summaryrefslogtreecommitdiff
path: root/arch/x86/crypto/twofish-x86_64-asm_64-3way.S
blob: bca4cea757ce245b7044a86924263c90c50206f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
 * Twofish Cipher 3-way parallel algorithm (x86_64)
 *
 * Copyright (C) 2011 Jussi Kivilinna <jussi.kivilinna@mbnet.fi>
 */

#include <linux/linkage.h>

.file "twofish-x86_64-asm-3way.S"
.text

/* structure of crypto context */
#define s0	0
#define s1	1024
#define s2	2048
#define s3	3072
#define w	4096
#define k	4128

/**********************************************************************
  3-way twofish
 **********************************************************************/
#define CTX %rdi
#define RIO %rdx

#define RAB0 %rax
#define RAB1 %rbx
#define RAB2 %rcx

#define RAB0d %eax
#define RAB1d %ebx
#define RAB2d %ecx

#define RAB0bh %ah
#define RAB1bh %bh
#define RAB2bh %ch

#define RAB0bl %al
#define RAB1bl %bl
#define RAB2bl %cl

#define CD0 0x0(%rsp)
#define CD1 0x8(%rsp)
#define CD2 0x10(%rsp)

# used only before/after all rounds
#define RCD0 %r8
#define RCD1 %r9
#define RCD2 %r10

# used only during rounds
#define RX0 %r8
#define RX1 %r9
#define RX2 %r10

#define RX0d %r8d
#define RX1d %r9d
#define RX2d %r10d

#define RY0 %r11
#define RY1 %r12
#define RY2 %r13

#define RY0d %r11d
#define RY1d %r12d
#define RY2d %r13d

#define RT0 %rdx
#define RT1 %rsi

#define RT0d %edx
#define RT1d %esi

#define RT1bl %sil

#define do16bit_ror(rot, op1, op2, T0, T1, tmp1, tmp2, ab, dst) \
	movzbl ab ## bl,		tmp2 ## d; \
	movzbl ab ## bh,		tmp1 ## d; \
	rorq $(rot),			ab; \
	op1##l T0(CTX, tmp2, 4),	dst ## d; \
	op2##l T1(CTX, tmp1, 4),	dst ## d;

#define swap_ab_with_cd(ab, cd, tmp)	\
	movq cd, tmp;			\
	movq ab, cd;			\
	movq tmp, ab;

/*
 * Combined G1 & G2 function. Reordered with help of rotates to have moves
 * at beginning.
 */
#define g1g2_3(ab, cd, Tx0, Tx1, Tx2, Tx3, Ty0, Ty1, Ty2, Ty3, x, y) \
	/* G1,1 && G2,1 */ \
	do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 0, ab ## 0, x ## 0); \
	do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 0, ab ## 0, y ## 0); \
	\
	do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 1, ab ## 1, x ## 1); \
	do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 1, ab ## 1, y ## 1); \
	\
	do16bit_ror(32, mov, xor, Tx0, Tx1, RT0, x ## 2, ab ## 2, x ## 2); \
	do16bit_ror(48, mov, xor, Ty1, Ty2, RT0, y ## 2, ab ## 2, y ## 2); \
	\
	/* G1,2 && G2,2 */ \
	do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 0, x ## 0); \
	do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 0, y ## 0); \
	swap_ab_with_cd(ab ## 0, cd ## 0, RT0); \
	\
	do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 1, x ## 1); \
	do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 1, y ## 1); \
	swap_ab_with_cd(ab ## 1, cd ## 1, RT0); \
	\
	do16bit_ror(32, xor, xor, Tx2, Tx3, RT0, RT1, ab ## 2, x ## 2); \
	do16bit_ror(16, xor, xor, Ty3, Ty0, RT0, RT1, ab ## 2, y ## 2); \
	swap_ab_with_cd(ab ## 2, cd ## 2, RT0);

#define enc_round_end(ab, x, y, n) \
	addl y ## d,			x ## d; \
	addl x ## d,			y ## d; \
	addl k+4*(2*(n))(CTX),		x ## d; \
	xorl ab ## d,			x ## d; \
	addl k+4*(2*(n)+1)(CTX),	y ## d; \
	shrq $32,			ab; \
	roll $1,			ab ## d; \
	xorl y ## d,			ab ## d; \
	shlq $32,			ab; \
	rorl $1,			x ## d; \
	orq x,				ab;

#define dec_round_end(ba, x, y, n) \
	addl y ## d,			x ## d; \
	addl x ## d,			y ## d; \
	addl k+4*(2*(n))(CTX),		x ## d; \
	addl k+4*(2*(n)+1)(CTX),	y ## d; \
	xorl ba ## d,			y ## d; \
	shrq $32,			ba; \
	roll $1,			ba ## d; \
	xorl x ## d,			ba ## d; \
	shlq $32,			ba; \
	rorl $1,			y ## d; \
	orq y,				ba;

#define encrypt_round3(ab, cd, n) \
	g1g2_3(ab, cd, s0, s1, s2, s3, s0, s1, s2, s3, RX, RY); \
	\
	enc_round_end(ab ## 0, RX0, RY0, n); \
	enc_round_end(ab ## 1, RX1, RY1, n); \
	enc_round_end(ab ## 2, RX2, RY2, n);

#define decrypt_round3(ba, dc, n) \
	g1g2_3(ba, dc, s1, s2, s3, s0, s3, s0, s1, s2, RY, RX); \
	\
	dec_round_end(ba ## 0, RX0, RY0, n); \
	dec_round_end(ba ## 1, RX1, RY1, n); \
	dec_round_end(ba ## 2, RX2, RY2, n);

#define encrypt_cycle3(ab, cd, n) \
	encrypt_round3(ab, cd, n*2); \
	encrypt_round3(ab, cd, (n*2)+1);

#define decrypt_cycle3(ba, dc, n) \
	decrypt_round3(ba, dc, (n*2)+1); \
	decrypt_round3(ba, dc, (n*2));

#define push_cd()	\
	pushq RCD2;	\
	pushq RCD1;	\
	pushq RCD0;

#define pop_cd()	\
	popq RCD0;	\
	popq RCD1;	\
	popq RCD2;

#define inpack3(in, n, xy, m) \
	movq 4*(n)(in),			xy ## 0; \
	xorq w+4*m(CTX),		xy ## 0; \
	\
	movq 4*(4+(n))(in),		xy ## 1; \
	xorq w+4*m(CTX),		xy ## 1; \
	\
	movq 4*(8+(n))(in),		xy ## 2; \
	xorq w+4*m(CTX),		xy ## 2;

#define outunpack3(op, out, n, xy, m) \
	xorq w+4*m(CTX),		xy ## 0; \
	op ## q xy ## 0,		4*(n)(out); \
	\
	xorq w+4*m(CTX),		xy ## 1; \
	op ## q xy ## 1,		4*(4+(n))(out); \
	\
	xorq w+4*m(CTX),		xy ## 2; \
	op ## q xy ## 2,		4*(8+(n))(out);

#define inpack_enc3() \
	inpack3(RIO, 0, RAB, 0); \
	inpack3(RIO, 2, RCD, 2);

#define outunpack_enc3(op) \
	outunpack3(op, RIO, 2, RAB, 6); \
	outunpack3(op, RIO, 0, RCD, 4);

#define inpack_dec3() \
	inpack3(RIO, 0, RAB, 4); \
	rorq $32,			RAB0; \
	rorq $32,			RAB1; \
	rorq $32,			RAB2; \
	inpack3(RIO, 2, RCD, 6); \
	rorq $32,			RCD0; \
	rorq $32,			RCD1; \
	rorq $32,			RCD2;

#define outunpack_dec3() \
	rorq $32,			RCD0; \
	rorq $32,			RCD1; \
	rorq $32,			RCD2; \
	outunpack3(mov, RIO, 0, RCD, 0); \
	rorq $32,			RAB0; \
	rorq $32,			RAB1; \
	rorq $32,			RAB2; \
	outunpack3(mov, RIO, 2, RAB, 2);

SYM_FUNC_START(__twofish_enc_blk_3way)
	/* input:
	 *	%rdi: ctx, CTX
	 *	%rsi: dst
	 *	%rdx: src, RIO
	 *	%rcx: bool, if true: xor output
	 */
	pushq %r13;
	pushq %r12;
	pushq %rbx;

	pushq %rcx; /* bool xor */
	pushq %rsi; /* dst */

	inpack_enc3();

	push_cd();
	encrypt_cycle3(RAB, CD, 0);
	encrypt_cycle3(RAB, CD, 1);
	encrypt_cycle3(RAB, CD, 2);
	encrypt_cycle3(RAB, CD, 3);
	encrypt_cycle3(RAB, CD, 4);
	encrypt_cycle3(RAB, CD, 5);
	encrypt_cycle3(RAB, CD, 6);
	encrypt_cycle3(RAB, CD, 7);
	pop_cd();

	popq RIO; /* dst */
	popq RT1; /* bool xor */

	testb RT1bl, RT1bl;
	jnz .L__enc_xor3;

	outunpack_enc3(mov);

	popq %rbx;
	popq %r12;
	popq %r13;
	ret;

.L__enc_xor3:
	outunpack_enc3(xor);

	popq %rbx;
	popq %r12;
	popq %r13;
	ret;
SYM_FUNC_END(__twofish_enc_blk_3way)

SYM_FUNC_START(twofish_dec_blk_3way)
	/* input:
	 *	%rdi: ctx, CTX
	 *	%rsi: dst
	 *	%rdx: src, RIO
	 */
	pushq %r13;
	pushq %r12;
	pushq %rbx;

	pushq %rsi; /* dst */

	inpack_dec3();

	push_cd();
	decrypt_cycle3(RAB, CD, 7);
	decrypt_cycle3(RAB, CD, 6);
	decrypt_cycle3(RAB, CD, 5);
	decrypt_cycle3(RAB, CD, 4);
	decrypt_cycle3(RAB, CD, 3);
	decrypt_cycle3(RAB, CD, 2);
	decrypt_cycle3(RAB, CD, 1);
	decrypt_cycle3(RAB, CD, 0);
	pop_cd();

	popq RIO; /* dst */

	outunpack_dec3();

	popq %rbx;
	popq %r12;
	popq %r13;
	ret;
SYM_FUNC_END(twofish_dec_blk_3way)