(struct generic_pm_domain *pd,
struct device *dev)
{
struct device_node *np = dev->of_node;
struct of_phandle_args clkspec;
int i = 0;
int error;
int index;
while (!of_parse_phandle_with_args(np, "clocks", "#clock-cells", i,
&clkspec)) {
if (clkspec.np != pd->dev.of_node)
continue;
index = clkspec.args[0];
if (index < R9A06G032_CLOCK_COUNT &&
r9a06g032_clocks[index].managed) {
error = create_add_module_clock(&clkspec, dev);
of_node_put(clkspec.np);
if (error)
return error;
}
i++;
}
return 0;
}
static void r9a06g032_detach_dev(struct generic_pm_domain *unused, struct device *dev)
{
if (!pm_clk_no_clocks(dev))
pm_clk_destroy(dev);
}
static int r9a06g032_add_clk_domain(struct device *dev)
{
struct device_node *np = dev->of_node;
struct generic_pm_domain *pd;
pd = devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
if (!pd)
return -ENOMEM;
pd->name = np->name;
pd->flags = GENPD_FLAG_PM_CLK | GENPD_FLAG_ALWAYS_ON |
GENPD_FLAG_ACTIVE_WAKEUP;
pd->attach_dev = r9a06g032_attach_dev;
pd->detach_dev = r9a06g032_detach_dev;
pm_genpd_init(pd, &pm_domain_always_on_gov, false);
of_genpd_add_provider_simple(np, pd);
return 0;
}
static void
r9a06g032_clk_gate_set(struct r9a06g032_priv *clocks,
struct r9a06g032_gate *g, int on)
{
unsigned long flags;
WARN_ON(!g->gate);
spin_lock_irqsave(&clocks->lock, flags);
clk_rdesc_set(clocks, g->gate, on);
/* De-assert reset */
if (g->reset)
clk_rdesc_set(clocks, g->reset, 1);
spin_unlock_irqrestore(&clocks->lock, flags);
/* Hardware manual recommends 5us delay after enabling clock & reset */
udelay(5);
/* If the peripheral is memory mapped (i.e. an AXI slave), there is an
* associated SLVRDY bit in the System Controller that needs to be set
* so that the FlexWAY bus fabric passes on the read/write requests.
*/
if (g->ready || g->midle) {
spin_lock_irqsave(&clocks->lock, flags);
if (g->ready)
clk_rdesc_set(clocks, g->ready, on);
/* Clear 'Master Idle Request' bit */
if (g->midle)
clk_rdesc_set(clocks, g->midle, !on);
spin_unlock_irqrestore(&clocks->lock, flags);
}
/* Note: We don't wait for FlexWAY Socket Connection signal */
}
static int r9a06g032_clk_gate_enable(struct clk_hw *hw)
{
struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
r9a06g032_clk_gate_set(g->clocks, &g->gate, 1);
return 0;
}
static void r9a06g032_clk_gate_disable(struct clk_hw *hw)
{
struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
r9a06g032_clk_gate_set(g->clocks, &g->gate, 0);
}
static int r9a06g032_clk_gate_is_enabled(struct clk_hw *hw)
{
struct r9a06g032_clk_gate *g = to_r9a06g032_gate(hw);
/* if clock is in reset, the gate might be on, and still not 'be' on */
if (g->gate.reset && !clk_rdesc_get(g->clocks, g->gate.reset))
return 0;
return clk_rdesc_get(g->clocks, g->gate.gate);
}
static const struct clk_ops r9a06g032_clk_gate_ops = {
.enable = r9a06g032_clk_gate_enable,
.disable = r9a06g032_clk_gate_disable,
.is_enabled = r9a06g032_clk_gate_is_enabled,
};
static struct clk *
r9a06g032_register_gate(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc)
{
struct clk *clk;
struct r9a06g032_clk_gate *g;
struct clk_init_data init = {};
g = kzalloc(sizeof(*g), GFP_KERNEL);
if (!g)
return NULL;
init.name = desc->name;
init.ops = &r9a06g032_clk_gate_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
g->clocks = clocks;
g->index = desc->index;
g->gate = desc->gate;
g->hw.init = &init;
/*
* important here, some clocks are already in use by the CM3, we
* have to assume they are not Linux's to play with and try to disable
* at the end of the boot!
*/
if (r9a06g032_clk_gate_is_enabled(&g->hw)) {
init.flags |= CLK_IS_CRITICAL;
pr_debug("%s was enabled, making read-only\n", desc->name);
}
clk = clk_register(NULL, &g->hw);
if (IS_ERR(clk)) {
kfree(g);
return NULL;
}
return clk;
}
struct r9a06g032_clk_div {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
u16 reg;
u16 min, max;
u8 table_size;
u16 table[8]; /* we know there are no more than 8 */
};
#define to_r9a06g032_div(_hw) \
container_of(_hw, struct r9a06g032_clk_div, hw)
static unsigned long
r9a06g032_div_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
u32 div = readl(reg);
if (div < clk->min)
div = clk->min;
else if (div > clk->max)
div = clk->max;
return DIV_ROUND_UP(parent_rate, div);
}
/*
* Attempts to find a value that is in range of min,max,
* and if a table of set dividers was specified for this
* register, try to find the fixed divider that is the closest
* to the target frequency
*/
static long
r9a06g032_div_clamp_div(struct r9a06g032_clk_div *clk,
unsigned long rate, unsigned long prate)
{
/* + 1 to cope with rates that have the remainder dropped */
u32 div = DIV_ROUND_UP(prate, rate + 1);
int i;
if (div <= clk->min)
return clk->min;
if (div >= clk->max)
return clk->max;
for (i = 0; clk->table_size && i < clk->table_size - 1; i++) {
if (div >= clk->table[i] && div <= clk->table[i + 1]) {
unsigned long m = rate -
DIV_ROUND_UP(prate, clk->table[i]);
unsigned long p =
DIV_ROUND_UP(prate, clk->table[i + 1]) -
rate;
/*
* select the divider that generates
* the value closest to the ideal frequency
*/
div = p >= m ? clk->table[i] : clk->table[i + 1];
return div;
}
}
return div;
}
static long
r9a06g032_div_round_rate(struct clk_hw *hw,
unsigned long rate, unsigned long *prate)
{
struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
u32 div = DIV_ROUND_UP(*prate, rate);
pr_devel("%s %pC %ld (prate %ld) (wanted div %u)\n", __func__,
hw->clk, rate, *prate, div);
pr_devel(" min %d (%ld) max %d (%ld)\n",
clk->min, DIV_ROUND_UP(*prate, clk->min),
clk->max, DIV_ROUND_UP(*prate, clk->max));
div = r9a06g032_div_clamp_div(clk, rate, *prate);
/*
* this is a hack. Currently the serial driver asks for a clock rate
* that is 16 times the baud rate -- and that is wildly outside the
* range of the UART divider, somehow there is no provision for that
* case of 'let the divider as is if outside range'.
* The serial driver *shouldn't* play with these clocks anyway, there's
* several uarts attached to this divider, and changing this impacts
* everyone.
*/
if (clk->index == R9A06G032_DIV_UART ||
clk->index == R9A06G032_DIV_P2_PG) {
pr_devel("%s div uart hack!\n", __func__);
return clk_get_rate(hw->clk);
}
pr_devel("%s %pC %ld / %u = %ld\n", __func__, hw->clk,
*prate, div, DIV_ROUND_UP(*prate, div));
return DIV_ROUND_UP(*prate, div);
}
static int
r9a06g032_div_set_rate(struct clk_hw *hw,
unsigned long rate, unsigned long parent_rate)
{
struct r9a06g032_clk_div *clk = to_r9a06g032_div(hw);
/* + 1 to cope with rates that have the remainder dropped */
u32 div = DIV_ROUND_UP(parent_rate, rate + 1);
u32 __iomem *reg = clk->clocks->reg + (4 * clk->reg);
pr_devel("%s %pC rate %ld parent %ld div %d\n", __func__, hw->clk,
rate, parent_rate, div);
/*
* Need to write the bit 31 with the divider value to
* latch it. Technically we should wait until it has been
* cleared too.
* TODO: Find whether this callback is sleepable, in case
* the hardware /does/ require some sort of spinloop here.
*/
writel(div | BIT(31), reg);
return 0;
}
static const struct clk_ops r9a06g032_clk_div_ops = {
.recalc_rate = r9a06g032_div_recalc_rate,
.round_rate = r9a06g032_div_round_rate,
.set_rate = r9a06g032_div_set_rate,
};
static struct clk *
r9a06g032_register_div(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc)
{
struct r9a06g032_clk_div *div;
struct clk *clk;
struct clk_init_data init = {};
unsigned int i;
div = kzalloc(sizeof(*div), GFP_KERNEL);
if (!div)
return NULL;
init.name = desc->name;
init.ops = &r9a06g032_clk_div_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = parent_name ? &parent_name : NULL;
init.num_parents = parent_name ? 1 : 0;
div->clocks = clocks;
div->index = desc->index;
div->reg = desc->reg;
div->hw.init = &init;
div->min = desc->div_min;
div->max = desc->div_max;
/* populate (optional) divider table fixed values */
for (i = 0; i < ARRAY_SIZE(div->table) &&
i < ARRAY_SIZE(desc->div_table) && desc->div_table[i]; i++) {
div->table[div->table_size++] = desc->div_table[i];
}
clk = clk_register(NULL, &div->hw);
if (IS_ERR(clk)) {
kfree(div);
return NULL;
}
return clk;
}
/*
* This clock provider handles the case of the R9A06G032 where you have
* peripherals that have two potential clock source and two gates, one for
* each of the clock source - the used clock source (for all sub clocks)
* is selected by a single bit.
* That single bit affects all sub-clocks, and therefore needs to change the
* active gate (and turn the others off) and force a recalculation of the rates.
*
* This implements two clock providers, one 'bitselect' that
* handles the switch between both parents, and another 'dualgate'
* that knows which gate to poke at, depending on the parent's bit position.
*/
struct r9a06g032_clk_bitsel {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
u16 selector; /* selector register + bit */
};
#define to_clk_bitselect(_hw) \
container_of(_hw, struct r9a06g032_clk_bitsel, hw)
static u8 r9a06g032_clk_mux_get_parent(struct clk_hw *hw)
{
struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
return clk_rdesc_get(set->clocks, set->selector);
}
static int r9a06g032_clk_mux_set_parent(struct clk_hw *hw, u8 index)
{
struct r9a06g032_clk_bitsel *set = to_clk_bitselect(hw);
/* a single bit in the register selects one of two parent clocks */
clk_rdesc_set(set->clocks, set->selector, !!index);
return 0;
}
static const struct clk_ops clk_bitselect_ops = {
.get_parent = r9a06g032_clk_mux_get_parent,
.set_parent = r9a06g032_clk_mux_set_parent,
};
static struct clk *
r9a06g032_register_bitsel(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc)
{
struct clk *clk;
struct r9a06g032_clk_bitsel *g;
struct clk_init_data init = {};
const char *names[2];
/* allocate the gate */
g = kzalloc(sizeof(*g), GFP_KERNEL);
if (!g)
return NULL;
names[0] = parent_name;
names[1] = "clk_pll_usb";
init.name = desc->name;
init.ops = &clk_bitselect_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = names;
init.num_parents = 2;
g->clocks = clocks;
g->index = desc->index;
g->selector = desc->dual.sel;
g->hw.init = &init;
clk = clk_register(NULL, &g->hw);
if (IS_ERR(clk)) {
kfree(g);
return NULL;
}
return clk;
}
struct r9a06g032_clk_dualgate {
struct clk_hw hw;
struct r9a06g032_priv *clocks;
u16 index;
u16 selector; /* selector register + bit */
struct r9a06g032_gate gate[2];
};
#define to_clk_dualgate(_hw) \
container_of(_hw, struct r9a06g032_clk_dualgate, hw)
static int
r9a06g032_clk_dualgate_setenable(struct r9a06g032_clk_dualgate *g, int enable)
{
u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
/* we always turn off the 'other' gate, regardless */
r9a06g032_clk_gate_set(g->clocks, &g->gate[!sel_bit], 0);
r9a06g032_clk_gate_set(g->clocks, &g->gate[sel_bit], enable);
return 0;
}
static int r9a06g032_clk_dualgate_enable(struct clk_hw *hw)
{
struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
r9a06g032_clk_dualgate_setenable(gate, 1);
return 0;
}
static void r9a06g032_clk_dualgate_disable(struct clk_hw *hw)
{
struct r9a06g032_clk_dualgate *gate = to_clk_dualgate(hw);
r9a06g032_clk_dualgate_setenable(gate, 0);
}
static int r9a06g032_clk_dualgate_is_enabled(struct clk_hw *hw)
{
struct r9a06g032_clk_dualgate *g = to_clk_dualgate(hw);
u8 sel_bit = clk_rdesc_get(g->clocks, g->selector);
return clk_rdesc_get(g->clocks, g->gate[sel_bit].gate);
}
static const struct clk_ops r9a06g032_clk_dualgate_ops = {
.enable = r9a06g032_clk_dualgate_enable,
.disable = r9a06g032_clk_dualgate_disable,
.is_enabled = r9a06g032_clk_dualgate_is_enabled,
};
static struct clk *
r9a06g032_register_dualgate(struct r9a06g032_priv *clocks,
const char *parent_name,
const struct r9a06g032_clkdesc *desc,
uint16_t sel)
{
struct r9a06g032_clk_dualgate *g;
struct clk *clk;
struct clk_init_data init = {};
/* allocate the gate */
g = kzalloc(sizeof(*g), GFP_KERNEL);
if (!g)
return NULL;
g->clocks = clocks;
g->index = desc->index;
g->selector = sel;
g->gate[0].gate = desc->dual.g1;
g->gate[0].reset = desc->dual.r1;
g->gate[1].gate = desc->dual.g2;
g->gate[1].reset = desc->dual.r2;
init.name = desc->name;
init.ops = &r9a06g032_clk_dualgate_ops;
init.flags = CLK_SET_RATE_PARENT;
init.parent_names = &parent_name;
init.num_parents = 1;
g->hw.init = &init;
/*
* important here, some clocks are already in use by the CM3, we
* have to assume they are not Linux's to play with and try to disable
* at the end of the boot!
*/
if (r9a06g032_clk_dualgate_is_enabled(&g->hw)) {
init.flags |= CLK_IS_CRITICAL;
pr_debug("%s was enabled, making read-only\n", desc->name);
}
clk = clk_register(NULL, &g->hw);
if (IS_ERR(clk)) {
kfree(g);
return NULL;
}
return clk;
}
static void r9a06g032_clocks_del_clk_provider(void *data)
{
of_clk_del_provider(data);
}
static int __init r9a06g032_clocks_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
struct r9a06g032_priv *clocks;
struct clk **clks;
struct clk *mclk;
unsigned int i;
u16 uart_group_sel[2];
int error;
clocks = devm_kzalloc(dev, sizeof(*clocks), GFP_KERNEL);
clks = devm_kcalloc(dev, R9A06G032_CLOCK_COUNT, sizeof(struct clk *),
GFP_KERNEL);
if (!clocks || !clks)
return -ENOMEM;
spin_lock_init(&clocks->lock);
clocks->data.clks = clks;
clocks->data.clk_num = R9A06G032_CLOCK_COUNT;
mclk = devm_clk_get(dev, "mclk");
if (IS_ERR(mclk))
return PTR_ERR(mclk);
clocks->reg = of_iomap(np, 0);
if (WARN_ON(!clocks->reg))
return -ENOMEM;
for (i = 0; i < ARRAY_SIZE(r9a06g032_clocks); ++i) {
const struct r9a06g032_clkdesc *d = &r9a06g032_clocks[i];
const char *parent_name = d->source ?
__clk_get_name(clocks->data.clks[d->source - 1]) :
__clk_get_name(mclk);
struct clk *clk = NULL;
switch (d->type) {
case K_FFC:
clk = clk_register_fixed_factor(NULL, d->name,
parent_name, 0,
d->mul, d->div);
break;
case K_GATE:
clk = r9a06g032_register_gate(clocks, parent_name, d);
break;
case K_DIV:
clk = r9a06g032_register_div(clocks, parent_name, d);
break;
case K_BITSEL:
/* keep that selector register around */
uart_group_sel[d->dual.group] = d->dual.sel;
clk = r9a06g032_register_bitsel(clocks, parent_name, d);
break;
case K_DUALGATE:
clk = r9a06g032_register_dualgate(clocks, parent_name,
d,
uart_group_sel[d->dual.group]);
break;
}
clocks->data.clks[d->index] = clk;
}
error = of_clk_add_provider(np, of_clk_src_onecell_get, &clocks->data);
if (error)
return error;
error = devm_add_action_or_reset(dev,
r9a06g032_clocks_del_clk_provider, np);
if (error)
return error;
return r9a06g032_add_clk_domain(dev);
}
static const struct of_device_id r9a06g032_match[] = {
{ .compatible = "renesas,r9a06g032-sysctrl" },
{ }
};
static struct platform_driver r9a06g032_clock_driver = {
.driver = {
.name = "renesas,r9a06g032-sysctrl",
.of_match_table = r9a06g032_match,
},
};
static int __init r9a06g032_clocks_init(void)
{
return platform_driver_probe(&r9a06g032_clock_driver,
r9a06g032_clocks_probe);
}
subsys_initcall(r9a06g032_clocks_init);
|