summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/hyperv.c
blob: 4f0a94346d009406639680918e686ddd3abc8d83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
// SPDX-License-Identifier: GPL-2.0-only
/*
 * KVM Microsoft Hyper-V emulation
 *
 * derived from arch/x86/kvm/x86.c
 *
 * Copyright (C) 2006 Qumranet, Inc.
 * Copyright (C) 2008 Qumranet, Inc.
 * Copyright IBM Corporation, 2008
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 * Copyright (C) 2015 Andrey Smetanin <asmetanin@virtuozzo.com>
 *
 * Authors:
 *   Avi Kivity   <avi@qumranet.com>
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Amit Shah    <amit.shah@qumranet.com>
 *   Ben-Ami Yassour <benami@il.ibm.com>
 *   Andrey Smetanin <asmetanin@virtuozzo.com>
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include "x86.h"
#include "lapic.h"
#include "ioapic.h"
#include "cpuid.h"
#include "hyperv.h"
#include "mmu.h"
#include "xen.h"

#include <linux/cpu.h>
#include <linux/kvm_host.h>
#include <linux/highmem.h>
#include <linux/sched/cputime.h>
#include <linux/spinlock.h>
#include <linux/eventfd.h>

#include <asm/apicdef.h>
#include <asm/mshyperv.h>
#include <trace/events/kvm.h>

#include "trace.h"
#include "irq.h"
#include "fpu.h"

#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, HV_VCPUS_PER_SPARSE_BANK)

/*
 * As per Hyper-V TLFS, extended hypercalls start from 0x8001
 * (HvExtCallQueryCapabilities). Response of this hypercalls is a 64 bit value
 * where each bit tells which extended hypercall is available besides
 * HvExtCallQueryCapabilities.
 *
 * 0x8001 - First extended hypercall, HvExtCallQueryCapabilities, no bit
 * assigned.
 *
 * 0x8002 - Bit 0
 * 0x8003 - Bit 1
 * ..
 * 0x8041 - Bit 63
 *
 * Therefore, HV_EXT_CALL_MAX = 0x8001 + 64
 */
#define HV_EXT_CALL_MAX (HV_EXT_CALL_QUERY_CAPABILITIES + 64)

static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
				bool vcpu_kick);

static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
{
	return atomic64_read(&synic->sint[sint]);
}

static inline int synic_get_sint_vector(u64 sint_value)
{
	if (sint_value & HV_SYNIC_SINT_MASKED)
		return -1;
	return sint_value & HV_SYNIC_SINT_VECTOR_MASK;
}

static bool synic_has_vector_connected(struct kvm_vcpu_hv_synic *synic,
				      int vector)
{
	int i;

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
			return true;
	}
	return false;
}

static bool synic_has_vector_auto_eoi(struct kvm_vcpu_hv_synic *synic,
				     int vector)
{
	int i;
	u64 sint_value;

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		sint_value = synic_read_sint(synic, i);
		if (synic_get_sint_vector(sint_value) == vector &&
		    sint_value & HV_SYNIC_SINT_AUTO_EOI)
			return true;
	}
	return false;
}

static void synic_update_vector(struct kvm_vcpu_hv_synic *synic,
				int vector)
{
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
	bool auto_eoi_old, auto_eoi_new;

	if (vector < HV_SYNIC_FIRST_VALID_VECTOR)
		return;

	if (synic_has_vector_connected(synic, vector))
		__set_bit(vector, synic->vec_bitmap);
	else
		__clear_bit(vector, synic->vec_bitmap);

	auto_eoi_old = !bitmap_empty(synic->auto_eoi_bitmap, 256);

	if (synic_has_vector_auto_eoi(synic, vector))
		__set_bit(vector, synic->auto_eoi_bitmap);
	else
		__clear_bit(vector, synic->auto_eoi_bitmap);

	auto_eoi_new = !bitmap_empty(synic->auto_eoi_bitmap, 256);

	if (auto_eoi_old == auto_eoi_new)
		return;

	if (!enable_apicv)
		return;

	down_write(&vcpu->kvm->arch.apicv_update_lock);

	if (auto_eoi_new)
		hv->synic_auto_eoi_used++;
	else
		hv->synic_auto_eoi_used--;

	/*
	 * Inhibit APICv if any vCPU is using SynIC's AutoEOI, which relies on
	 * the hypervisor to manually inject IRQs.
	 */
	__kvm_set_or_clear_apicv_inhibit(vcpu->kvm,
					 APICV_INHIBIT_REASON_HYPERV,
					 !!hv->synic_auto_eoi_used);

	up_write(&vcpu->kvm->arch.apicv_update_lock);
}

static int synic_set_sint(struct kvm_vcpu_hv_synic *synic, int sint,
			  u64 data, bool host)
{
	int vector, old_vector;
	bool masked;

	vector = data & HV_SYNIC_SINT_VECTOR_MASK;
	masked = data & HV_SYNIC_SINT_MASKED;

	/*
	 * Valid vectors are 16-255, however, nested Hyper-V attempts to write
	 * default '0x10000' value on boot and this should not #GP. We need to
	 * allow zero-initing the register from host as well.
	 */
	if (vector < HV_SYNIC_FIRST_VALID_VECTOR && !host && !masked)
		return 1;
	/*
	 * Guest may configure multiple SINTs to use the same vector, so
	 * we maintain a bitmap of vectors handled by synic, and a
	 * bitmap of vectors with auto-eoi behavior.  The bitmaps are
	 * updated here, and atomically queried on fast paths.
	 */
	old_vector = synic_read_sint(synic, sint) & HV_SYNIC_SINT_VECTOR_MASK;

	atomic64_set(&synic->sint[sint], data);

	synic_update_vector(synic, old_vector);

	synic_update_vector(synic, vector);

	/* Load SynIC vectors into EOI exit bitmap */
	kvm_make_request(KVM_REQ_SCAN_IOAPIC, hv_synic_to_vcpu(synic));
	return 0;
}

static struct kvm_vcpu *get_vcpu_by_vpidx(struct kvm *kvm, u32 vpidx)
{
	struct kvm_vcpu *vcpu = NULL;
	unsigned long i;

	if (vpidx >= KVM_MAX_VCPUS)
		return NULL;

	vcpu = kvm_get_vcpu(kvm, vpidx);
	if (vcpu && kvm_hv_get_vpindex(vcpu) == vpidx)
		return vcpu;
	kvm_for_each_vcpu(i, vcpu, kvm)
		if (kvm_hv_get_vpindex(vcpu) == vpidx)
			return vcpu;
	return NULL;
}

static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
{
	struct kvm_vcpu *vcpu;
	struct kvm_vcpu_hv_synic *synic;

	vcpu = get_vcpu_by_vpidx(kvm, vpidx);
	if (!vcpu || !to_hv_vcpu(vcpu))
		return NULL;
	synic = to_hv_synic(vcpu);
	return (synic->active) ? synic : NULL;
}

static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
	struct kvm_vcpu_hv_stimer *stimer;
	int gsi, idx;

	trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);

	/* Try to deliver pending Hyper-V SynIC timers messages */
	for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
		stimer = &hv_vcpu->stimer[idx];
		if (stimer->msg_pending && stimer->config.enable &&
		    !stimer->config.direct_mode &&
		    stimer->config.sintx == sint)
			stimer_mark_pending(stimer, false);
	}

	idx = srcu_read_lock(&kvm->irq_srcu);
	gsi = atomic_read(&synic->sint_to_gsi[sint]);
	if (gsi != -1)
		kvm_notify_acked_gsi(kvm, gsi);
	srcu_read_unlock(&kvm->irq_srcu, idx);
}

static void synic_exit(struct kvm_vcpu_hv_synic *synic, u32 msr)
{
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);

	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNIC;
	hv_vcpu->exit.u.synic.msr = msr;
	hv_vcpu->exit.u.synic.control = synic->control;
	hv_vcpu->exit.u.synic.evt_page = synic->evt_page;
	hv_vcpu->exit.u.synic.msg_page = synic->msg_page;

	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}

static int synic_set_msr(struct kvm_vcpu_hv_synic *synic,
			 u32 msr, u64 data, bool host)
{
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
	int ret;

	if (!synic->active && (!host || data))
		return 1;

	trace_kvm_hv_synic_set_msr(vcpu->vcpu_id, msr, data, host);

	ret = 0;
	switch (msr) {
	case HV_X64_MSR_SCONTROL:
		synic->control = data;
		if (!host)
			synic_exit(synic, msr);
		break;
	case HV_X64_MSR_SVERSION:
		if (!host) {
			ret = 1;
			break;
		}
		synic->version = data;
		break;
	case HV_X64_MSR_SIEFP:
		if ((data & HV_SYNIC_SIEFP_ENABLE) && !host &&
		    !synic->dont_zero_synic_pages)
			if (kvm_clear_guest(vcpu->kvm,
					    data & PAGE_MASK, PAGE_SIZE)) {
				ret = 1;
				break;
			}
		synic->evt_page = data;
		if (!host)
			synic_exit(synic, msr);
		break;
	case HV_X64_MSR_SIMP:
		if ((data & HV_SYNIC_SIMP_ENABLE) && !host &&
		    !synic->dont_zero_synic_pages)
			if (kvm_clear_guest(vcpu->kvm,
					    data & PAGE_MASK, PAGE_SIZE)) {
				ret = 1;
				break;
			}
		synic->msg_page = data;
		if (!host)
			synic_exit(synic, msr);
		break;
	case HV_X64_MSR_EOM: {
		int i;

		if (!synic->active)
			break;

		for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
			kvm_hv_notify_acked_sint(vcpu, i);
		break;
	}
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		ret = synic_set_sint(synic, msr - HV_X64_MSR_SINT0, data, host);
		break;
	default:
		ret = 1;
		break;
	}
	return ret;
}

static bool kvm_hv_is_syndbg_enabled(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);

	return hv_vcpu->cpuid_cache.syndbg_cap_eax &
		HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
}

static int kvm_hv_syndbg_complete_userspace(struct kvm_vcpu *vcpu)
{
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);

	if (vcpu->run->hyperv.u.syndbg.msr == HV_X64_MSR_SYNDBG_CONTROL)
		hv->hv_syndbg.control.status =
			vcpu->run->hyperv.u.syndbg.status;
	return 1;
}

static void syndbg_exit(struct kvm_vcpu *vcpu, u32 msr)
{
	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);

	hv_vcpu->exit.type = KVM_EXIT_HYPERV_SYNDBG;
	hv_vcpu->exit.u.syndbg.msr = msr;
	hv_vcpu->exit.u.syndbg.control = syndbg->control.control;
	hv_vcpu->exit.u.syndbg.send_page = syndbg->control.send_page;
	hv_vcpu->exit.u.syndbg.recv_page = syndbg->control.recv_page;
	hv_vcpu->exit.u.syndbg.pending_page = syndbg->control.pending_page;
	vcpu->arch.complete_userspace_io =
			kvm_hv_syndbg_complete_userspace;

	kvm_make_request(KVM_REQ_HV_EXIT, vcpu);
}

static int syndbg_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);

	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
		return 1;

	trace_kvm_hv_syndbg_set_msr(vcpu->vcpu_id,
				    to_hv_vcpu(vcpu)->vp_index, msr, data);
	switch (msr) {
	case HV_X64_MSR_SYNDBG_CONTROL:
		syndbg->control.control = data;
		if (!host)
			syndbg_exit(vcpu, msr);
		break;
	case HV_X64_MSR_SYNDBG_STATUS:
		syndbg->control.status = data;
		break;
	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
		syndbg->control.send_page = data;
		break;
	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
		syndbg->control.recv_page = data;
		break;
	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		syndbg->control.pending_page = data;
		if (!host)
			syndbg_exit(vcpu, msr);
		break;
	case HV_X64_MSR_SYNDBG_OPTIONS:
		syndbg->options = data;
		break;
	default:
		break;
	}

	return 0;
}

static int syndbg_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
{
	struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);

	if (!kvm_hv_is_syndbg_enabled(vcpu) && !host)
		return 1;

	switch (msr) {
	case HV_X64_MSR_SYNDBG_CONTROL:
		*pdata = syndbg->control.control;
		break;
	case HV_X64_MSR_SYNDBG_STATUS:
		*pdata = syndbg->control.status;
		break;
	case HV_X64_MSR_SYNDBG_SEND_BUFFER:
		*pdata = syndbg->control.send_page;
		break;
	case HV_X64_MSR_SYNDBG_RECV_BUFFER:
		*pdata = syndbg->control.recv_page;
		break;
	case HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		*pdata = syndbg->control.pending_page;
		break;
	case HV_X64_MSR_SYNDBG_OPTIONS:
		*pdata = syndbg->options;
		break;
	default:
		break;
	}

	trace_kvm_hv_syndbg_get_msr(vcpu->vcpu_id, kvm_hv_get_vpindex(vcpu), msr, *pdata);

	return 0;
}

static int synic_get_msr(struct kvm_vcpu_hv_synic *synic, u32 msr, u64 *pdata,
			 bool host)
{
	int ret;

	if (!synic->active && !host)
		return 1;

	ret = 0;
	switch (msr) {
	case HV_X64_MSR_SCONTROL:
		*pdata = synic->control;
		break;
	case HV_X64_MSR_SVERSION:
		*pdata = synic->version;
		break;
	case HV_X64_MSR_SIEFP:
		*pdata = synic->evt_page;
		break;
	case HV_X64_MSR_SIMP:
		*pdata = synic->msg_page;
		break;
	case HV_X64_MSR_EOM:
		*pdata = 0;
		break;
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		*pdata = atomic64_read(&synic->sint[msr - HV_X64_MSR_SINT0]);
		break;
	default:
		ret = 1;
		break;
	}
	return ret;
}

static int synic_set_irq(struct kvm_vcpu_hv_synic *synic, u32 sint)
{
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
	struct kvm_lapic_irq irq;
	int ret, vector;

	if (KVM_BUG_ON(!lapic_in_kernel(vcpu), vcpu->kvm))
		return -EINVAL;

	if (sint >= ARRAY_SIZE(synic->sint))
		return -EINVAL;

	vector = synic_get_sint_vector(synic_read_sint(synic, sint));
	if (vector < 0)
		return -ENOENT;

	memset(&irq, 0, sizeof(irq));
	irq.shorthand = APIC_DEST_SELF;
	irq.dest_mode = APIC_DEST_PHYSICAL;
	irq.delivery_mode = APIC_DM_FIXED;
	irq.vector = vector;
	irq.level = 1;

	ret = kvm_irq_delivery_to_apic(vcpu->kvm, vcpu->arch.apic, &irq, NULL);
	trace_kvm_hv_synic_set_irq(vcpu->vcpu_id, sint, irq.vector, ret);
	return ret;
}

int kvm_hv_synic_set_irq(struct kvm *kvm, u32 vpidx, u32 sint)
{
	struct kvm_vcpu_hv_synic *synic;

	synic = synic_get(kvm, vpidx);
	if (!synic)
		return -EINVAL;

	return synic_set_irq(synic, sint);
}

void kvm_hv_synic_send_eoi(struct kvm_vcpu *vcpu, int vector)
{
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);
	int i;

	trace_kvm_hv_synic_send_eoi(vcpu->vcpu_id, vector);

	for (i = 0; i < ARRAY_SIZE(synic->sint); i++)
		if (synic_get_sint_vector(synic_read_sint(synic, i)) == vector)
			kvm_hv_notify_acked_sint(vcpu, i);
}

static int kvm_hv_set_sint_gsi(struct kvm *kvm, u32 vpidx, u32 sint, int gsi)
{
	struct kvm_vcpu_hv_synic *synic;

	synic = synic_get(kvm, vpidx);
	if (!synic)
		return -EINVAL;

	if (sint >= ARRAY_SIZE(synic->sint_to_gsi))
		return -EINVAL;

	atomic_set(&synic->sint_to_gsi[sint], gsi);
	return 0;
}

void kvm_hv_irq_routing_update(struct kvm *kvm)
{
	struct kvm_irq_routing_table *irq_rt;
	struct kvm_kernel_irq_routing_entry *e;
	u32 gsi;

	irq_rt = srcu_dereference_check(kvm->irq_routing, &kvm->irq_srcu,
					lockdep_is_held(&kvm->irq_lock));

	for (gsi = 0; gsi < irq_rt->nr_rt_entries; gsi++) {
		hlist_for_each_entry(e, &irq_rt->map[gsi], link) {
			if (e->type == KVM_IRQ_ROUTING_HV_SINT)
				kvm_hv_set_sint_gsi(kvm, e->hv_sint.vcpu,
						    e->hv_sint.sint, gsi);
		}
	}
}

static void synic_init(struct kvm_vcpu_hv_synic *synic)
{
	int i;

	memset(synic, 0, sizeof(*synic));
	synic->version = HV_SYNIC_VERSION_1;
	for (i = 0; i < ARRAY_SIZE(synic->sint); i++) {
		atomic64_set(&synic->sint[i], HV_SYNIC_SINT_MASKED);
		atomic_set(&synic->sint_to_gsi[i], -1);
	}
}

static u64 get_time_ref_counter(struct kvm *kvm)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);
	struct kvm_vcpu *vcpu;
	u64 tsc;

	/*
	 * Fall back to get_kvmclock_ns() when TSC page hasn't been set up,
	 * is broken, disabled or being updated.
	 */
	if (hv->hv_tsc_page_status != HV_TSC_PAGE_SET)
		return div_u64(get_kvmclock_ns(kvm), 100);

	vcpu = kvm_get_vcpu(kvm, 0);
	tsc = kvm_read_l1_tsc(vcpu, rdtsc());
	return mul_u64_u64_shr(tsc, hv->tsc_ref.tsc_scale, 64)
		+ hv->tsc_ref.tsc_offset;
}

static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
				bool vcpu_kick)
{
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);

	set_bit(stimer->index,
		to_hv_vcpu(vcpu)->stimer_pending_bitmap);
	kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
	if (vcpu_kick)
		kvm_vcpu_kick(vcpu);
}

static void stimer_cleanup(struct kvm_vcpu_hv_stimer *stimer)
{
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);

	trace_kvm_hv_stimer_cleanup(hv_stimer_to_vcpu(stimer)->vcpu_id,
				    stimer->index);

	hrtimer_cancel(&stimer->timer);
	clear_bit(stimer->index,
		  to_hv_vcpu(vcpu)->stimer_pending_bitmap);
	stimer->msg_pending = false;
	stimer->exp_time = 0;
}

static enum hrtimer_restart stimer_timer_callback(struct hrtimer *timer)
{
	struct kvm_vcpu_hv_stimer *stimer;

	stimer = container_of(timer, struct kvm_vcpu_hv_stimer, timer);
	trace_kvm_hv_stimer_callback(hv_stimer_to_vcpu(stimer)->vcpu_id,
				     stimer->index);
	stimer_mark_pending(stimer, true);

	return HRTIMER_NORESTART;
}

/*
 * stimer_start() assumptions:
 * a) stimer->count is not equal to 0
 * b) stimer->config has HV_STIMER_ENABLE flag
 */
static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
{
	u64 time_now;
	ktime_t ktime_now;

	time_now = get_time_ref_counter(hv_stimer_to_vcpu(stimer)->kvm);
	ktime_now = ktime_get();

	if (stimer->config.periodic) {
		if (stimer->exp_time) {
			if (time_now >= stimer->exp_time) {
				u64 remainder;

				div64_u64_rem(time_now - stimer->exp_time,
					      stimer->count, &remainder);
				stimer->exp_time =
					time_now + (stimer->count - remainder);
			}
		} else
			stimer->exp_time = time_now + stimer->count;

		trace_kvm_hv_stimer_start_periodic(
					hv_stimer_to_vcpu(stimer)->vcpu_id,
					stimer->index,
					time_now, stimer->exp_time);

		hrtimer_start(&stimer->timer,
			      ktime_add_ns(ktime_now,
					   100 * (stimer->exp_time - time_now)),
			      HRTIMER_MODE_ABS);
		return 0;
	}
	stimer->exp_time = stimer->count;
	if (time_now >= stimer->count) {
		/*
		 * Expire timer according to Hypervisor Top-Level Functional
		 * specification v4(15.3.1):
		 * "If a one shot is enabled and the specified count is in
		 * the past, it will expire immediately."
		 */
		stimer_mark_pending(stimer, false);
		return 0;
	}

	trace_kvm_hv_stimer_start_one_shot(hv_stimer_to_vcpu(stimer)->vcpu_id,
					   stimer->index,
					   time_now, stimer->count);

	hrtimer_start(&stimer->timer,
		      ktime_add_ns(ktime_now, 100 * (stimer->count - time_now)),
		      HRTIMER_MODE_ABS);
	return 0;
}

static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
			     bool host)
{
	union hv_stimer_config new_config = {.as_uint64 = config},
		old_config = {.as_uint64 = stimer->config.as_uint64};
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);

	if (!synic->active && (!host || config))
		return 1;

	if (unlikely(!host && hv_vcpu->enforce_cpuid && new_config.direct_mode &&
		     !(hv_vcpu->cpuid_cache.features_edx &
		       HV_STIMER_DIRECT_MODE_AVAILABLE)))
		return 1;

	trace_kvm_hv_stimer_set_config(hv_stimer_to_vcpu(stimer)->vcpu_id,
				       stimer->index, config, host);

	stimer_cleanup(stimer);
	if (old_config.enable &&
	    !new_config.direct_mode && new_config.sintx == 0)
		new_config.enable = 0;
	stimer->config.as_uint64 = new_config.as_uint64;

	if (stimer->config.enable)
		stimer_mark_pending(stimer, false);

	return 0;
}

static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
			    bool host)
{
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
	struct kvm_vcpu_hv_synic *synic = to_hv_synic(vcpu);

	if (!synic->active && (!host || count))
		return 1;

	trace_kvm_hv_stimer_set_count(hv_stimer_to_vcpu(stimer)->vcpu_id,
				      stimer->index, count, host);

	stimer_cleanup(stimer);
	stimer->count = count;
	if (!host) {
		if (stimer->count == 0)
			stimer->config.enable = 0;
		else if (stimer->config.auto_enable)
			stimer->config.enable = 1;
	}

	if (stimer->config.enable)
		stimer_mark_pending(stimer, false);

	return 0;
}

static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
{
	*pconfig = stimer->config.as_uint64;
	return 0;
}

static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
{
	*pcount = stimer->count;
	return 0;
}

static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
			     struct hv_message *src_msg, bool no_retry)
{
	struct kvm_vcpu *vcpu = hv_synic_to_vcpu(synic);
	int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
	gfn_t msg_page_gfn;
	struct hv_message_header hv_hdr;
	int r;

	if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
		return -ENOENT;

	msg_page_gfn = synic->msg_page >> PAGE_SHIFT;

	/*
	 * Strictly following the spec-mandated ordering would assume setting
	 * .msg_pending before checking .message_type.  However, this function
	 * is only called in vcpu context so the entire update is atomic from
	 * guest POV and thus the exact order here doesn't matter.
	 */
	r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
				     msg_off + offsetof(struct hv_message,
							header.message_type),
				     sizeof(hv_hdr.message_type));
	if (r < 0)
		return r;

	if (hv_hdr.message_type != HVMSG_NONE) {
		if (no_retry)
			return 0;

		hv_hdr.message_flags.msg_pending = 1;
		r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
					      &hv_hdr.message_flags,
					      msg_off +
					      offsetof(struct hv_message,
						       header.message_flags),
					      sizeof(hv_hdr.message_flags));
		if (r < 0)
			return r;
		return -EAGAIN;
	}

	r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
				      sizeof(src_msg->header) +
				      src_msg->header.payload_size);
	if (r < 0)
		return r;

	r = synic_set_irq(synic, sint);
	if (r < 0)
		return r;
	if (r == 0)
		return -EFAULT;
	return 0;
}

static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
{
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
	struct hv_message *msg = &stimer->msg;
	struct hv_timer_message_payload *payload =
			(struct hv_timer_message_payload *)&msg->u.payload;

	/*
	 * To avoid piling up periodic ticks, don't retry message
	 * delivery for them (within "lazy" lost ticks policy).
	 */
	bool no_retry = stimer->config.periodic;

	payload->expiration_time = stimer->exp_time;
	payload->delivery_time = get_time_ref_counter(vcpu->kvm);
	return synic_deliver_msg(to_hv_synic(vcpu),
				 stimer->config.sintx, msg,
				 no_retry);
}

static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
{
	struct kvm_vcpu *vcpu = hv_stimer_to_vcpu(stimer);
	struct kvm_lapic_irq irq = {
		.delivery_mode = APIC_DM_FIXED,
		.vector = stimer->config.apic_vector
	};

	if (lapic_in_kernel(vcpu))
		return !kvm_apic_set_irq(vcpu, &irq, NULL);
	return 0;
}

static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
{
	int r, direct = stimer->config.direct_mode;

	stimer->msg_pending = true;
	if (!direct)
		r = stimer_send_msg(stimer);
	else
		r = stimer_notify_direct(stimer);
	trace_kvm_hv_stimer_expiration(hv_stimer_to_vcpu(stimer)->vcpu_id,
				       stimer->index, direct, r);
	if (!r) {
		stimer->msg_pending = false;
		if (!(stimer->config.periodic))
			stimer->config.enable = 0;
	}
}

void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
	struct kvm_vcpu_hv_stimer *stimer;
	u64 time_now, exp_time;
	int i;

	if (!hv_vcpu)
		return;

	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
			stimer = &hv_vcpu->stimer[i];
			if (stimer->config.enable) {
				exp_time = stimer->exp_time;

				if (exp_time) {
					time_now =
						get_time_ref_counter(vcpu->kvm);
					if (time_now >= exp_time)
						stimer_expiration(stimer);
				}

				if ((stimer->config.enable) &&
				    stimer->count) {
					if (!stimer->msg_pending)
						stimer_start(stimer);
				} else
					stimer_cleanup(stimer);
			}
		}
}

void kvm_hv_vcpu_uninit(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
	int i;

	if (!hv_vcpu)
		return;

	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		stimer_cleanup(&hv_vcpu->stimer[i]);

	kfree(hv_vcpu);
	vcpu->arch.hyperv = NULL;
}

bool kvm_hv_assist_page_enabled(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);

	if (!hv_vcpu)
		return false;

	if (!(hv_vcpu->hv_vapic & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE))
		return false;
	return vcpu->arch.pv_eoi.msr_val & KVM_MSR_ENABLED;
}
EXPORT_SYMBOL_GPL(kvm_hv_assist_page_enabled);

int kvm_hv_get_assist_page(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);

	if (!hv_vcpu || !kvm_hv_assist_page_enabled(vcpu))
		return -EFAULT;

	return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.pv_eoi.data,
				     &hv_vcpu->vp_assist_page, sizeof(struct hv_vp_assist_page));
}
EXPORT_SYMBOL_GPL(kvm_hv_get_assist_page);

static void stimer_prepare_msg(struct kvm_vcpu_hv_stimer *stimer)
{
	struct hv_message *msg = &stimer->msg;
	struct hv_timer_message_payload *payload =
			(struct hv_timer_message_payload *)&msg->u.payload;

	memset(&msg->header, 0, sizeof(msg->header));
	msg->header.message_type = HVMSG_TIMER_EXPIRED;
	msg->header.payload_size = sizeof(*payload);

	payload->timer_index = stimer->index;
	payload->expiration_time = 0;
	payload->delivery_time = 0;
}

static void stimer_init(struct kvm_vcpu_hv_stimer *stimer, int timer_index)
{
	memset(stimer, 0, sizeof(*stimer));
	stimer->index = timer_index;
	hrtimer_init(&stimer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	stimer->timer.function = stimer_timer_callback;
	stimer_prepare_msg(stimer);
}

int kvm_hv_vcpu_init(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
	int i;

	if (hv_vcpu)
		return 0;

	hv_vcpu = kzalloc(sizeof(struct kvm_vcpu_hv), GFP_KERNEL_ACCOUNT);
	if (!hv_vcpu)
		return -ENOMEM;

	vcpu->arch.hyperv = hv_vcpu;
	hv_vcpu->vcpu = vcpu;

	synic_init(&hv_vcpu->synic);

	bitmap_zero(hv_vcpu->stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
	for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
		stimer_init(&hv_vcpu->stimer[i], i);

	hv_vcpu->vp_index = vcpu->vcpu_idx;

	for (i = 0; i < HV_NR_TLB_FLUSH_FIFOS; i++) {
		INIT_KFIFO(hv_vcpu->tlb_flush_fifo[i].entries);
		spin_lock_init(&hv_vcpu->tlb_flush_fifo[i].write_lock);
	}

	return 0;
}

int kvm_hv_activate_synic(struct kvm_vcpu *vcpu, bool dont_zero_synic_pages)
{
	struct kvm_vcpu_hv_synic *synic;
	int r;

	r = kvm_hv_vcpu_init(vcpu);
	if (r)
		return r;

	synic = to_hv_synic(vcpu);

	synic->active = true;
	synic->dont_zero_synic_pages = dont_zero_synic_pages;
	synic->control = HV_SYNIC_CONTROL_ENABLE;
	return 0;
}

static bool kvm_hv_msr_partition_wide(u32 msr)
{
	bool r = false;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
	case HV_X64_MSR_HYPERCALL:
	case HV_X64_MSR_REFERENCE_TSC:
	case HV_X64_MSR_TIME_REF_COUNT:
	case HV_X64_MSR_CRASH_CTL:
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
	case HV_X64_MSR_RESET:
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_STATUS:
	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		r = true;
		break;
	}

	return r;
}

static int kvm_hv_msr_get_crash_data(struct kvm *kvm, u32 index, u64 *pdata)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);
	size_t size = ARRAY_SIZE(hv->hv_crash_param);

	if (WARN_ON_ONCE(index >= size))
		return -EINVAL;

	*pdata = hv->hv_crash_param[array_index_nospec(index, size)];
	return 0;
}

static int kvm_hv_msr_get_crash_ctl(struct kvm *kvm, u64 *pdata)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);

	*pdata = hv->hv_crash_ctl;
	return 0;
}

static int kvm_hv_msr_set_crash_ctl(struct kvm *kvm, u64 data)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);

	hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;

	return 0;
}

static int kvm_hv_msr_set_crash_data(struct kvm *kvm, u32 index, u64 data)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);
	size_t size = ARRAY_SIZE(hv->hv_crash_param);

	if (WARN_ON_ONCE(index >= size))
		return -EINVAL;

	hv->hv_crash_param[array_index_nospec(index, size)] = data;
	return 0;
}

/*
 * The kvmclock and Hyper-V TSC page use similar formulas, and converting
 * between them is possible:
 *
 * kvmclock formula:
 *    nsec = (ticks - tsc_timestamp) * tsc_to_system_mul * 2^(tsc_shift-32)
 *           + system_time
 *
 * Hyper-V formula:
 *    nsec/100 = ticks * scale / 2^64 + offset
 *
 * When tsc_timestamp = system_time = 0, offset is zero in the Hyper-V formula.
 * By dividing the kvmclock formula by 100 and equating what's left we get:
 *    ticks * scale / 2^64 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *            scale / 2^64 =         tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *            scale        =         tsc_to_system_mul * 2^(32+tsc_shift) / 100
 *
 * Now expand the kvmclock formula and divide by 100:
 *    nsec = ticks * tsc_to_system_mul * 2^(tsc_shift-32)
 *           - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32)
 *           + system_time
 *    nsec/100 = ticks * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *               - tsc_timestamp * tsc_to_system_mul * 2^(tsc_shift-32) / 100
 *               + system_time / 100
 *
 * Replace tsc_to_system_mul * 2^(tsc_shift-32) / 100 by scale / 2^64:
 *    nsec/100 = ticks * scale / 2^64
 *               - tsc_timestamp * scale / 2^64
 *               + system_time / 100
 *
 * Equate with the Hyper-V formula so that ticks * scale / 2^64 cancels out:
 *    offset = system_time / 100 - tsc_timestamp * scale / 2^64
 *
 * These two equivalencies are implemented in this function.
 */
static bool compute_tsc_page_parameters(struct pvclock_vcpu_time_info *hv_clock,
					struct ms_hyperv_tsc_page *tsc_ref)
{
	u64 max_mul;

	if (!(hv_clock->flags & PVCLOCK_TSC_STABLE_BIT))
		return false;

	/*
	 * check if scale would overflow, if so we use the time ref counter
	 *    tsc_to_system_mul * 2^(tsc_shift+32) / 100 >= 2^64
	 *    tsc_to_system_mul / 100 >= 2^(32-tsc_shift)
	 *    tsc_to_system_mul >= 100 * 2^(32-tsc_shift)
	 */
	max_mul = 100ull << (32 - hv_clock->tsc_shift);
	if (hv_clock->tsc_to_system_mul >= max_mul)
		return false;

	/*
	 * Otherwise compute the scale and offset according to the formulas
	 * derived above.
	 */
	tsc_ref->tsc_scale =
		mul_u64_u32_div(1ULL << (32 + hv_clock->tsc_shift),
				hv_clock->tsc_to_system_mul,
				100);

	tsc_ref->tsc_offset = hv_clock->system_time;
	do_div(tsc_ref->tsc_offset, 100);
	tsc_ref->tsc_offset -=
		mul_u64_u64_shr(hv_clock->tsc_timestamp, tsc_ref->tsc_scale, 64);
	return true;
}

/*
 * Don't touch TSC page values if the guest has opted for TSC emulation after
 * migration. KVM doesn't fully support reenlightenment notifications and TSC
 * access emulation and Hyper-V is known to expect the values in TSC page to
 * stay constant before TSC access emulation is disabled from guest side
 * (HV_X64_MSR_TSC_EMULATION_STATUS). KVM userspace is expected to preserve TSC
 * frequency and guest visible TSC value across migration (and prevent it when
 * TSC scaling is unsupported).
 */
static inline bool tsc_page_update_unsafe(struct kvm_hv *hv)
{
	return (hv->hv_tsc_page_status != HV_TSC_PAGE_GUEST_CHANGED) &&
		hv->hv_tsc_emulation_control;
}

void kvm_hv_setup_tsc_page(struct kvm *kvm,
			   struct pvclock_vcpu_time_info *hv_clock)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);
	u32 tsc_seq;
	u64 gfn;

	BUILD_BUG_ON(sizeof(tsc_seq) != sizeof(hv->tsc_ref.tsc_sequence));
	BUILD_BUG_ON(offsetof(struct ms_hyperv_tsc_page, tsc_sequence) != 0);

	mutex_lock(&hv->hv_lock);

	if (hv->hv_tsc_page_status == HV_TSC_PAGE_BROKEN ||
	    hv->hv_tsc_page_status == HV_TSC_PAGE_SET ||
	    hv->hv_tsc_page_status == HV_TSC_PAGE_UNSET)
		goto out_unlock;

	if (!(hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE))
		goto out_unlock;

	gfn = hv->hv_tsc_page >> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT;
	/*
	 * Because the TSC parameters only vary when there is a
	 * change in the master clock, do not bother with caching.
	 */
	if (unlikely(kvm_read_guest(kvm, gfn_to_gpa(gfn),
				    &tsc_seq, sizeof(tsc_seq))))
		goto out_err;

	if (tsc_seq && tsc_page_update_unsafe(hv)) {
		if (kvm_read_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
			goto out_err;

		hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
		goto out_unlock;
	}

	/*
	 * While we're computing and writing the parameters, force the
	 * guest to use the time reference count MSR.
	 */
	hv->tsc_ref.tsc_sequence = 0;
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
		goto out_err;

	if (!compute_tsc_page_parameters(hv_clock, &hv->tsc_ref))
		goto out_err;

	/* Ensure sequence is zero before writing the rest of the struct.  */
	smp_wmb();
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn), &hv->tsc_ref, sizeof(hv->tsc_ref)))
		goto out_err;

	/*
	 * Now switch to the TSC page mechanism by writing the sequence.
	 */
	tsc_seq++;
	if (tsc_seq == 0xFFFFFFFF || tsc_seq == 0)
		tsc_seq = 1;

	/* Write the struct entirely before the non-zero sequence.  */
	smp_wmb();

	hv->tsc_ref.tsc_sequence = tsc_seq;
	if (kvm_write_guest(kvm, gfn_to_gpa(gfn),
			    &hv->tsc_ref, sizeof(hv->tsc_ref.tsc_sequence)))
		goto out_err;

	hv->hv_tsc_page_status = HV_TSC_PAGE_SET;
	goto out_unlock;

out_err:
	hv->hv_tsc_page_status = HV_TSC_PAGE_BROKEN;
out_unlock:
	mutex_unlock(&hv->hv_lock);
}

void kvm_hv_request_tsc_page_update(struct kvm *kvm)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);

	mutex_lock(&hv->hv_lock);

	if (hv->hv_tsc_page_status == HV_TSC_PAGE_SET &&
	    !tsc_page_update_unsafe(hv))
		hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;

	mutex_unlock(&hv->hv_lock);
}

static bool hv_check_msr_access(struct kvm_vcpu_hv *hv_vcpu, u32 msr)
{
	if (!hv_vcpu->enforce_cpuid)
		return true;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
	case HV_X64_MSR_HYPERCALL:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_HYPERCALL_AVAILABLE;
	case HV_X64_MSR_VP_RUNTIME:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_VP_RUNTIME_AVAILABLE;
	case HV_X64_MSR_TIME_REF_COUNT:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_TIME_REF_COUNT_AVAILABLE;
	case HV_X64_MSR_VP_INDEX:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_VP_INDEX_AVAILABLE;
	case HV_X64_MSR_RESET:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_RESET_AVAILABLE;
	case HV_X64_MSR_REFERENCE_TSC:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_REFERENCE_TSC_AVAILABLE;
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_SYNIC_AVAILABLE;
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG:
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_SYNTIMER_AVAILABLE;
	case HV_X64_MSR_EOI:
	case HV_X64_MSR_ICR:
	case HV_X64_MSR_TPR:
	case HV_X64_MSR_VP_ASSIST_PAGE:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_MSR_APIC_ACCESS_AVAILABLE;
	case HV_X64_MSR_TSC_FREQUENCY:
	case HV_X64_MSR_APIC_FREQUENCY:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_ACCESS_FREQUENCY_MSRS;
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
	case HV_X64_MSR_TSC_EMULATION_STATUS:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_ACCESS_REENLIGHTENMENT;
	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
		return hv_vcpu->cpuid_cache.features_eax &
			HV_ACCESS_TSC_INVARIANT;
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
	case HV_X64_MSR_CRASH_CTL:
		return hv_vcpu->cpuid_cache.features_edx &
			HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		return hv_vcpu->cpuid_cache.features_edx &
			HV_FEATURE_DEBUG_MSRS_AVAILABLE;
	default:
		break;
	}

	return false;
}

#define KVM_HV_WIN2016_GUEST_ID 0x1040a00003839
#define KVM_HV_WIN2016_GUEST_ID_MASK (~GENMASK_ULL(23, 16)) /* mask out the service version */

/*
 * Hyper-V enabled Windows Server 2016 SMP VMs fail to boot in !XSAVES && XSAVEC
 * configuration.
 * Such configuration can result from, for example, AMD Erratum 1386 workaround.
 *
 * Print a notice so users aren't left wondering what's suddenly gone wrong.
 */
static void __kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_hv *hv = to_kvm_hv(kvm);

	/* Check again under the hv_lock.  */
	if (hv->xsaves_xsavec_checked)
		return;

	if ((hv->hv_guest_os_id & KVM_HV_WIN2016_GUEST_ID_MASK) !=
	    KVM_HV_WIN2016_GUEST_ID)
		return;

	hv->xsaves_xsavec_checked = true;

	/* UP configurations aren't affected */
	if (atomic_read(&kvm->online_vcpus) < 2)
		return;

	if (guest_cpuid_has(vcpu, X86_FEATURE_XSAVES) ||
	    !guest_cpuid_has(vcpu, X86_FEATURE_XSAVEC))
		return;

	pr_notice_ratelimited("Booting SMP Windows KVM VM with !XSAVES && XSAVEC. "
			      "If it fails to boot try disabling XSAVEC in the VM config.\n");
}

void kvm_hv_xsaves_xsavec_maybe_warn(struct kvm_vcpu *vcpu)
{
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);

	if (!vcpu->arch.hyperv_enabled ||
	    hv->xsaves_xsavec_checked)
		return;

	mutex_lock(&hv->hv_lock);
	__kvm_hv_xsaves_xsavec_maybe_warn(vcpu);
	mutex_unlock(&hv->hv_lock);
}

static int kvm_hv_set_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data,
			     bool host)
{
	struct kvm *kvm = vcpu->kvm;
	struct kvm_hv *hv = to_kvm_hv(kvm);

	if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
		return 1;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		hv->hv_guest_os_id = data;
		/* setting guest os id to zero disables hypercall page */
		if (!hv->hv_guest_os_id)
			hv->hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
		break;
	case HV_X64_MSR_HYPERCALL: {
		u8 instructions[9];
		int i = 0;
		u64 addr;

		/* if guest os id is not set hypercall should remain disabled */
		if (!hv->hv_guest_os_id)
			break;
		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
			hv->hv_hypercall = data;
			break;
		}

		/*
		 * If Xen and Hyper-V hypercalls are both enabled, disambiguate
		 * the same way Xen itself does, by setting the bit 31 of EAX
		 * which is RsvdZ in the 32-bit Hyper-V hypercall ABI and just
		 * going to be clobbered on 64-bit.
		 */
		if (kvm_xen_hypercall_enabled(kvm)) {
			/* orl $0x80000000, %eax */
			instructions[i++] = 0x0d;
			instructions[i++] = 0x00;
			instructions[i++] = 0x00;
			instructions[i++] = 0x00;
			instructions[i++] = 0x80;
		}

		/* vmcall/vmmcall */
		kvm_x86_call(patch_hypercall)(vcpu, instructions + i);
		i += 3;

		/* ret */
		((unsigned char *)instructions)[i++] = 0xc3;

		addr = data & HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK;
		if (kvm_vcpu_write_guest(vcpu, addr, instructions, i))
			return 1;
		hv->hv_hypercall = data;
		break;
	}
	case HV_X64_MSR_REFERENCE_TSC:
		hv->hv_tsc_page = data;
		if (hv->hv_tsc_page & HV_X64_MSR_TSC_REFERENCE_ENABLE) {
			if (!host)
				hv->hv_tsc_page_status = HV_TSC_PAGE_GUEST_CHANGED;
			else
				hv->hv_tsc_page_status = HV_TSC_PAGE_HOST_CHANGED;
			kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
		} else {
			hv->hv_tsc_page_status = HV_TSC_PAGE_UNSET;
		}
		break;
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
		return kvm_hv_msr_set_crash_data(kvm,
						 msr - HV_X64_MSR_CRASH_P0,
						 data);
	case HV_X64_MSR_CRASH_CTL:
		if (host)
			return kvm_hv_msr_set_crash_ctl(kvm, data);

		if (data & HV_CRASH_CTL_CRASH_NOTIFY) {
			vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
				   hv->hv_crash_param[0],
				   hv->hv_crash_param[1],
				   hv->hv_crash_param[2],
				   hv->hv_crash_param[3],
				   hv->hv_crash_param[4]);

			/* Send notification about crash to user space */
			kvm_make_request(KVM_REQ_HV_CRASH, vcpu);
		}
		break;
	case HV_X64_MSR_RESET:
		if (data == 1) {
			vcpu_debug(vcpu, "hyper-v reset requested\n");
			kvm_make_request(KVM_REQ_HV_RESET, vcpu);
		}
		break;
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
		hv->hv_reenlightenment_control = data;
		break;
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
		hv->hv_tsc_emulation_control = data;
		break;
	case HV_X64_MSR_TSC_EMULATION_STATUS:
		if (data && !host)
			return 1;

		hv->hv_tsc_emulation_status = data;
		break;
	case HV_X64_MSR_TIME_REF_COUNT:
		/* read-only, but still ignore it if host-initiated */
		if (!host)
			return 1;
		break;
	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
		/* Only bit 0 is supported */
		if (data & ~HV_EXPOSE_INVARIANT_TSC)
			return 1;

		/* The feature can't be disabled from the guest */
		if (!host && hv->hv_invtsc_control && !data)
			return 1;

		hv->hv_invtsc_control = data;
		break;
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		return syndbg_set_msr(vcpu, msr, data, host);
	default:
		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
		return 1;
	}
	return 0;
}

/* Calculate cpu time spent by current task in 100ns units */
static u64 current_task_runtime_100ns(void)
{
	u64 utime, stime;

	task_cputime_adjusted(current, &utime, &stime);

	return div_u64(utime + stime, 100);
}

static int kvm_hv_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);

	if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
		return 1;

	switch (msr) {
	case HV_X64_MSR_VP_INDEX: {
		struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
		u32 new_vp_index = (u32)data;

		if (!host || new_vp_index >= KVM_MAX_VCPUS)
			return 1;

		if (new_vp_index == hv_vcpu->vp_index)
			return 0;

		/*
		 * The VP index is initialized to vcpu_index by
		 * kvm_hv_vcpu_postcreate so they initially match.  Now the
		 * VP index is changing, adjust num_mismatched_vp_indexes if
		 * it now matches or no longer matches vcpu_idx.
		 */
		if (hv_vcpu->vp_index == vcpu->vcpu_idx)
			atomic_inc(&hv->num_mismatched_vp_indexes);
		else if (new_vp_index == vcpu->vcpu_idx)
			atomic_dec(&hv->num_mismatched_vp_indexes);

		hv_vcpu->vp_index = new_vp_index;
		break;
	}
	case HV_X64_MSR_VP_ASSIST_PAGE: {
		u64 gfn;
		unsigned long addr;

		if (!(data & HV_X64_MSR_VP_ASSIST_PAGE_ENABLE)) {
			hv_vcpu->hv_vapic = data;
			if (kvm_lapic_set_pv_eoi(vcpu, 0, 0))
				return 1;
			break;
		}
		gfn = data >> HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT;
		addr = kvm_vcpu_gfn_to_hva(vcpu, gfn);
		if (kvm_is_error_hva(addr))
			return 1;

		/*
		 * Clear apic_assist portion of struct hv_vp_assist_page
		 * only, there can be valuable data in the rest which needs
		 * to be preserved e.g. on migration.
		 */
		if (__put_user(0, (u32 __user *)addr))
			return 1;
		hv_vcpu->hv_vapic = data;
		kvm_vcpu_mark_page_dirty(vcpu, gfn);
		if (kvm_lapic_set_pv_eoi(vcpu,
					    gfn_to_gpa(gfn) | KVM_MSR_ENABLED,
					    sizeof(struct hv_vp_assist_page)))
			return 1;
		break;
	}
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
	case HV_X64_MSR_VP_RUNTIME:
		if (!host)
			return 1;
		hv_vcpu->runtime_offset = data - current_task_runtime_100ns();
		break;
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		return synic_set_msr(to_hv_synic(vcpu), msr, data, host);
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;

		return stimer_set_config(to_hv_stimer(vcpu, timer_index),
					 data, host);
	}
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;

		return stimer_set_count(to_hv_stimer(vcpu, timer_index),
					data, host);
	}
	case HV_X64_MSR_TSC_FREQUENCY:
	case HV_X64_MSR_APIC_FREQUENCY:
		/* read-only, but still ignore it if host-initiated */
		if (!host)
			return 1;
		break;
	default:
		kvm_pr_unimpl_wrmsr(vcpu, msr, data);
		return 1;
	}

	return 0;
}

static int kvm_hv_get_msr_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
			     bool host)
{
	u64 data = 0;
	struct kvm *kvm = vcpu->kvm;
	struct kvm_hv *hv = to_kvm_hv(kvm);

	if (unlikely(!host && !hv_check_msr_access(to_hv_vcpu(vcpu), msr)))
		return 1;

	switch (msr) {
	case HV_X64_MSR_GUEST_OS_ID:
		data = hv->hv_guest_os_id;
		break;
	case HV_X64_MSR_HYPERCALL:
		data = hv->hv_hypercall;
		break;
	case HV_X64_MSR_TIME_REF_COUNT:
		data = get_time_ref_counter(kvm);
		break;
	case HV_X64_MSR_REFERENCE_TSC:
		data = hv->hv_tsc_page;
		break;
	case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
		return kvm_hv_msr_get_crash_data(kvm,
						 msr - HV_X64_MSR_CRASH_P0,
						 pdata);
	case HV_X64_MSR_CRASH_CTL:
		return kvm_hv_msr_get_crash_ctl(kvm, pdata);
	case HV_X64_MSR_RESET:
		data = 0;
		break;
	case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
		data = hv->hv_reenlightenment_control;
		break;
	case HV_X64_MSR_TSC_EMULATION_CONTROL:
		data = hv->hv_tsc_emulation_control;
		break;
	case HV_X64_MSR_TSC_EMULATION_STATUS:
		data = hv->hv_tsc_emulation_status;
		break;
	case HV_X64_MSR_TSC_INVARIANT_CONTROL:
		data = hv->hv_invtsc_control;
		break;
	case HV_X64_MSR_SYNDBG_OPTIONS:
	case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
		return syndbg_get_msr(vcpu, msr, pdata, host);
	default:
		kvm_pr_unimpl_rdmsr(vcpu, msr);
		return 1;
	}

	*pdata = data;
	return 0;
}

static int kvm_hv_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata,
			  bool host)
{
	u64 data = 0;
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);

	if (unlikely(!host && !hv_check_msr_access(hv_vcpu, msr)))
		return 1;

	switch (msr) {
	case HV_X64_MSR_VP_INDEX:
		data = hv_vcpu->vp_index;
		break;
	case HV_X64_MSR_EOI:
		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
	case HV_X64_MSR_ICR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
	case HV_X64_MSR_TPR:
		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
	case HV_X64_MSR_VP_ASSIST_PAGE:
		data = hv_vcpu->hv_vapic;
		break;
	case HV_X64_MSR_VP_RUNTIME:
		data = current_task_runtime_100ns() + hv_vcpu->runtime_offset;
		break;
	case HV_X64_MSR_SCONTROL:
	case HV_X64_MSR_SVERSION:
	case HV_X64_MSR_SIEFP:
	case HV_X64_MSR_SIMP:
	case HV_X64_MSR_EOM:
	case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
		return synic_get_msr(to_hv_synic(vcpu), msr, pdata, host);
	case HV_X64_MSR_STIMER0_CONFIG:
	case HV_X64_MSR_STIMER1_CONFIG:
	case HV_X64_MSR_STIMER2_CONFIG:
	case HV_X64_MSR_STIMER3_CONFIG: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_CONFIG)/2;

		return stimer_get_config(to_hv_stimer(vcpu, timer_index),
					 pdata);
	}
	case HV_X64_MSR_STIMER0_COUNT:
	case HV_X64_MSR_STIMER1_COUNT:
	case HV_X64_MSR_STIMER2_COUNT:
	case HV_X64_MSR_STIMER3_COUNT: {
		int timer_index = (msr - HV_X64_MSR_STIMER0_COUNT)/2;

		return stimer_get_count(to_hv_stimer(vcpu, timer_index),
					pdata);
	}
	case HV_X64_MSR_TSC_FREQUENCY:
		data = (u64)vcpu->arch.virtual_tsc_khz * 1000;
		break;
	case HV_X64_MSR_APIC_FREQUENCY:
		data = div64_u64(1000000000ULL,
				 vcpu->kvm->arch.apic_bus_cycle_ns);
		break;
	default:
		kvm_pr_unimpl_rdmsr(vcpu, msr);
		return 1;
	}
	*pdata = data;
	return 0;
}

int kvm_hv_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data, bool host)
{
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);

	if (!host && !vcpu->arch.hyperv_enabled)
		return 1;

	if (kvm_hv_vcpu_init(vcpu))
		return 1;

	if (kvm_hv_msr_partition_wide(msr)) {
		int r;

		mutex_lock(&hv->hv_lock);
		r = kvm_hv_set_msr_pw(vcpu, msr, data, host);
		mutex_unlock(&hv->hv_lock);
		return r;
	} else
		return kvm_hv_set_msr(vcpu, msr, data, host);
}

int kvm_hv_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
{
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);

	if (!host && !vcpu->arch.hyperv_enabled)
		return 1;

	if (kvm_hv_vcpu_init(vcpu))
		return 1;

	if (kvm_hv_msr_partition_wide(msr)) {
		int r;

		mutex_lock(&hv->hv_lock);
		r = kvm_hv_get_msr_pw(vcpu, msr, pdata, host);
		mutex_unlock(&hv->hv_lock);
		return r;
	} else
		return kvm_hv_get_msr(vcpu, msr, pdata, host);
}

static void sparse_set_to_vcpu_mask(struct kvm *kvm, u64 *sparse_banks,
				    u64 valid_bank_mask, unsigned long *vcpu_mask)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);
	bool has_mismatch = atomic_read(&hv->num_mismatched_vp_indexes);
	u64 vp_bitmap[KVM_HV_MAX_SPARSE_VCPU_SET_BITS];
	struct kvm_vcpu *vcpu;
	int bank, sbank = 0;
	unsigned long i;
	u64 *bitmap;

	BUILD_BUG_ON(sizeof(vp_bitmap) >
		     sizeof(*vcpu_mask) * BITS_TO_LONGS(KVM_MAX_VCPUS));

	/*
	 * If vp_index == vcpu_idx for all vCPUs, fill vcpu_mask directly, else
	 * fill a temporary buffer and manually test each vCPU's VP index.
	 */
	if (likely(!has_mismatch))
		bitmap = (u64 *)vcpu_mask;
	else
		bitmap = vp_bitmap;

	/*
	 * Each set of 64 VPs is packed into sparse_banks, with valid_bank_mask
	 * having a '1' for each bank that exists in sparse_banks.  Sets must
	 * be in ascending order, i.e. bank0..bankN.
	 */
	memset(bitmap, 0, sizeof(vp_bitmap));
	for_each_set_bit(bank, (unsigned long *)&valid_bank_mask,
			 KVM_HV_MAX_SPARSE_VCPU_SET_BITS)
		bitmap[bank] = sparse_banks[sbank++];

	if (likely(!has_mismatch))
		return;

	bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);
	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (test_bit(kvm_hv_get_vpindex(vcpu), (unsigned long *)vp_bitmap))
			__set_bit(i, vcpu_mask);
	}
}

static bool hv_is_vp_in_sparse_set(u32 vp_id, u64 valid_bank_mask, u64 sparse_banks[])
{
	int valid_bit_nr = vp_id / HV_VCPUS_PER_SPARSE_BANK;
	unsigned long sbank;

	if (!test_bit(valid_bit_nr, (unsigned long *)&valid_bank_mask))
		return false;

	/*
	 * The index into the sparse bank is the number of preceding bits in
	 * the valid mask.  Optimize for VMs with <64 vCPUs by skipping the
	 * fancy math if there can't possibly be preceding bits.
	 */
	if (valid_bit_nr)
		sbank = hweight64(valid_bank_mask & GENMASK_ULL(valid_bit_nr - 1, 0));
	else
		sbank = 0;

	return test_bit(vp_id % HV_VCPUS_PER_SPARSE_BANK,
			(unsigned long *)&sparse_banks[sbank]);
}

struct kvm_hv_hcall {
	/* Hypercall input data */
	u64 param;
	u64 ingpa;
	u64 outgpa;
	u16 code;
	u16 var_cnt;
	u16 rep_cnt;
	u16 rep_idx;
	bool fast;
	bool rep;
	sse128_t xmm[HV_HYPERCALL_MAX_XMM_REGISTERS];

	/*
	 * Current read offset when KVM reads hypercall input data gradually,
	 * either offset in bytes from 'ingpa' for regular hypercalls or the
	 * number of already consumed 'XMM halves' for 'fast' hypercalls.
	 */
	union {
		gpa_t data_offset;
		int consumed_xmm_halves;
	};
};


static int kvm_hv_get_hc_data(struct kvm *kvm, struct kvm_hv_hcall *hc,
			      u16 orig_cnt, u16 cnt_cap, u64 *data)
{
	/*
	 * Preserve the original count when ignoring entries via a "cap", KVM
	 * still needs to validate the guest input (though the non-XMM path
	 * punts on the checks).
	 */
	u16 cnt = min(orig_cnt, cnt_cap);
	int i, j;

	if (hc->fast) {
		/*
		 * Each XMM holds two sparse banks, but do not count halves that
		 * have already been consumed for hypercall parameters.
		 */
		if (orig_cnt > 2 * HV_HYPERCALL_MAX_XMM_REGISTERS - hc->consumed_xmm_halves)
			return HV_STATUS_INVALID_HYPERCALL_INPUT;

		for (i = 0; i < cnt; i++) {
			j = i + hc->consumed_xmm_halves;
			if (j % 2)
				data[i] = sse128_hi(hc->xmm[j / 2]);
			else
				data[i] = sse128_lo(hc->xmm[j / 2]);
		}
		return 0;
	}

	return kvm_read_guest(kvm, hc->ingpa + hc->data_offset, data,
			      cnt * sizeof(*data));
}

static u64 kvm_get_sparse_vp_set(struct kvm *kvm, struct kvm_hv_hcall *hc,
				 u64 *sparse_banks)
{
	if (hc->var_cnt > HV_MAX_SPARSE_VCPU_BANKS)
		return -EINVAL;

	/* Cap var_cnt to ignore banks that cannot contain a legal VP index. */
	return kvm_hv_get_hc_data(kvm, hc, hc->var_cnt, KVM_HV_MAX_SPARSE_VCPU_SET_BITS,
				  sparse_banks);
}

static int kvm_hv_get_tlb_flush_entries(struct kvm *kvm, struct kvm_hv_hcall *hc, u64 entries[])
{
	return kvm_hv_get_hc_data(kvm, hc, hc->rep_cnt, hc->rep_cnt, entries);
}

static void hv_tlb_flush_enqueue(struct kvm_vcpu *vcpu,
				 struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo,
				 u64 *entries, int count)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
	u64 flush_all_entry = KVM_HV_TLB_FLUSHALL_ENTRY;

	if (!hv_vcpu)
		return;

	spin_lock(&tlb_flush_fifo->write_lock);

	/*
	 * All entries should fit on the fifo leaving one free for 'flush all'
	 * entry in case another request comes in. In case there's not enough
	 * space, just put 'flush all' entry there.
	 */
	if (count && entries && count < kfifo_avail(&tlb_flush_fifo->entries)) {
		WARN_ON(kfifo_in(&tlb_flush_fifo->entries, entries, count) != count);
		goto out_unlock;
	}

	/*
	 * Note: full fifo always contains 'flush all' entry, no need to check the
	 * return value.
	 */
	kfifo_in(&tlb_flush_fifo->entries, &flush_all_entry, 1);

out_unlock:
	spin_unlock(&tlb_flush_fifo->write_lock);
}

int kvm_hv_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
	u64 entries[KVM_HV_TLB_FLUSH_FIFO_SIZE];
	int i, j, count;
	gva_t gva;

	if (!tdp_enabled || !hv_vcpu)
		return -EINVAL;

	tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(vcpu, is_guest_mode(vcpu));

	count = kfifo_out(&tlb_flush_fifo->entries, entries, KVM_HV_TLB_FLUSH_FIFO_SIZE);

	for (i = 0; i < count; i++) {
		if (entries[i] == KVM_HV_TLB_FLUSHALL_ENTRY)
			goto out_flush_all;

		/*
		 * Lower 12 bits of 'address' encode the number of additional
		 * pages to flush.
		 */
		gva = entries[i] & PAGE_MASK;
		for (j = 0; j < (entries[i] & ~PAGE_MASK) + 1; j++)
			kvm_x86_call(flush_tlb_gva)(vcpu, gva + j * PAGE_SIZE);

		++vcpu->stat.tlb_flush;
	}
	return 0;

out_flush_all:
	kfifo_reset_out(&tlb_flush_fifo->entries);

	/* Fall back to full flush. */
	return -ENOSPC;
}

static u64 kvm_hv_flush_tlb(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
	u64 *sparse_banks = hv_vcpu->sparse_banks;
	struct kvm *kvm = vcpu->kvm;
	struct hv_tlb_flush_ex flush_ex;
	struct hv_tlb_flush flush;
	DECLARE_BITMAP(vcpu_mask, KVM_MAX_VCPUS);
	struct kvm_vcpu_hv_tlb_flush_fifo *tlb_flush_fifo;
	/*
	 * Normally, there can be no more than 'KVM_HV_TLB_FLUSH_FIFO_SIZE'
	 * entries on the TLB flush fifo. The last entry, however, needs to be
	 * always left free for 'flush all' entry which gets placed when
	 * there is not enough space to put all the requested entries.
	 */
	u64 __tlb_flush_entries[KVM_HV_TLB_FLUSH_FIFO_SIZE - 1];
	u64 *tlb_flush_entries;
	u64 valid_bank_mask;
	struct kvm_vcpu *v;
	unsigned long i;
	bool all_cpus;

	/*
	 * The Hyper-V TLFS doesn't allow more than HV_MAX_SPARSE_VCPU_BANKS
	 * sparse banks. Fail the build if KVM's max allowed number of
	 * vCPUs (>4096) exceeds this limit.
	 */
	BUILD_BUG_ON(KVM_HV_MAX_SPARSE_VCPU_SET_BITS > HV_MAX_SPARSE_VCPU_BANKS);

	/*
	 * 'Slow' hypercall's first parameter is the address in guest's memory
	 * where hypercall parameters are placed. This is either a GPA or a
	 * nested GPA when KVM is handling the call from L2 ('direct' TLB
	 * flush).  Translate the address here so the memory can be uniformly
	 * read with kvm_read_guest().
	 */
	if (!hc->fast && is_guest_mode(vcpu)) {
		hc->ingpa = translate_nested_gpa(vcpu, hc->ingpa, 0, NULL);
		if (unlikely(hc->ingpa == INVALID_GPA))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
	}

	if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST ||
	    hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE) {
		if (hc->fast) {
			flush.address_space = hc->ingpa;
			flush.flags = hc->outgpa;
			flush.processor_mask = sse128_lo(hc->xmm[0]);
			hc->consumed_xmm_halves = 1;
		} else {
			if (unlikely(kvm_read_guest(kvm, hc->ingpa,
						    &flush, sizeof(flush))))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
			hc->data_offset = sizeof(flush);
		}

		trace_kvm_hv_flush_tlb(flush.processor_mask,
				       flush.address_space, flush.flags,
				       is_guest_mode(vcpu));

		valid_bank_mask = BIT_ULL(0);
		sparse_banks[0] = flush.processor_mask;

		/*
		 * Work around possible WS2012 bug: it sends hypercalls
		 * with processor_mask = 0x0 and HV_FLUSH_ALL_PROCESSORS clear,
		 * while also expecting us to flush something and crashing if
		 * we don't. Let's treat processor_mask == 0 same as
		 * HV_FLUSH_ALL_PROCESSORS.
		 */
		all_cpus = (flush.flags & HV_FLUSH_ALL_PROCESSORS) ||
			flush.processor_mask == 0;
	} else {
		if (hc->fast) {
			flush_ex.address_space = hc->ingpa;
			flush_ex.flags = hc->outgpa;
			memcpy(&flush_ex.hv_vp_set,
			       &hc->xmm[0], sizeof(hc->xmm[0]));
			hc->consumed_xmm_halves = 2;
		} else {
			if (unlikely(kvm_read_guest(kvm, hc->ingpa, &flush_ex,
						    sizeof(flush_ex))))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
			hc->data_offset = sizeof(flush_ex);
		}

		trace_kvm_hv_flush_tlb_ex(flush_ex.hv_vp_set.valid_bank_mask,
					  flush_ex.hv_vp_set.format,
					  flush_ex.address_space,
					  flush_ex.flags, is_guest_mode(vcpu));

		valid_bank_mask = flush_ex.hv_vp_set.valid_bank_mask;
		all_cpus = flush_ex.hv_vp_set.format !=
			HV_GENERIC_SET_SPARSE_4K;

		if (hc->var_cnt != hweight64(valid_bank_mask))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;

		if (!all_cpus) {
			if (!hc->var_cnt)
				goto ret_success;

			if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
		}

		/*
		 * Hyper-V TLFS doesn't explicitly forbid non-empty sparse vCPU
		 * banks (and, thus, non-zero 'var_cnt') for the 'all vCPUs'
		 * case (HV_GENERIC_SET_ALL).  Always adjust data_offset and
		 * consumed_xmm_halves to make sure TLB flush entries are read
		 * from the correct offset.
		 */
		if (hc->fast)
			hc->consumed_xmm_halves += hc->var_cnt;
		else
			hc->data_offset += hc->var_cnt * sizeof(sparse_banks[0]);
	}

	if (hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE ||
	    hc->code == HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX ||
	    hc->rep_cnt > ARRAY_SIZE(__tlb_flush_entries)) {
		tlb_flush_entries = NULL;
	} else {
		if (kvm_hv_get_tlb_flush_entries(kvm, hc, __tlb_flush_entries))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
		tlb_flush_entries = __tlb_flush_entries;
	}

	/*
	 * vcpu->arch.cr3 may not be up-to-date for running vCPUs so we can't
	 * analyze it here, flush TLB regardless of the specified address space.
	 */
	if (all_cpus && !is_guest_mode(vcpu)) {
		kvm_for_each_vcpu(i, v, kvm) {
			tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
			hv_tlb_flush_enqueue(v, tlb_flush_fifo,
					     tlb_flush_entries, hc->rep_cnt);
		}

		kvm_make_all_cpus_request(kvm, KVM_REQ_HV_TLB_FLUSH);
	} else if (!is_guest_mode(vcpu)) {
		sparse_set_to_vcpu_mask(kvm, sparse_banks, valid_bank_mask, vcpu_mask);

		for_each_set_bit(i, vcpu_mask, KVM_MAX_VCPUS) {
			v = kvm_get_vcpu(kvm, i);
			if (!v)
				continue;
			tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, false);
			hv_tlb_flush_enqueue(v, tlb_flush_fifo,
					     tlb_flush_entries, hc->rep_cnt);
		}

		kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
	} else {
		struct kvm_vcpu_hv *hv_v;

		bitmap_zero(vcpu_mask, KVM_MAX_VCPUS);

		kvm_for_each_vcpu(i, v, kvm) {
			hv_v = to_hv_vcpu(v);

			/*
			 * The following check races with nested vCPUs entering/exiting
			 * and/or migrating between L1's vCPUs, however the only case when
			 * KVM *must* flush the TLB is when the target L2 vCPU keeps
			 * running on the same L1 vCPU from the moment of the request until
			 * kvm_hv_flush_tlb() returns. TLB is fully flushed in all other
			 * cases, e.g. when the target L2 vCPU migrates to a different L1
			 * vCPU or when the corresponding L1 vCPU temporary switches to a
			 * different L2 vCPU while the request is being processed.
			 */
			if (!hv_v || hv_v->nested.vm_id != hv_vcpu->nested.vm_id)
				continue;

			if (!all_cpus &&
			    !hv_is_vp_in_sparse_set(hv_v->nested.vp_id, valid_bank_mask,
						    sparse_banks))
				continue;

			__set_bit(i, vcpu_mask);
			tlb_flush_fifo = kvm_hv_get_tlb_flush_fifo(v, true);
			hv_tlb_flush_enqueue(v, tlb_flush_fifo,
					     tlb_flush_entries, hc->rep_cnt);
		}

		kvm_make_vcpus_request_mask(kvm, KVM_REQ_HV_TLB_FLUSH, vcpu_mask);
	}

ret_success:
	/* We always do full TLB flush, set 'Reps completed' = 'Rep Count' */
	return (u64)HV_STATUS_SUCCESS |
		((u64)hc->rep_cnt << HV_HYPERCALL_REP_COMP_OFFSET);
}

static void kvm_hv_send_ipi_to_many(struct kvm *kvm, u32 vector,
				    u64 *sparse_banks, u64 valid_bank_mask)
{
	struct kvm_lapic_irq irq = {
		.delivery_mode = APIC_DM_FIXED,
		.vector = vector
	};
	struct kvm_vcpu *vcpu;
	unsigned long i;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (sparse_banks &&
		    !hv_is_vp_in_sparse_set(kvm_hv_get_vpindex(vcpu),
					    valid_bank_mask, sparse_banks))
			continue;

		/* We fail only when APIC is disabled */
		kvm_apic_set_irq(vcpu, &irq, NULL);
	}
}

static u64 kvm_hv_send_ipi(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
	u64 *sparse_banks = hv_vcpu->sparse_banks;
	struct kvm *kvm = vcpu->kvm;
	struct hv_send_ipi_ex send_ipi_ex;
	struct hv_send_ipi send_ipi;
	u64 valid_bank_mask;
	u32 vector;
	bool all_cpus;

	if (hc->code == HVCALL_SEND_IPI) {
		if (!hc->fast) {
			if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi,
						    sizeof(send_ipi))))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
			sparse_banks[0] = send_ipi.cpu_mask;
			vector = send_ipi.vector;
		} else {
			/* 'reserved' part of hv_send_ipi should be 0 */
			if (unlikely(hc->ingpa >> 32 != 0))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
			sparse_banks[0] = hc->outgpa;
			vector = (u32)hc->ingpa;
		}
		all_cpus = false;
		valid_bank_mask = BIT_ULL(0);

		trace_kvm_hv_send_ipi(vector, sparse_banks[0]);
	} else {
		if (!hc->fast) {
			if (unlikely(kvm_read_guest(kvm, hc->ingpa, &send_ipi_ex,
						    sizeof(send_ipi_ex))))
				return HV_STATUS_INVALID_HYPERCALL_INPUT;
		} else {
			send_ipi_ex.vector = (u32)hc->ingpa;
			send_ipi_ex.vp_set.format = hc->outgpa;
			send_ipi_ex.vp_set.valid_bank_mask = sse128_lo(hc->xmm[0]);
		}

		trace_kvm_hv_send_ipi_ex(send_ipi_ex.vector,
					 send_ipi_ex.vp_set.format,
					 send_ipi_ex.vp_set.valid_bank_mask);

		vector = send_ipi_ex.vector;
		valid_bank_mask = send_ipi_ex.vp_set.valid_bank_mask;
		all_cpus = send_ipi_ex.vp_set.format == HV_GENERIC_SET_ALL;

		if (hc->var_cnt != hweight64(valid_bank_mask))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;

		if (all_cpus)
			goto check_and_send_ipi;

		if (!hc->var_cnt)
			goto ret_success;

		if (!hc->fast)
			hc->data_offset = offsetof(struct hv_send_ipi_ex,
						   vp_set.bank_contents);
		else
			hc->consumed_xmm_halves = 1;

		if (kvm_get_sparse_vp_set(kvm, hc, sparse_banks))
			return HV_STATUS_INVALID_HYPERCALL_INPUT;
	}

check_and_send_ipi:
	if ((vector < HV_IPI_LOW_VECTOR) || (vector > HV_IPI_HIGH_VECTOR))
		return HV_STATUS_INVALID_HYPERCALL_INPUT;

	if (all_cpus)
		kvm_hv_send_ipi_to_many(kvm, vector, NULL, 0);
	else
		kvm_hv_send_ipi_to_many(kvm, vector, sparse_banks, valid_bank_mask);

ret_success:
	return HV_STATUS_SUCCESS;
}

void kvm_hv_set_cpuid(struct kvm_vcpu *vcpu, bool hyperv_enabled)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
	struct kvm_cpuid_entry2 *entry;

	vcpu->arch.hyperv_enabled = hyperv_enabled;

	if (!hv_vcpu) {
		/*
		 * KVM should have already allocated kvm_vcpu_hv if Hyper-V is
		 * enabled in CPUID.
		 */
		WARN_ON_ONCE(vcpu->arch.hyperv_enabled);
		return;
	}

	memset(&hv_vcpu->cpuid_cache, 0, sizeof(hv_vcpu->cpuid_cache));

	if (!vcpu->arch.hyperv_enabled)
		return;

	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_FEATURES);
	if (entry) {
		hv_vcpu->cpuid_cache.features_eax = entry->eax;
		hv_vcpu->cpuid_cache.features_ebx = entry->ebx;
		hv_vcpu->cpuid_cache.features_edx = entry->edx;
	}

	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_ENLIGHTMENT_INFO);
	if (entry) {
		hv_vcpu->cpuid_cache.enlightenments_eax = entry->eax;
		hv_vcpu->cpuid_cache.enlightenments_ebx = entry->ebx;
	}

	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES);
	if (entry)
		hv_vcpu->cpuid_cache.syndbg_cap_eax = entry->eax;

	entry = kvm_find_cpuid_entry(vcpu, HYPERV_CPUID_NESTED_FEATURES);
	if (entry) {
		hv_vcpu->cpuid_cache.nested_eax = entry->eax;
		hv_vcpu->cpuid_cache.nested_ebx = entry->ebx;
	}
}

int kvm_hv_set_enforce_cpuid(struct kvm_vcpu *vcpu, bool enforce)
{
	struct kvm_vcpu_hv *hv_vcpu;
	int ret = 0;

	if (!to_hv_vcpu(vcpu)) {
		if (enforce) {
			ret = kvm_hv_vcpu_init(vcpu);
			if (ret)
				return ret;
		} else {
			return 0;
		}
	}

	hv_vcpu = to_hv_vcpu(vcpu);
	hv_vcpu->enforce_cpuid = enforce;

	return ret;
}

static void kvm_hv_hypercall_set_result(struct kvm_vcpu *vcpu, u64 result)
{
	bool longmode;

	longmode = is_64_bit_hypercall(vcpu);
	if (longmode)
		kvm_rax_write(vcpu, result);
	else {
		kvm_rdx_write(vcpu, result >> 32);
		kvm_rax_write(vcpu, result & 0xffffffff);
	}
}

static int kvm_hv_hypercall_complete(struct kvm_vcpu *vcpu, u64 result)
{
	u32 tlb_lock_count = 0;
	int ret;

	if (hv_result_success(result) && is_guest_mode(vcpu) &&
	    kvm_hv_is_tlb_flush_hcall(vcpu) &&
	    kvm_read_guest(vcpu->kvm, to_hv_vcpu(vcpu)->nested.pa_page_gpa,
			   &tlb_lock_count, sizeof(tlb_lock_count)))
		result = HV_STATUS_INVALID_HYPERCALL_INPUT;

	trace_kvm_hv_hypercall_done(result);
	kvm_hv_hypercall_set_result(vcpu, result);
	++vcpu->stat.hypercalls;

	ret = kvm_skip_emulated_instruction(vcpu);

	if (tlb_lock_count)
		kvm_x86_ops.nested_ops->hv_inject_synthetic_vmexit_post_tlb_flush(vcpu);

	return ret;
}

static int kvm_hv_hypercall_complete_userspace(struct kvm_vcpu *vcpu)
{
	return kvm_hv_hypercall_complete(vcpu, vcpu->run->hyperv.u.hcall.result);
}

static u16 kvm_hvcall_signal_event(struct kvm_vcpu *vcpu, struct kvm_hv_hcall *hc)
{
	struct kvm_hv *hv = to_kvm_hv(vcpu->kvm);
	struct eventfd_ctx *eventfd;

	if (unlikely(!hc->fast)) {
		int ret;
		gpa_t gpa = hc->ingpa;

		if ((gpa & (__alignof__(hc->ingpa) - 1)) ||
		    offset_in_page(gpa) + sizeof(hc->ingpa) > PAGE_SIZE)
			return HV_STATUS_INVALID_ALIGNMENT;

		ret = kvm_vcpu_read_guest(vcpu, gpa,
					  &hc->ingpa, sizeof(hc->ingpa));
		if (ret < 0)
			return HV_STATUS_INVALID_ALIGNMENT;
	}

	/*
	 * Per spec, bits 32-47 contain the extra "flag number".  However, we
	 * have no use for it, and in all known usecases it is zero, so just
	 * report lookup failure if it isn't.
	 */
	if (hc->ingpa & 0xffff00000000ULL)
		return HV_STATUS_INVALID_PORT_ID;
	/* remaining bits are reserved-zero */
	if (hc->ingpa & ~KVM_HYPERV_CONN_ID_MASK)
		return HV_STATUS_INVALID_HYPERCALL_INPUT;

	/* the eventfd is protected by vcpu->kvm->srcu, but conn_to_evt isn't */
	rcu_read_lock();
	eventfd = idr_find(&hv->conn_to_evt, hc->ingpa);
	rcu_read_unlock();
	if (!eventfd)
		return HV_STATUS_INVALID_PORT_ID;

	eventfd_signal(eventfd);
	return HV_STATUS_SUCCESS;
}

static bool is_xmm_fast_hypercall(struct kvm_hv_hcall *hc)
{
	switch (hc->code) {
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
	case HVCALL_SEND_IPI_EX:
		return true;
	}

	return false;
}

static void kvm_hv_hypercall_read_xmm(struct kvm_hv_hcall *hc)
{
	int reg;

	kvm_fpu_get();
	for (reg = 0; reg < HV_HYPERCALL_MAX_XMM_REGISTERS; reg++)
		_kvm_read_sse_reg(reg, &hc->xmm[reg]);
	kvm_fpu_put();
}

static bool hv_check_hypercall_access(struct kvm_vcpu_hv *hv_vcpu, u16 code)
{
	if (!hv_vcpu->enforce_cpuid)
		return true;

	switch (code) {
	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
		return hv_vcpu->cpuid_cache.enlightenments_ebx &&
			hv_vcpu->cpuid_cache.enlightenments_ebx != U32_MAX;
	case HVCALL_POST_MESSAGE:
		return hv_vcpu->cpuid_cache.features_ebx & HV_POST_MESSAGES;
	case HVCALL_SIGNAL_EVENT:
		return hv_vcpu->cpuid_cache.features_ebx & HV_SIGNAL_EVENTS;
	case HVCALL_POST_DEBUG_DATA:
	case HVCALL_RETRIEVE_DEBUG_DATA:
	case HVCALL_RESET_DEBUG_SESSION:
		/*
		 * Return 'true' when SynDBG is disabled so the resulting code
		 * will be HV_STATUS_INVALID_HYPERCALL_CODE.
		 */
		return !kvm_hv_is_syndbg_enabled(hv_vcpu->vcpu) ||
			hv_vcpu->cpuid_cache.features_ebx & HV_DEBUGGING;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
		if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
		      HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
			return false;
		fallthrough;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
		return hv_vcpu->cpuid_cache.enlightenments_eax &
			HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
	case HVCALL_SEND_IPI_EX:
		if (!(hv_vcpu->cpuid_cache.enlightenments_eax &
		      HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED))
			return false;
		fallthrough;
	case HVCALL_SEND_IPI:
		return hv_vcpu->cpuid_cache.enlightenments_eax &
			HV_X64_CLUSTER_IPI_RECOMMENDED;
	case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
		return hv_vcpu->cpuid_cache.features_ebx &
			HV_ENABLE_EXTENDED_HYPERCALLS;
	default:
		break;
	}

	return true;
}

int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
{
	struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
	struct kvm_hv_hcall hc;
	u64 ret = HV_STATUS_SUCCESS;

	/*
	 * hypercall generates UD from non zero cpl and real mode
	 * per HYPER-V spec
	 */
	if (kvm_x86_call(get_cpl)(vcpu) != 0 || !is_protmode(vcpu)) {
		kvm_queue_exception(vcpu, UD_VECTOR);
		return 1;
	}

#ifdef CONFIG_X86_64
	if (is_64_bit_hypercall(vcpu)) {
		hc.param = kvm_rcx_read(vcpu);
		hc.ingpa = kvm_rdx_read(vcpu);
		hc.outgpa = kvm_r8_read(vcpu);
	} else
#endif
	{
		hc.param = ((u64)kvm_rdx_read(vcpu) << 32) |
			    (kvm_rax_read(vcpu) & 0xffffffff);
		hc.ingpa = ((u64)kvm_rbx_read(vcpu) << 32) |
			    (kvm_rcx_read(vcpu) & 0xffffffff);
		hc.outgpa = ((u64)kvm_rdi_read(vcpu) << 32) |
			     (kvm_rsi_read(vcpu) & 0xffffffff);
	}

	hc.code = hc.param & 0xffff;
	hc.var_cnt = (hc.param & HV_HYPERCALL_VARHEAD_MASK) >> HV_HYPERCALL_VARHEAD_OFFSET;
	hc.fast = !!(hc.param & HV_HYPERCALL_FAST_BIT);
	hc.rep_cnt = (hc.param >> HV_HYPERCALL_REP_COMP_OFFSET) & 0xfff;
	hc.rep_idx = (hc.param >> HV_HYPERCALL_REP_START_OFFSET) & 0xfff;
	hc.rep = !!(hc.rep_cnt || hc.rep_idx);

	trace_kvm_hv_hypercall(hc.code, hc.fast, hc.var_cnt, hc.rep_cnt,
			       hc.rep_idx, hc.ingpa, hc.outgpa);

	if (unlikely(!hv_check_hypercall_access(hv_vcpu, hc.code))) {
		ret = HV_STATUS_ACCESS_DENIED;
		goto hypercall_complete;
	}

	if (unlikely(hc.param & HV_HYPERCALL_RSVD_MASK)) {
		ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
		goto hypercall_complete;
	}

	if (hc.fast && is_xmm_fast_hypercall(&hc)) {
		if (unlikely(hv_vcpu->enforce_cpuid &&
			     !(hv_vcpu->cpuid_cache.features_edx &
			       HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE))) {
			kvm_queue_exception(vcpu, UD_VECTOR);
			return 1;
		}

		kvm_hv_hypercall_read_xmm(&hc);
	}

	switch (hc.code) {
	case HVCALL_NOTIFY_LONG_SPIN_WAIT:
		if (unlikely(hc.rep || hc.var_cnt)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		kvm_vcpu_on_spin(vcpu, true);
		break;
	case HVCALL_SIGNAL_EVENT:
		if (unlikely(hc.rep || hc.var_cnt)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hvcall_signal_event(vcpu, &hc);
		if (ret != HV_STATUS_INVALID_PORT_ID)
			break;
		fallthrough;	/* maybe userspace knows this conn_id */
	case HVCALL_POST_MESSAGE:
		/* don't bother userspace if it has no way to handle it */
		if (unlikely(hc.rep || hc.var_cnt || !to_hv_synic(vcpu)->active)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		goto hypercall_userspace_exit;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST:
		if (unlikely(hc.var_cnt)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		fallthrough;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_LIST_EX:
		if (unlikely(!hc.rep_cnt || hc.rep_idx)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_flush_tlb(vcpu, &hc);
		break;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE:
		if (unlikely(hc.var_cnt)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		fallthrough;
	case HVCALL_FLUSH_VIRTUAL_ADDRESS_SPACE_EX:
		if (unlikely(hc.rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_flush_tlb(vcpu, &hc);
		break;
	case HVCALL_SEND_IPI:
		if (unlikely(hc.var_cnt)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		fallthrough;
	case HVCALL_SEND_IPI_EX:
		if (unlikely(hc.rep)) {
			ret = HV_STATUS_INVALID_HYPERCALL_INPUT;
			break;
		}
		ret = kvm_hv_send_ipi(vcpu, &hc);
		break;
	case HVCALL_POST_DEBUG_DATA:
	case HVCALL_RETRIEVE_DEBUG_DATA:
		if (unlikely(hc.fast)) {
			ret = HV_STATUS_INVALID_PARAMETER;
			break;
		}
		fallthrough;
	case HVCALL_RESET_DEBUG_SESSION: {
		struct kvm_hv_syndbg *syndbg = to_hv_syndbg(vcpu);

		if (!kvm_hv_is_syndbg_enabled(vcpu)) {
			ret = HV_STATUS_INVALID_HYPERCALL_CODE;
			break;
		}

		if (!(syndbg->options & HV_X64_SYNDBG_OPTION_USE_HCALLS)) {
			ret = HV_STATUS_OPERATION_DENIED;
			break;
		}
		goto hypercall_userspace_exit;
	}
	case HV_EXT_CALL_QUERY_CAPABILITIES ... HV_EXT_CALL_MAX:
		if (unlikely(hc.fast)) {
			ret = HV_STATUS_INVALID_PARAMETER;
			break;
		}
		goto hypercall_userspace_exit;
	default:
		ret = HV_STATUS_INVALID_HYPERCALL_CODE;
		break;
	}

hypercall_complete:
	return kvm_hv_hypercall_complete(vcpu, ret);

hypercall_userspace_exit:
	vcpu->run->exit_reason = KVM_EXIT_HYPERV;
	vcpu->run->hyperv.type = KVM_EXIT_HYPERV_HCALL;
	vcpu->run->hyperv.u.hcall.input = hc.param;
	vcpu->run->hyperv.u.hcall.params[0] = hc.ingpa;
	vcpu->run->hyperv.u.hcall.params[1] = hc.outgpa;
	vcpu->arch.complete_userspace_io = kvm_hv_hypercall_complete_userspace;
	return 0;
}

void kvm_hv_init_vm(struct kvm *kvm)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);

	mutex_init(&hv->hv_lock);
	idr_init(&hv->conn_to_evt);
}

void kvm_hv_destroy_vm(struct kvm *kvm)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);
	struct eventfd_ctx *eventfd;
	int i;

	idr_for_each_entry(&hv->conn_to_evt, eventfd, i)
		eventfd_ctx_put(eventfd);
	idr_destroy(&hv->conn_to_evt);
}

static int kvm_hv_eventfd_assign(struct kvm *kvm, u32 conn_id, int fd)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);
	struct eventfd_ctx *eventfd;
	int ret;

	eventfd = eventfd_ctx_fdget(fd);
	if (IS_ERR(eventfd))
		return PTR_ERR(eventfd);

	mutex_lock(&hv->hv_lock);
	ret = idr_alloc(&hv->conn_to_evt, eventfd, conn_id, conn_id + 1,
			GFP_KERNEL_ACCOUNT);
	mutex_unlock(&hv->hv_lock);

	if (ret >= 0)
		return 0;

	if (ret == -ENOSPC)
		ret = -EEXIST;
	eventfd_ctx_put(eventfd);
	return ret;
}

static int kvm_hv_eventfd_deassign(struct kvm *kvm, u32 conn_id)
{
	struct kvm_hv *hv = to_kvm_hv(kvm);
	struct eventfd_ctx *eventfd;

	mutex_lock(&hv->hv_lock);
	eventfd = idr_remove(&hv->conn_to_evt, conn_id);
	mutex_unlock(&hv->hv_lock);

	if (!eventfd)
		return -ENOENT;

	synchronize_srcu(&kvm->srcu);
	eventfd_ctx_put(eventfd);
	return 0;
}

int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
{
	if ((args->flags & ~KVM_HYPERV_EVENTFD_DEASSIGN) ||
	    (args->conn_id & ~KVM_HYPERV_CONN_ID_MASK))
		return -EINVAL;

	if (args->flags == KVM_HYPERV_EVENTFD_DEASSIGN)
		return kvm_hv_eventfd_deassign(kvm, args->conn_id);
	return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
}

int kvm_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
		     struct kvm_cpuid_entry2 __user *entries)
{
	uint16_t evmcs_ver = 0;
	struct kvm_cpuid_entry2 cpuid_entries[] = {
		{ .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
		{ .function = HYPERV_CPUID_INTERFACE },
		{ .function = HYPERV_CPUID_VERSION },
		{ .function = HYPERV_CPUID_FEATURES },
		{ .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
		{ .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
		{ .function = HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS },
		{ .function = HYPERV_CPUID_SYNDBG_INTERFACE },
		{ .function = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES	},
		{ .function = HYPERV_CPUID_NESTED_FEATURES },
	};
	int i, nent = ARRAY_SIZE(cpuid_entries);

	if (kvm_x86_ops.nested_ops->get_evmcs_version)
		evmcs_ver = kvm_x86_ops.nested_ops->get_evmcs_version(vcpu);

	if (cpuid->nent < nent)
		return -E2BIG;

	if (cpuid->nent > nent)
		cpuid->nent = nent;

	for (i = 0; i < nent; i++) {
		struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
		u32 signature[3];

		switch (ent->function) {
		case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
			memcpy(signature, "Linux KVM Hv", 12);

			ent->eax = HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES;
			ent->ebx = signature[0];
			ent->ecx = signature[1];
			ent->edx = signature[2];
			break;

		case HYPERV_CPUID_INTERFACE:
			ent->eax = HYPERV_CPUID_SIGNATURE_EAX;
			break;

		case HYPERV_CPUID_VERSION:
			/*
			 * We implement some Hyper-V 2016 functions so let's use
			 * this version.
			 */
			ent->eax = 0x00003839;
			ent->ebx = 0x000A0000;
			break;

		case HYPERV_CPUID_FEATURES:
			ent->eax |= HV_MSR_VP_RUNTIME_AVAILABLE;
			ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
			ent->eax |= HV_MSR_SYNIC_AVAILABLE;
			ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
			ent->eax |= HV_MSR_APIC_ACCESS_AVAILABLE;
			ent->eax |= HV_MSR_HYPERCALL_AVAILABLE;
			ent->eax |= HV_MSR_VP_INDEX_AVAILABLE;
			ent->eax |= HV_MSR_RESET_AVAILABLE;
			ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
			ent->eax |= HV_ACCESS_FREQUENCY_MSRS;
			ent->eax |= HV_ACCESS_REENLIGHTENMENT;
			ent->eax |= HV_ACCESS_TSC_INVARIANT;

			ent->ebx |= HV_POST_MESSAGES;
			ent->ebx |= HV_SIGNAL_EVENTS;
			ent->ebx |= HV_ENABLE_EXTENDED_HYPERCALLS;

			ent->edx |= HV_X64_HYPERCALL_XMM_INPUT_AVAILABLE;
			ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
			ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;

			ent->ebx |= HV_DEBUGGING;
			ent->edx |= HV_X64_GUEST_DEBUGGING_AVAILABLE;
			ent->edx |= HV_FEATURE_DEBUG_MSRS_AVAILABLE;
			ent->edx |= HV_FEATURE_EXT_GVA_RANGES_FLUSH;

			/*
			 * Direct Synthetic timers only make sense with in-kernel
			 * LAPIC
			 */
			if (!vcpu || lapic_in_kernel(vcpu))
				ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;

			break;

		case HYPERV_CPUID_ENLIGHTMENT_INFO:
			ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
			ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
			ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
			ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
			ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
			if (evmcs_ver)
				ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
			if (!cpu_smt_possible())
				ent->eax |= HV_X64_NO_NONARCH_CORESHARING;

			ent->eax |= HV_DEPRECATING_AEOI_RECOMMENDED;
			/*
			 * Default number of spinlock retry attempts, matches
			 * HyperV 2016.
			 */
			ent->ebx = 0x00000FFF;

			break;

		case HYPERV_CPUID_IMPLEMENT_LIMITS:
			/* Maximum number of virtual processors */
			ent->eax = KVM_MAX_VCPUS;
			/*
			 * Maximum number of logical processors, matches
			 * HyperV 2016.
			 */
			ent->ebx = 64;

			break;

		case HYPERV_CPUID_NESTED_FEATURES:
			ent->eax = evmcs_ver;
			ent->eax |= HV_X64_NESTED_DIRECT_FLUSH;
			ent->eax |= HV_X64_NESTED_MSR_BITMAP;
			ent->ebx |= HV_X64_NESTED_EVMCS1_PERF_GLOBAL_CTRL;
			break;

		case HYPERV_CPUID_SYNDBG_VENDOR_AND_MAX_FUNCTIONS:
			memcpy(signature, "Linux KVM Hv", 12);

			ent->eax = 0;
			ent->ebx = signature[0];
			ent->ecx = signature[1];
			ent->edx = signature[2];
			break;

		case HYPERV_CPUID_SYNDBG_INTERFACE:
			memcpy(signature, "VS#1\0\0\0\0\0\0\0\0", 12);
			ent->eax = signature[0];
			break;

		case HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES:
			ent->eax |= HV_X64_SYNDBG_CAP_ALLOW_KERNEL_DEBUGGING;
			break;

		default:
			break;
		}
	}

	if (copy_to_user(entries, cpuid_entries,
			 nent * sizeof(struct kvm_cpuid_entry2)))
		return -EFAULT;

	return 0;
}