summaryrefslogtreecommitdiff
path: root/arch/x86/kvm/cpuid.h
blob: 1d2c4f2e4bb6feaf456ca7b951cec1dbaa381730 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef ARCH_X86_KVM_CPUID_H
#define ARCH_X86_KVM_CPUID_H

#include "x86.h"
#include <asm/cpu.h>
#include <asm/processor.h>

extern u32 kvm_cpu_caps[NCAPINTS] __read_mostly;
void kvm_set_cpu_caps(void);

void kvm_update_cpuid_runtime(struct kvm_vcpu *vcpu);
struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
					      u32 function, u32 index);
int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid,
			    struct kvm_cpuid_entry2 __user *entries,
			    unsigned int type);
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
			     struct kvm_cpuid *cpuid,
			     struct kvm_cpuid_entry __user *entries);
int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
			      struct kvm_cpuid2 *cpuid,
			      struct kvm_cpuid_entry2 __user *entries);
int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
			      struct kvm_cpuid2 *cpuid,
			      struct kvm_cpuid_entry2 __user *entries);
bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx,
	       u32 *ecx, u32 *edx, bool exact_only);

int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu);

static inline int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.maxphyaddr;
}

static inline bool kvm_vcpu_is_illegal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
{
	return (gpa >= BIT_ULL(cpuid_maxphyaddr(vcpu)));
}

struct cpuid_reg {
	u32 function;
	u32 index;
	int reg;
};

static const struct cpuid_reg reverse_cpuid[] = {
	[CPUID_1_EDX]         = {         1, 0, CPUID_EDX},
	[CPUID_8000_0001_EDX] = {0x80000001, 0, CPUID_EDX},
	[CPUID_8086_0001_EDX] = {0x80860001, 0, CPUID_EDX},
	[CPUID_1_ECX]         = {         1, 0, CPUID_ECX},
	[CPUID_C000_0001_EDX] = {0xc0000001, 0, CPUID_EDX},
	[CPUID_8000_0001_ECX] = {0x80000001, 0, CPUID_ECX},
	[CPUID_7_0_EBX]       = {         7, 0, CPUID_EBX},
	[CPUID_D_1_EAX]       = {       0xd, 1, CPUID_EAX},
	[CPUID_8000_0008_EBX] = {0x80000008, 0, CPUID_EBX},
	[CPUID_6_EAX]         = {         6, 0, CPUID_EAX},
	[CPUID_8000_000A_EDX] = {0x8000000a, 0, CPUID_EDX},
	[CPUID_7_ECX]         = {         7, 0, CPUID_ECX},
	[CPUID_8000_0007_EBX] = {0x80000007, 0, CPUID_EBX},
	[CPUID_7_EDX]         = {         7, 0, CPUID_EDX},
	[CPUID_7_1_EAX]       = {         7, 1, CPUID_EAX},
};

/*
 * Reverse CPUID and its derivatives can only be used for hardware-defined
 * feature words, i.e. words whose bits directly correspond to a CPUID leaf.
 * Retrieving a feature bit or masking guest CPUID from a Linux-defined word
 * is nonsensical as the bit number/mask is an arbitrary software-defined value
 * and can't be used by KVM to query/control guest capabilities.  And obviously
 * the leaf being queried must have an entry in the lookup table.
 */
static __always_inline void reverse_cpuid_check(unsigned int x86_leaf)
{
	BUILD_BUG_ON(x86_leaf == CPUID_LNX_1);
	BUILD_BUG_ON(x86_leaf == CPUID_LNX_2);
	BUILD_BUG_ON(x86_leaf == CPUID_LNX_3);
	BUILD_BUG_ON(x86_leaf == CPUID_LNX_4);
	BUILD_BUG_ON(x86_leaf >= ARRAY_SIZE(reverse_cpuid));
	BUILD_BUG_ON(reverse_cpuid[x86_leaf].function == 0);
}

/*
 * Retrieve the bit mask from an X86_FEATURE_* definition.  Features contain
 * the hardware defined bit number (stored in bits 4:0) and a software defined
 * "word" (stored in bits 31:5).  The word is used to index into arrays of
 * bit masks that hold the per-cpu feature capabilities, e.g. this_cpu_has().
 */
static __always_inline u32 __feature_bit(int x86_feature)
{
	reverse_cpuid_check(x86_feature / 32);
	return 1 << (x86_feature & 31);
}

#define feature_bit(name)  __feature_bit(X86_FEATURE_##name)

static __always_inline struct cpuid_reg x86_feature_cpuid(unsigned int x86_feature)
{
	unsigned int x86_leaf = x86_feature / 32;

	reverse_cpuid_check(x86_leaf);
	return reverse_cpuid[x86_leaf];
}

static __always_inline u32 *__cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
						  u32 reg)
{
	switch (reg) {
	case CPUID_EAX:
		return &entry->eax;
	case CPUID_EBX:
		return &entry->ebx;
	case CPUID_ECX:
		return &entry->ecx;
	case CPUID_EDX:
		return &entry->edx;
	default:
		BUILD_BUG();
		return NULL;
	}
}

static __always_inline u32 *cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry,
						unsigned int x86_feature)
{
	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);

	return __cpuid_entry_get_reg(entry, cpuid.reg);
}

static __always_inline u32 cpuid_entry_get(struct kvm_cpuid_entry2 *entry,
					   unsigned int x86_feature)
{
	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);

	return *reg & __feature_bit(x86_feature);
}

static __always_inline bool cpuid_entry_has(struct kvm_cpuid_entry2 *entry,
					    unsigned int x86_feature)
{
	return cpuid_entry_get(entry, x86_feature);
}

static __always_inline void cpuid_entry_clear(struct kvm_cpuid_entry2 *entry,
					      unsigned int x86_feature)
{
	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);

	*reg &= ~__feature_bit(x86_feature);
}

static __always_inline void cpuid_entry_set(struct kvm_cpuid_entry2 *entry,
					    unsigned int x86_feature)
{
	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);

	*reg |= __feature_bit(x86_feature);
}

static __always_inline void cpuid_entry_change(struct kvm_cpuid_entry2 *entry,
					       unsigned int x86_feature,
					       bool set)
{
	u32 *reg = cpuid_entry_get_reg(entry, x86_feature);

	/*
	 * Open coded instead of using cpuid_entry_{clear,set}() to coerce the
	 * compiler into using CMOV instead of Jcc when possible.
	 */
	if (set)
		*reg |= __feature_bit(x86_feature);
	else
		*reg &= ~__feature_bit(x86_feature);
}

static __always_inline void cpuid_entry_override(struct kvm_cpuid_entry2 *entry,
						 enum cpuid_leafs leaf)
{
	u32 *reg = cpuid_entry_get_reg(entry, leaf * 32);

	BUILD_BUG_ON(leaf >= ARRAY_SIZE(kvm_cpu_caps));
	*reg = kvm_cpu_caps[leaf];
}

static __always_inline u32 *guest_cpuid_get_register(struct kvm_vcpu *vcpu,
						     unsigned int x86_feature)
{
	const struct cpuid_reg cpuid = x86_feature_cpuid(x86_feature);
	struct kvm_cpuid_entry2 *entry;

	entry = kvm_find_cpuid_entry(vcpu, cpuid.function, cpuid.index);
	if (!entry)
		return NULL;

	return __cpuid_entry_get_reg(entry, cpuid.reg);
}

static __always_inline bool guest_cpuid_has(struct kvm_vcpu *vcpu,
					    unsigned int x86_feature)
{
	u32 *reg;

	reg = guest_cpuid_get_register(vcpu, x86_feature);
	if (!reg)
		return false;

	return *reg & __feature_bit(x86_feature);
}

static __always_inline void guest_cpuid_clear(struct kvm_vcpu *vcpu,
					      unsigned int x86_feature)
{
	u32 *reg;

	reg = guest_cpuid_get_register(vcpu, x86_feature);
	if (reg)
		*reg &= ~__feature_bit(x86_feature);
}

static inline bool guest_cpuid_is_amd_or_hygon(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid_entry2 *best;

	best = kvm_find_cpuid_entry(vcpu, 0, 0);
	return best &&
	       (is_guest_vendor_amd(best->ebx, best->ecx, best->edx) ||
		is_guest_vendor_hygon(best->ebx, best->ecx, best->edx));
}

static inline int guest_cpuid_family(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid_entry2 *best;

	best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
	if (!best)
		return -1;

	return x86_family(best->eax);
}

static inline int guest_cpuid_model(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid_entry2 *best;

	best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
	if (!best)
		return -1;

	return x86_model(best->eax);
}

static inline int guest_cpuid_stepping(struct kvm_vcpu *vcpu)
{
	struct kvm_cpuid_entry2 *best;

	best = kvm_find_cpuid_entry(vcpu, 0x1, 0);
	if (!best)
		return -1;

	return x86_stepping(best->eax);
}

static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.msr_platform_info & MSR_PLATFORM_INFO_CPUID_FAULT;
}

static inline bool cpuid_fault_enabled(struct kvm_vcpu *vcpu)
{
	return vcpu->arch.msr_misc_features_enables &
		  MSR_MISC_FEATURES_ENABLES_CPUID_FAULT;
}

static __always_inline void kvm_cpu_cap_clear(unsigned int x86_feature)
{
	unsigned int x86_leaf = x86_feature / 32;

	reverse_cpuid_check(x86_leaf);
	kvm_cpu_caps[x86_leaf] &= ~__feature_bit(x86_feature);
}

static __always_inline void kvm_cpu_cap_set(unsigned int x86_feature)
{
	unsigned int x86_leaf = x86_feature / 32;

	reverse_cpuid_check(x86_leaf);
	kvm_cpu_caps[x86_leaf] |= __feature_bit(x86_feature);
}

static __always_inline u32 kvm_cpu_cap_get(unsigned int x86_feature)
{
	unsigned int x86_leaf = x86_feature / 32;

	reverse_cpuid_check(x86_leaf);
	return kvm_cpu_caps[x86_leaf] & __feature_bit(x86_feature);
}

static __always_inline bool kvm_cpu_cap_has(unsigned int x86_feature)
{
	return !!kvm_cpu_cap_get(x86_feature);
}

static __always_inline void kvm_cpu_cap_check_and_set(unsigned int x86_feature)
{
	if (boot_cpu_has(x86_feature))
		kvm_cpu_cap_set(x86_feature);
}

static inline bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
{
	return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
}

#endif