summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/svm/avic.c
blob: 2092db892d7d052a6301396ca753de694c20d8a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * AMD SVM support
 *
 * Copyright (C) 2006 Qumranet, Inc.
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kvm_types.h>
#include <linux/hashtable.h>
#include <linux/amd-iommu.h>
#include <linux/kvm_host.h>

#include <asm/irq_remapping.h>

#include "trace.h"
#include "lapic.h"
#include "x86.h"
#include "irq.h"
#include "svm.h"

/*
 * Encode the arbitrary VM ID and the vCPU's default APIC ID, i.e the vCPU ID,
 * into the GATag so that KVM can retrieve the correct vCPU from a GALog entry
 * if an interrupt can't be delivered, e.g. because the vCPU isn't running.
 *
 * For the vCPU ID, use however many bits are currently allowed for the max
 * guest physical APIC ID (limited by the size of the physical ID table), and
 * use whatever bits remain to assign arbitrary AVIC IDs to VMs.  Note, the
 * size of the GATag is defined by hardware (32 bits), but is an opaque value
 * as far as hardware is concerned.
 */
#define AVIC_VCPU_ID_MASK		AVIC_PHYSICAL_MAX_INDEX_MASK

#define AVIC_VM_ID_SHIFT		HWEIGHT32(AVIC_PHYSICAL_MAX_INDEX_MASK)
#define AVIC_VM_ID_MASK			(GENMASK(31, AVIC_VM_ID_SHIFT) >> AVIC_VM_ID_SHIFT)

#define AVIC_GATAG_TO_VMID(x)		((x >> AVIC_VM_ID_SHIFT) & AVIC_VM_ID_MASK)
#define AVIC_GATAG_TO_VCPUID(x)		(x & AVIC_VCPU_ID_MASK)

#define __AVIC_GATAG(vm_id, vcpu_id)	((((vm_id) & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \
					 ((vcpu_id) & AVIC_VCPU_ID_MASK))
#define AVIC_GATAG(vm_id, vcpu_id)					\
({									\
	u32 ga_tag = __AVIC_GATAG(vm_id, vcpu_id);			\
									\
	WARN_ON_ONCE(AVIC_GATAG_TO_VCPUID(ga_tag) != (vcpu_id));	\
	WARN_ON_ONCE(AVIC_GATAG_TO_VMID(ga_tag) != (vm_id));		\
	ga_tag;								\
})

static_assert(__AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_ID_MASK) == -1u);

static bool force_avic;
module_param_unsafe(force_avic, bool, 0444);

/* Note:
 * This hash table is used to map VM_ID to a struct kvm_svm,
 * when handling AMD IOMMU GALOG notification to schedule in
 * a particular vCPU.
 */
#define SVM_VM_DATA_HASH_BITS	8
static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
static u32 next_vm_id = 0;
static bool next_vm_id_wrapped = 0;
static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
bool x2avic_enabled;

/*
 * This is a wrapper of struct amd_iommu_ir_data.
 */
struct amd_svm_iommu_ir {
	struct list_head node;	/* Used by SVM for per-vcpu ir_list */
	void *data;		/* Storing pointer to struct amd_ir_data */
};

static void avic_activate_vmcb(struct vcpu_svm *svm)
{
	struct vmcb *vmcb = svm->vmcb01.ptr;

	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;

	vmcb->control.int_ctl |= AVIC_ENABLE_MASK;

	/*
	 * Note: KVM supports hybrid-AVIC mode, where KVM emulates x2APIC MSR
	 * accesses, while interrupt injection to a running vCPU can be
	 * achieved using AVIC doorbell.  KVM disables the APIC access page
	 * (deletes the memslot) if any vCPU has x2APIC enabled, thus enabling
	 * AVIC in hybrid mode activates only the doorbell mechanism.
	 */
	if (x2avic_enabled && apic_x2apic_mode(svm->vcpu.arch.apic)) {
		vmcb->control.int_ctl |= X2APIC_MODE_MASK;
		vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID;
		/* Disabling MSR intercept for x2APIC registers */
		svm_set_x2apic_msr_interception(svm, false);
	} else {
		/*
		 * Flush the TLB, the guest may have inserted a non-APIC
		 * mapping into the TLB while AVIC was disabled.
		 */
		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, &svm->vcpu);

		/* For xAVIC and hybrid-xAVIC modes */
		vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID;
		/* Enabling MSR intercept for x2APIC registers */
		svm_set_x2apic_msr_interception(svm, true);
	}
}

static void avic_deactivate_vmcb(struct vcpu_svm *svm)
{
	struct vmcb *vmcb = svm->vmcb01.ptr;

	vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
	vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;

	/*
	 * If running nested and the guest uses its own MSR bitmap, there
	 * is no need to update L0's msr bitmap
	 */
	if (is_guest_mode(&svm->vcpu) &&
	    vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))
		return;

	/* Enabling MSR intercept for x2APIC registers */
	svm_set_x2apic_msr_interception(svm, true);
}

/* Note:
 * This function is called from IOMMU driver to notify
 * SVM to schedule in a particular vCPU of a particular VM.
 */
int avic_ga_log_notifier(u32 ga_tag)
{
	unsigned long flags;
	struct kvm_svm *kvm_svm;
	struct kvm_vcpu *vcpu = NULL;
	u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
	u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);

	pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
	trace_kvm_avic_ga_log(vm_id, vcpu_id);

	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
	hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
		if (kvm_svm->avic_vm_id != vm_id)
			continue;
		vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
		break;
	}
	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);

	/* Note:
	 * At this point, the IOMMU should have already set the pending
	 * bit in the vAPIC backing page. So, we just need to schedule
	 * in the vcpu.
	 */
	if (vcpu)
		kvm_vcpu_wake_up(vcpu);

	return 0;
}

void avic_vm_destroy(struct kvm *kvm)
{
	unsigned long flags;
	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);

	if (!enable_apicv)
		return;

	if (kvm_svm->avic_logical_id_table_page)
		__free_page(kvm_svm->avic_logical_id_table_page);
	if (kvm_svm->avic_physical_id_table_page)
		__free_page(kvm_svm->avic_physical_id_table_page);

	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
	hash_del(&kvm_svm->hnode);
	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
}

int avic_vm_init(struct kvm *kvm)
{
	unsigned long flags;
	int err = -ENOMEM;
	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
	struct kvm_svm *k2;
	struct page *p_page;
	struct page *l_page;
	u32 vm_id;

	if (!enable_apicv)
		return 0;

	/* Allocating physical APIC ID table (4KB) */
	p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
	if (!p_page)
		goto free_avic;

	kvm_svm->avic_physical_id_table_page = p_page;

	/* Allocating logical APIC ID table (4KB) */
	l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
	if (!l_page)
		goto free_avic;

	kvm_svm->avic_logical_id_table_page = l_page;

	spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
 again:
	vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
	if (vm_id == 0) { /* id is 1-based, zero is not okay */
		next_vm_id_wrapped = 1;
		goto again;
	}
	/* Is it still in use? Only possible if wrapped at least once */
	if (next_vm_id_wrapped) {
		hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
			if (k2->avic_vm_id == vm_id)
				goto again;
		}
	}
	kvm_svm->avic_vm_id = vm_id;
	hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
	spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);

	return 0;

free_avic:
	avic_vm_destroy(kvm);
	return err;
}

void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
{
	struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
	phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
	phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
	phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));

	vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
	vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
	vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
	vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;

	if (kvm_apicv_activated(svm->vcpu.kvm))
		avic_activate_vmcb(svm);
	else
		avic_deactivate_vmcb(svm);
}

static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
				       unsigned int index)
{
	u64 *avic_physical_id_table;
	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);

	if ((!x2avic_enabled && index > AVIC_MAX_PHYSICAL_ID) ||
	    (index > X2AVIC_MAX_PHYSICAL_ID))
		return NULL;

	avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);

	return &avic_physical_id_table[index];
}

static int avic_init_backing_page(struct kvm_vcpu *vcpu)
{
	u64 *entry, new_entry;
	int id = vcpu->vcpu_id;
	struct vcpu_svm *svm = to_svm(vcpu);

	if ((!x2avic_enabled && id > AVIC_MAX_PHYSICAL_ID) ||
	    (id > X2AVIC_MAX_PHYSICAL_ID))
		return -EINVAL;

	if (!vcpu->arch.apic->regs)
		return -EINVAL;

	if (kvm_apicv_activated(vcpu->kvm)) {
		int ret;

		/*
		 * Note, AVIC hardware walks the nested page table to check
		 * permissions, but does not use the SPA address specified in
		 * the leaf SPTE since it uses address in the AVIC_BACKING_PAGE
		 * pointer field of the VMCB.
		 */
		ret = kvm_alloc_apic_access_page(vcpu->kvm);
		if (ret)
			return ret;
	}

	svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);

	/* Setting AVIC backing page address in the phy APIC ID table */
	entry = avic_get_physical_id_entry(vcpu, id);
	if (!entry)
		return -EINVAL;

	new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
			      AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
			      AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
	WRITE_ONCE(*entry, new_entry);

	svm->avic_physical_id_cache = entry;

	return 0;
}

void avic_ring_doorbell(struct kvm_vcpu *vcpu)
{
	/*
	 * Note, the vCPU could get migrated to a different pCPU at any point,
	 * which could result in signalling the wrong/previous pCPU.  But if
	 * that happens the vCPU is guaranteed to do a VMRUN (after being
	 * migrated) and thus will process pending interrupts, i.e. a doorbell
	 * is not needed (and the spurious one is harmless).
	 */
	int cpu = READ_ONCE(vcpu->cpu);

	if (cpu != get_cpu()) {
		wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
		trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu));
	}
	put_cpu();
}


static void avic_kick_vcpu(struct kvm_vcpu *vcpu, u32 icrl)
{
	vcpu->arch.apic->irr_pending = true;
	svm_complete_interrupt_delivery(vcpu,
					icrl & APIC_MODE_MASK,
					icrl & APIC_INT_LEVELTRIG,
					icrl & APIC_VECTOR_MASK);
}

static void avic_kick_vcpu_by_physical_id(struct kvm *kvm, u32 physical_id,
					  u32 icrl)
{
	/*
	 * KVM inhibits AVIC if any vCPU ID diverges from the vCPUs APIC ID,
	 * i.e. APIC ID == vCPU ID.
	 */
	struct kvm_vcpu *target_vcpu = kvm_get_vcpu_by_id(kvm, physical_id);

	/* Once again, nothing to do if the target vCPU doesn't exist. */
	if (unlikely(!target_vcpu))
		return;

	avic_kick_vcpu(target_vcpu, icrl);
}

static void avic_kick_vcpu_by_logical_id(struct kvm *kvm, u32 *avic_logical_id_table,
					 u32 logid_index, u32 icrl)
{
	u32 physical_id;

	if (avic_logical_id_table) {
		u32 logid_entry = avic_logical_id_table[logid_index];

		/* Nothing to do if the logical destination is invalid. */
		if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
			return;

		physical_id = logid_entry &
			      AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
	} else {
		/*
		 * For x2APIC, the logical APIC ID is a read-only value that is
		 * derived from the x2APIC ID, thus the x2APIC ID can be found
		 * by reversing the calculation (stored in logid_index).  Note,
		 * bits 31:20 of the x2APIC ID aren't propagated to the logical
		 * ID, but KVM limits the x2APIC ID limited to KVM_MAX_VCPU_IDS.
		 */
		physical_id = logid_index;
	}

	avic_kick_vcpu_by_physical_id(kvm, physical_id, icrl);
}

/*
 * A fast-path version of avic_kick_target_vcpus(), which attempts to match
 * destination APIC ID to vCPU without looping through all vCPUs.
 */
static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
				       u32 icrl, u32 icrh, u32 index)
{
	int dest_mode = icrl & APIC_DEST_MASK;
	int shorthand = icrl & APIC_SHORT_MASK;
	struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
	u32 dest;

	if (shorthand != APIC_DEST_NOSHORT)
		return -EINVAL;

	if (apic_x2apic_mode(source))
		dest = icrh;
	else
		dest = GET_XAPIC_DEST_FIELD(icrh);

	if (dest_mode == APIC_DEST_PHYSICAL) {
		/* broadcast destination, use slow path */
		if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
			return -EINVAL;
		if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
			return -EINVAL;

		if (WARN_ON_ONCE(dest != index))
			return -EINVAL;

		avic_kick_vcpu_by_physical_id(kvm, dest, icrl);
	} else {
		u32 *avic_logical_id_table;
		unsigned long bitmap, i;
		u32 cluster;

		if (apic_x2apic_mode(source)) {
			/* 16 bit dest mask, 16 bit cluster id */
			bitmap = dest & 0xFFFF;
			cluster = (dest >> 16) << 4;
		} else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
			/* 8 bit dest mask*/
			bitmap = dest;
			cluster = 0;
		} else {
			/* 4 bit desk mask, 4 bit cluster id */
			bitmap = dest & 0xF;
			cluster = (dest >> 4) << 2;
		}

		/* Nothing to do if there are no destinations in the cluster. */
		if (unlikely(!bitmap))
			return 0;

		if (apic_x2apic_mode(source))
			avic_logical_id_table = NULL;
		else
			avic_logical_id_table = page_address(kvm_svm->avic_logical_id_table_page);

		/*
		 * AVIC is inhibited if vCPUs aren't mapped 1:1 with logical
		 * IDs, thus each bit in the destination is guaranteed to map
		 * to at most one vCPU.
		 */
		for_each_set_bit(i, &bitmap, 16)
			avic_kick_vcpu_by_logical_id(kvm, avic_logical_id_table,
						     cluster + i, icrl);
	}

	return 0;
}

static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
				   u32 icrl, u32 icrh, u32 index)
{
	u32 dest = apic_x2apic_mode(source) ? icrh : GET_XAPIC_DEST_FIELD(icrh);
	unsigned long i;
	struct kvm_vcpu *vcpu;

	if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
		return;

	trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);

	/*
	 * Wake any target vCPUs that are blocking, i.e. waiting for a wake
	 * event.  There's no need to signal doorbells, as hardware has handled
	 * vCPUs that were in guest at the time of the IPI, and vCPUs that have
	 * since entered the guest will have processed pending IRQs at VMRUN.
	 */
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
					dest, icrl & APIC_DEST_MASK))
			avic_kick_vcpu(vcpu, icrl);
	}
}

int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
	u32 icrl = svm->vmcb->control.exit_info_1;
	u32 id = svm->vmcb->control.exit_info_2 >> 32;
	u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
	struct kvm_lapic *apic = vcpu->arch.apic;

	trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);

	switch (id) {
	case AVIC_IPI_FAILURE_INVALID_TARGET:
	case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
		/*
		 * Emulate IPIs that are not handled by AVIC hardware, which
		 * only virtualizes Fixed, Edge-Triggered INTRs, and falls over
		 * if _any_ targets are invalid, e.g. if the logical mode mask
		 * is a superset of running vCPUs.
		 *
		 * The exit is a trap, e.g. ICR holds the correct value and RIP
		 * has been advanced, KVM is responsible only for emulating the
		 * IPI.  Sadly, hardware may sometimes leave the BUSY flag set,
		 * in which case KVM needs to emulate the ICR write as well in
		 * order to clear the BUSY flag.
		 */
		if (icrl & APIC_ICR_BUSY)
			kvm_apic_write_nodecode(vcpu, APIC_ICR);
		else
			kvm_apic_send_ipi(apic, icrl, icrh);
		break;
	case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
		/*
		 * At this point, we expect that the AVIC HW has already
		 * set the appropriate IRR bits on the valid target
		 * vcpus. So, we just need to kick the appropriate vcpu.
		 */
		avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
		break;
	case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
		WARN_ONCE(1, "Invalid backing page\n");
		break;
	default:
		pr_err("Unknown IPI interception\n");
	}

	return 1;
}

unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
{
	if (is_guest_mode(vcpu))
		return APICV_INHIBIT_REASON_NESTED;
	return 0;
}

static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
{
	struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
	u32 *logical_apic_id_table;
	u32 cluster, index;

	ldr = GET_APIC_LOGICAL_ID(ldr);

	if (flat) {
		cluster = 0;
	} else {
		cluster = (ldr >> 4);
		if (cluster >= 0xf)
			return NULL;
		ldr &= 0xf;
	}
	if (!ldr || !is_power_of_2(ldr))
		return NULL;

	index = __ffs(ldr);
	if (WARN_ON_ONCE(index > 7))
		return NULL;
	index += (cluster << 2);

	logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);

	return &logical_apic_id_table[index];
}

static void avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
{
	bool flat;
	u32 *entry, new_entry;

	flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
	entry = avic_get_logical_id_entry(vcpu, ldr, flat);
	if (!entry)
		return;

	new_entry = READ_ONCE(*entry);
	new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
	new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
	new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
	WRITE_ONCE(*entry, new_entry);
}

static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	bool flat = svm->dfr_reg == APIC_DFR_FLAT;
	u32 *entry;

	/* Note: x2AVIC does not use logical APIC ID table */
	if (apic_x2apic_mode(vcpu->arch.apic))
		return;

	entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
	if (entry)
		clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
}

static void avic_handle_ldr_update(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
	u32 id = kvm_xapic_id(vcpu->arch.apic);

	/* AVIC does not support LDR update for x2APIC */
	if (apic_x2apic_mode(vcpu->arch.apic))
		return;

	if (ldr == svm->ldr_reg)
		return;

	avic_invalidate_logical_id_entry(vcpu);

	svm->ldr_reg = ldr;
	avic_ldr_write(vcpu, id, ldr);
}

static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);

	if (svm->dfr_reg == dfr)
		return;

	avic_invalidate_logical_id_entry(vcpu);
	svm->dfr_reg = dfr;
}

static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
{
	u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
				AVIC_UNACCEL_ACCESS_OFFSET_MASK;

	switch (offset) {
	case APIC_LDR:
		avic_handle_ldr_update(vcpu);
		break;
	case APIC_DFR:
		avic_handle_dfr_update(vcpu);
		break;
	case APIC_RRR:
		/* Ignore writes to Read Remote Data, it's read-only. */
		return 1;
	default:
		break;
	}

	kvm_apic_write_nodecode(vcpu, offset);
	return 1;
}

static bool is_avic_unaccelerated_access_trap(u32 offset)
{
	bool ret = false;

	switch (offset) {
	case APIC_ID:
	case APIC_EOI:
	case APIC_RRR:
	case APIC_LDR:
	case APIC_DFR:
	case APIC_SPIV:
	case APIC_ESR:
	case APIC_ICR:
	case APIC_LVTT:
	case APIC_LVTTHMR:
	case APIC_LVTPC:
	case APIC_LVT0:
	case APIC_LVT1:
	case APIC_LVTERR:
	case APIC_TMICT:
	case APIC_TDCR:
		ret = true;
		break;
	default:
		break;
	}
	return ret;
}

int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	int ret = 0;
	u32 offset = svm->vmcb->control.exit_info_1 &
		     AVIC_UNACCEL_ACCESS_OFFSET_MASK;
	u32 vector = svm->vmcb->control.exit_info_2 &
		     AVIC_UNACCEL_ACCESS_VECTOR_MASK;
	bool write = (svm->vmcb->control.exit_info_1 >> 32) &
		     AVIC_UNACCEL_ACCESS_WRITE_MASK;
	bool trap = is_avic_unaccelerated_access_trap(offset);

	trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
					    trap, write, vector);
	if (trap) {
		/* Handling Trap */
		WARN_ONCE(!write, "svm: Handling trap read.\n");
		ret = avic_unaccel_trap_write(vcpu);
	} else {
		/* Handling Fault */
		ret = kvm_emulate_instruction(vcpu, 0);
	}

	return ret;
}

int avic_init_vcpu(struct vcpu_svm *svm)
{
	int ret;
	struct kvm_vcpu *vcpu = &svm->vcpu;

	if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
		return 0;

	ret = avic_init_backing_page(vcpu);
	if (ret)
		return ret;

	INIT_LIST_HEAD(&svm->ir_list);
	spin_lock_init(&svm->ir_list_lock);
	svm->dfr_reg = APIC_DFR_FLAT;

	return ret;
}

void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
{
	avic_handle_dfr_update(vcpu);
	avic_handle_ldr_update(vcpu);
}

static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
{
	int ret = 0;
	unsigned long flags;
	struct amd_svm_iommu_ir *ir;
	struct vcpu_svm *svm = to_svm(vcpu);

	if (!kvm_arch_has_assigned_device(vcpu->kvm))
		return 0;

	/*
	 * Here, we go through the per-vcpu ir_list to update all existing
	 * interrupt remapping table entry targeting this vcpu.
	 */
	spin_lock_irqsave(&svm->ir_list_lock, flags);

	if (list_empty(&svm->ir_list))
		goto out;

	list_for_each_entry(ir, &svm->ir_list, node) {
		if (activate)
			ret = amd_iommu_activate_guest_mode(ir->data);
		else
			ret = amd_iommu_deactivate_guest_mode(ir->data);
		if (ret)
			break;
	}
out:
	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
	return ret;
}

static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
{
	unsigned long flags;
	struct amd_svm_iommu_ir *cur;

	spin_lock_irqsave(&svm->ir_list_lock, flags);
	list_for_each_entry(cur, &svm->ir_list, node) {
		if (cur->data != pi->ir_data)
			continue;
		list_del(&cur->node);
		kfree(cur);
		break;
	}
	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
}

static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
{
	int ret = 0;
	unsigned long flags;
	struct amd_svm_iommu_ir *ir;
	u64 entry;

	/**
	 * In some cases, the existing irte is updated and re-set,
	 * so we need to check here if it's already been * added
	 * to the ir_list.
	 */
	if (pi->ir_data && (pi->prev_ga_tag != 0)) {
		struct kvm *kvm = svm->vcpu.kvm;
		u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
		struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
		struct vcpu_svm *prev_svm;

		if (!prev_vcpu) {
			ret = -EINVAL;
			goto out;
		}

		prev_svm = to_svm(prev_vcpu);
		svm_ir_list_del(prev_svm, pi);
	}

	/**
	 * Allocating new amd_iommu_pi_data, which will get
	 * add to the per-vcpu ir_list.
	 */
	ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
	if (!ir) {
		ret = -ENOMEM;
		goto out;
	}
	ir->data = pi->ir_data;

	spin_lock_irqsave(&svm->ir_list_lock, flags);

	/*
	 * Update the target pCPU for IOMMU doorbells if the vCPU is running.
	 * If the vCPU is NOT running, i.e. is blocking or scheduled out, KVM
	 * will update the pCPU info when the vCPU awkened and/or scheduled in.
	 * See also avic_vcpu_load().
	 */
	entry = READ_ONCE(*(svm->avic_physical_id_cache));
	if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
		amd_iommu_update_ga(entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK,
				    true, pi->ir_data);

	list_add(&ir->node, &svm->ir_list);
	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
out:
	return ret;
}

/*
 * Note:
 * The HW cannot support posting multicast/broadcast
 * interrupts to a vCPU. So, we still use legacy interrupt
 * remapping for these kind of interrupts.
 *
 * For lowest-priority interrupts, we only support
 * those with single CPU as the destination, e.g. user
 * configures the interrupts via /proc/irq or uses
 * irqbalance to make the interrupts single-CPU.
 */
static int
get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
		 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
{
	struct kvm_lapic_irq irq;
	struct kvm_vcpu *vcpu = NULL;

	kvm_set_msi_irq(kvm, e, &irq);

	if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
	    !kvm_irq_is_postable(&irq)) {
		pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
			 __func__, irq.vector);
		return -1;
	}

	pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
		 irq.vector);
	*svm = to_svm(vcpu);
	vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
	vcpu_info->vector = irq.vector;

	return 0;
}

/*
 * avic_pi_update_irte - set IRTE for Posted-Interrupts
 *
 * @kvm: kvm
 * @host_irq: host irq of the interrupt
 * @guest_irq: gsi of the interrupt
 * @set: set or unset PI
 * returns 0 on success, < 0 on failure
 */
int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
			uint32_t guest_irq, bool set)
{
	struct kvm_kernel_irq_routing_entry *e;
	struct kvm_irq_routing_table *irq_rt;
	int idx, ret = 0;

	if (!kvm_arch_has_assigned_device(kvm) ||
	    !irq_remapping_cap(IRQ_POSTING_CAP))
		return 0;

	pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
		 __func__, host_irq, guest_irq, set);

	idx = srcu_read_lock(&kvm->irq_srcu);
	irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);

	if (guest_irq >= irq_rt->nr_rt_entries ||
		hlist_empty(&irq_rt->map[guest_irq])) {
		pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
			     guest_irq, irq_rt->nr_rt_entries);
		goto out;
	}

	hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
		struct vcpu_data vcpu_info;
		struct vcpu_svm *svm = NULL;

		if (e->type != KVM_IRQ_ROUTING_MSI)
			continue;

		/**
		 * Here, we setup with legacy mode in the following cases:
		 * 1. When cannot target interrupt to a specific vcpu.
		 * 2. Unsetting posted interrupt.
		 * 3. APIC virtualization is disabled for the vcpu.
		 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
		 */
		if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
		    kvm_vcpu_apicv_active(&svm->vcpu)) {
			struct amd_iommu_pi_data pi;

			/* Try to enable guest_mode in IRTE */
			pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
					    AVIC_HPA_MASK);
			pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
						     svm->vcpu.vcpu_id);
			pi.is_guest_mode = true;
			pi.vcpu_data = &vcpu_info;
			ret = irq_set_vcpu_affinity(host_irq, &pi);

			/**
			 * Here, we successfully setting up vcpu affinity in
			 * IOMMU guest mode. Now, we need to store the posted
			 * interrupt information in a per-vcpu ir_list so that
			 * we can reference to them directly when we update vcpu
			 * scheduling information in IOMMU irte.
			 */
			if (!ret && pi.is_guest_mode)
				svm_ir_list_add(svm, &pi);
		} else {
			/* Use legacy mode in IRTE */
			struct amd_iommu_pi_data pi;

			/**
			 * Here, pi is used to:
			 * - Tell IOMMU to use legacy mode for this interrupt.
			 * - Retrieve ga_tag of prior interrupt remapping data.
			 */
			pi.prev_ga_tag = 0;
			pi.is_guest_mode = false;
			ret = irq_set_vcpu_affinity(host_irq, &pi);

			/**
			 * Check if the posted interrupt was previously
			 * setup with the guest_mode by checking if the ga_tag
			 * was cached. If so, we need to clean up the per-vcpu
			 * ir_list.
			 */
			if (!ret && pi.prev_ga_tag) {
				int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
				struct kvm_vcpu *vcpu;

				vcpu = kvm_get_vcpu_by_id(kvm, id);
				if (vcpu)
					svm_ir_list_del(to_svm(vcpu), &pi);
			}
		}

		if (!ret && svm) {
			trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
						 e->gsi, vcpu_info.vector,
						 vcpu_info.pi_desc_addr, set);
		}

		if (ret < 0) {
			pr_err("%s: failed to update PI IRTE\n", __func__);
			goto out;
		}
	}

	ret = 0;
out:
	srcu_read_unlock(&kvm->irq_srcu, idx);
	return ret;
}

static inline int
avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
{
	int ret = 0;
	struct amd_svm_iommu_ir *ir;
	struct vcpu_svm *svm = to_svm(vcpu);

	lockdep_assert_held(&svm->ir_list_lock);

	if (!kvm_arch_has_assigned_device(vcpu->kvm))
		return 0;

	/*
	 * Here, we go through the per-vcpu ir_list to update all existing
	 * interrupt remapping table entry targeting this vcpu.
	 */
	if (list_empty(&svm->ir_list))
		return 0;

	list_for_each_entry(ir, &svm->ir_list, node) {
		ret = amd_iommu_update_ga(cpu, r, ir->data);
		if (ret)
			return ret;
	}
	return 0;
}

void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
{
	u64 entry;
	int h_physical_id = kvm_cpu_get_apicid(cpu);
	struct vcpu_svm *svm = to_svm(vcpu);
	unsigned long flags;

	lockdep_assert_preemption_disabled();

	if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
		return;

	/*
	 * No need to update anything if the vCPU is blocking, i.e. if the vCPU
	 * is being scheduled in after being preempted.  The CPU entries in the
	 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
	 * If the vCPU was migrated, its new CPU value will be stuffed when the
	 * vCPU unblocks.
	 */
	if (kvm_vcpu_is_blocking(vcpu))
		return;

	/*
	 * Grab the per-vCPU interrupt remapping lock even if the VM doesn't
	 * _currently_ have assigned devices, as that can change.  Holding
	 * ir_list_lock ensures that either svm_ir_list_add() will consume
	 * up-to-date entry information, or that this task will wait until
	 * svm_ir_list_add() completes to set the new target pCPU.
	 */
	spin_lock_irqsave(&svm->ir_list_lock, flags);

	entry = READ_ONCE(*(svm->avic_physical_id_cache));
	WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);

	entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
	entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
	entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;

	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
	avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);

	spin_unlock_irqrestore(&svm->ir_list_lock, flags);
}

void avic_vcpu_put(struct kvm_vcpu *vcpu)
{
	u64 entry;
	struct vcpu_svm *svm = to_svm(vcpu);
	unsigned long flags;

	lockdep_assert_preemption_disabled();

	/*
	 * Note, reading the Physical ID entry outside of ir_list_lock is safe
	 * as only the pCPU that has loaded (or is loading) the vCPU is allowed
	 * to modify the entry, and preemption is disabled.  I.e. the vCPU
	 * can't be scheduled out and thus avic_vcpu_{put,load}() can't run
	 * recursively.
	 */
	entry = READ_ONCE(*(svm->avic_physical_id_cache));

	/* Nothing to do if IsRunning == '0' due to vCPU blocking. */
	if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
		return;

	/*
	 * Take and hold the per-vCPU interrupt remapping lock while updating
	 * the Physical ID entry even though the lock doesn't protect against
	 * multiple writers (see above).  Holding ir_list_lock ensures that
	 * either svm_ir_list_add() will consume up-to-date entry information,
	 * or that this task will wait until svm_ir_list_add() completes to
	 * mark the vCPU as not running.
	 */
	spin_lock_irqsave(&svm->ir_list_lock, flags);

	avic_update_iommu_vcpu_affinity(vcpu, -1, 0);

	entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
	WRITE_ONCE(*(svm->avic_physical_id_cache), entry);

	spin_unlock_irqrestore(&svm->ir_list_lock, flags);

}

void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb *vmcb = svm->vmcb01.ptr;

	if (!lapic_in_kernel(vcpu) || !enable_apicv)
		return;

	if (kvm_vcpu_apicv_active(vcpu)) {
		/**
		 * During AVIC temporary deactivation, guest could update
		 * APIC ID, DFR and LDR registers, which would not be trapped
		 * by avic_unaccelerated_access_interception(). In this case,
		 * we need to check and update the AVIC logical APIC ID table
		 * accordingly before re-activating.
		 */
		avic_apicv_post_state_restore(vcpu);
		avic_activate_vmcb(svm);
	} else {
		avic_deactivate_vmcb(svm);
	}
	vmcb_mark_dirty(vmcb, VMCB_AVIC);
}

void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
{
	bool activated = kvm_vcpu_apicv_active(vcpu);

	if (!enable_apicv)
		return;

	avic_refresh_virtual_apic_mode(vcpu);

	if (activated)
		avic_vcpu_load(vcpu, vcpu->cpu);
	else
		avic_vcpu_put(vcpu);

	avic_set_pi_irte_mode(vcpu, activated);
}

void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
{
	if (!kvm_vcpu_apicv_active(vcpu))
		return;

       /*
        * Unload the AVIC when the vCPU is about to block, _before_
        * the vCPU actually blocks.
        *
        * Any IRQs that arrive before IsRunning=0 will not cause an
        * incomplete IPI vmexit on the source, therefore vIRR will also
        * be checked by kvm_vcpu_check_block() before blocking.  The
        * memory barrier implicit in set_current_state orders writing
        * IsRunning=0 before reading the vIRR.  The processor needs a
        * matching memory barrier on interrupt delivery between writing
        * IRR and reading IsRunning; the lack of this barrier might be
        * the cause of errata #1235).
        */
	avic_vcpu_put(vcpu);
}

void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
	if (!kvm_vcpu_apicv_active(vcpu))
		return;

	avic_vcpu_load(vcpu, vcpu->cpu);
}

/*
 * Note:
 * - The module param avic enable both xAPIC and x2APIC mode.
 * - Hypervisor can support both xAVIC and x2AVIC in the same guest.
 * - The mode can be switched at run-time.
 */
bool avic_hardware_setup(void)
{
	if (!npt_enabled)
		return false;

	/* AVIC is a prerequisite for x2AVIC. */
	if (!boot_cpu_has(X86_FEATURE_AVIC) && !force_avic) {
		if (boot_cpu_has(X86_FEATURE_X2AVIC)) {
			pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled");
			pr_warn(FW_BUG "Try enable AVIC using force_avic option");
		}
		return false;
	}

	if (boot_cpu_has(X86_FEATURE_AVIC)) {
		pr_info("AVIC enabled\n");
	} else if (force_avic) {
		/*
		 * Some older systems does not advertise AVIC support.
		 * See Revision Guide for specific AMD processor for more detail.
		 */
		pr_warn("AVIC is not supported in CPUID but force enabled");
		pr_warn("Your system might crash and burn");
	}

	/* AVIC is a prerequisite for x2AVIC. */
	x2avic_enabled = boot_cpu_has(X86_FEATURE_X2AVIC);
	if (x2avic_enabled)
		pr_info("x2AVIC enabled\n");

	amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);

	return true;
}