1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Page table support for the Hexagon architecture
*
* Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
*/
#ifndef _ASM_PGTABLE_H
#define _ASM_PGTABLE_H
/*
* Page table definitions for Qualcomm Hexagon processor.
*/
#include <asm/page.h>
#include <asm-generic/pgtable-nopmd.h>
/* A handy thing to have if one has the RAM. Declared in head.S */
extern unsigned long empty_zero_page;
/*
* The PTE model described here is that of the Hexagon Virtual Machine,
* which autonomously walks 2-level page tables. At a lower level, we
* also describe the RISCish software-loaded TLB entry structure of
* the underlying Hexagon processor. A kernel built to run on the
* virtual machine has no need to know about the underlying hardware.
*/
#include <asm/vm_mmu.h>
/*
* To maximize the comfort level for the PTE manipulation macros,
* define the "well known" architecture-specific bits.
*/
#define _PAGE_READ __HVM_PTE_R
#define _PAGE_WRITE __HVM_PTE_W
#define _PAGE_EXECUTE __HVM_PTE_X
#define _PAGE_USER __HVM_PTE_U
/*
* We have a total of 4 "soft" bits available in the abstract PTE.
* The two mandatory software bits are Dirty and Accessed.
* To make nonlinear swap work according to the more recent
* model, we want a low order "Present" bit to indicate whether
* the PTE describes MMU programming or swap space.
*/
#define _PAGE_PRESENT (1<<0)
#define _PAGE_DIRTY (1<<1)
#define _PAGE_ACCESSED (1<<2)
/*
* For now, let's say that Valid and Present are the same thing.
* Alternatively, we could say that it's the "or" of R, W, and X
* permissions.
*/
#define _PAGE_VALID _PAGE_PRESENT
/*
* We're not defining _PAGE_GLOBAL here, since there's no concept
* of global pages or ASIDs exposed to the Hexagon Virtual Machine,
* and we want to use the same page table structures and macros in
* the native kernel as we do in the virtual machine kernel.
* So we'll put up with a bit of inefficiency for now...
*/
/*
* Top "FOURTH" level (pgd), which for the Hexagon VM is really
* only the second from the bottom, pgd and pud both being collapsed.
* Each entry represents 4MB of virtual address space, 4K of table
* thus maps the full 4GB.
*/
#define PGDIR_SHIFT 22
#define PTRS_PER_PGD 1024
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
#define PGDIR_MASK (~(PGDIR_SIZE-1))
#ifdef CONFIG_PAGE_SIZE_4KB
#define PTRS_PER_PTE 1024
#endif
#ifdef CONFIG_PAGE_SIZE_16KB
#define PTRS_PER_PTE 256
#endif
#ifdef CONFIG_PAGE_SIZE_64KB
#define PTRS_PER_PTE 64
#endif
#ifdef CONFIG_PAGE_SIZE_256KB
#define PTRS_PER_PTE 16
#endif
#ifdef CONFIG_PAGE_SIZE_1MB
#define PTRS_PER_PTE 4
#endif
/* Any bigger and the PTE disappears. */
#define pgd_ERROR(e) \
printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
pgd_val(e))
/*
* Page Protection Constants. Includes (in this variant) cache attributes.
*/
extern unsigned long _dflt_cache_att;
#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_dflt_cache_att)
#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
#define PAGE_COPY PAGE_READONLY
#define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
#define PAGE_COPY_EXEC PAGE_EXEC
#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
_PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \
_PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
/*
* Aliases for mapping mmap() protection bits to page protections.
* These get used for static initialization, so using the _dflt_cache_att
* variable for the default cache attribute isn't workable. If the
* default gets changed at boot time, the boot option code has to
* update data structures like the protaction_map[] array.
*/
#define CACHEDEF (CACHE_DEFAULT << 6)
/* Private (copy-on-write) page protections. */
#define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF)
#define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF)
#define __P010 __P000 /* Write-only copy-on-write */
#define __P011 __P001 /* Read/Write copy-on-write */
#define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_EXECUTE | CACHEDEF)
#define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \
_PAGE_READ | CACHEDEF)
#define __P110 __P100 /* Write/execute copy-on-write */
#define __P111 __P101 /* Read/Write/Execute, copy-on-write */
/* Shared page protections. */
#define __S000 __P000
#define __S001 __P001
#define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_WRITE | CACHEDEF)
#define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
_PAGE_WRITE | CACHEDEF)
#define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_EXECUTE | CACHEDEF)
#define __S101 __P101
#define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \
_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
#define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
_PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF)
extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */
/* Seems to be zero even in architectures where the zero page is firewalled? */
#define FIRST_USER_ADDRESS 0UL
/* HUGETLB not working currently */
#ifdef CONFIG_HUGETLB_PAGE
#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
#endif
/*
* For now, assume that higher-level code will do TLB/MMU invalidations
* and don't insert that overhead into this low-level function.
*/
extern void sync_icache_dcache(pte_t pte);
#define pte_present_exec_user(pte) \
((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
(_PAGE_EXECUTE | _PAGE_USER))
static inline void set_pte(pte_t *ptep, pte_t pteval)
{
/* should really be using pte_exec, if it weren't declared later. */
if (pte_present_exec_user(pteval))
sync_icache_dcache(pteval);
*ptep = pteval;
}
/*
* For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
* L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
* (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7
* as a universal null entry, but some of those least significant bits
* are interpreted by software.
*/
#define _NULL_PMD 0x7
#define _NULL_PTE 0x0
static inline void pmd_clear(pmd_t *pmd_entry_ptr)
{
pmd_val(*pmd_entry_ptr) = _NULL_PMD;
}
/*
* Conveniently, a null PTE value is invalid.
*/
static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
pte_t *ptep)
{
pte_val(*ptep) = _NULL_PTE;
}
#ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL
/**
* pmd_index - returns the index of the entry in the PMD page
* which would control the given virtual address
*/
#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
#endif
/**
* pgd_index - returns the index of the entry in the PGD page
* which would control the given virtual address
*
* This returns the *index* for the address in the pgd_t
*/
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
/*
* pgd_offset - find an offset in a page-table-directory
*/
#define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr))
/*
* pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr
*/
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
/**
* pmd_none - check if pmd_entry is mapped
* @pmd_entry: pmd entry
*
* MIPS checks it against that "invalid pte table" thing.
*/
static inline int pmd_none(pmd_t pmd)
{
return pmd_val(pmd) == _NULL_PMD;
}
/**
* pmd_present - is there a page table behind this?
* Essentially the inverse of pmd_none. We maybe
* save an inline instruction by defining it this
* way, instead of simply "!pmd_none".
*/
static inline int pmd_present(pmd_t pmd)
{
return pmd_val(pmd) != (unsigned long)_NULL_PMD;
}
/**
* pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
* As we have no known cause of badness, it's null, as it is for many
* architectures.
*/
static inline int pmd_bad(pmd_t pmd)
{
return 0;
}
/*
* pmd_page - converts a PMD entry to a page pointer
*/
#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
#define pmd_pgtable(pmd) pmd_page(pmd)
/**
* pte_none - check if pte is mapped
* @pte: pte_t entry
*/
static inline int pte_none(pte_t pte)
{
return pte_val(pte) == _NULL_PTE;
};
/*
* pte_present - check if page is present
*/
static inline int pte_present(pte_t pte)
{
return pte_val(pte) & _PAGE_PRESENT;
}
/* mk_pte - make a PTE out of a page pointer and protection bits */
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
#define pte_page(x) pfn_to_page(pte_pfn(x))
/* pte_mkold - mark PTE as not recently accessed */
static inline pte_t pte_mkold(pte_t pte)
{
pte_val(pte) &= ~_PAGE_ACCESSED;
return pte;
}
/* pte_mkyoung - mark PTE as recently accessed */
static inline pte_t pte_mkyoung(pte_t pte)
{
pte_val(pte) |= _PAGE_ACCESSED;
return pte;
}
/* pte_mkclean - mark page as in sync with backing store */
static inline pte_t pte_mkclean(pte_t pte)
{
pte_val(pte) &= ~_PAGE_DIRTY;
return pte;
}
/* pte_mkdirty - mark page as modified */
static inline pte_t pte_mkdirty(pte_t pte)
{
pte_val(pte) |= _PAGE_DIRTY;
return pte;
}
/* pte_young - "is PTE marked as accessed"? */
static inline int pte_young(pte_t pte)
{
return pte_val(pte) & _PAGE_ACCESSED;
}
/* pte_dirty - "is PTE dirty?" */
static inline int pte_dirty(pte_t pte)
{
return pte_val(pte) & _PAGE_DIRTY;
}
/* pte_modify - set protection bits on PTE */
static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
{
pte_val(pte) &= PAGE_MASK;
pte_val(pte) |= pgprot_val(prot);
return pte;
}
/* pte_wrprotect - mark page as not writable */
static inline pte_t pte_wrprotect(pte_t pte)
{
pte_val(pte) &= ~_PAGE_WRITE;
return pte;
}
/* pte_mkwrite - mark page as writable */
static inline pte_t pte_mkwrite(pte_t pte)
{
pte_val(pte) |= _PAGE_WRITE;
return pte;
}
/* pte_mkexec - mark PTE as executable */
static inline pte_t pte_mkexec(pte_t pte)
{
pte_val(pte) |= _PAGE_EXECUTE;
return pte;
}
/* pte_read - "is PTE marked as readable?" */
static inline int pte_read(pte_t pte)
{
return pte_val(pte) & _PAGE_READ;
}
/* pte_write - "is PTE marked as writable?" */
static inline int pte_write(pte_t pte)
{
return pte_val(pte) & _PAGE_WRITE;
}
/* pte_exec - "is PTE marked as executable?" */
static inline int pte_exec(pte_t pte)
{
return pte_val(pte) & _PAGE_EXECUTE;
}
/* __pte_to_swp_entry - extract swap entry from PTE */
#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
/* __swp_entry_to_pte - extract PTE from swap entry */
#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
/* pfn_pte - convert page number and protection value to page table entry */
#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
/* pte_pfn - convert pte to page frame number */
#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
/*
* set_pte_at - update page table and do whatever magic may be
* necessary to make the underlying hardware/firmware take note.
*
* VM may require a virtual instruction to alert the MMU.
*/
#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte)
/*
* May need to invoke the virtual machine as well...
*/
#define pte_unmap(pte) do { } while (0)
#define pte_unmap_nested(pte) do { } while (0)
/*
* pte_offset_map - returns the linear address of the page table entry
* corresponding to an address
*/
#define pte_offset_map(dir, address) \
((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
#define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr)
/* pte_offset_kernel - kernel version of pte_offset */
#define pte_offset_kernel(dir, address) \
((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \
+ __pte_offset(address))
/* ZERO_PAGE - returns the globally shared zero page */
#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
#define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
/*
* Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is
* interpreted as swap information. The remaining free bits are interpreted as
* swap type/offset tuple. Rather than have the TLB fill handler test
* _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
* all zeros for swap entries, which speeds up the miss handler at the cost of
* 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon
* processor architecture and target applications suggest a lot of TLB misses
* and not much swap space.
*
* Format of swap PTE:
* bit 0: Present (zero)
* bits 1-5: swap type (arch independent layer uses 5 bits max)
* bits 6-9: bits 3:0 of offset
* bits 10-12: effectively _PAGE_PROTNONE (all zero)
* bits 13-31: bits 22:4 of swap offset
*
* The split offset makes some of the following macros a little gnarly,
* but there's plenty of precedent for this sort of thing.
*/
/* Used for swap PTEs */
#define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f)
#define __swp_offset(swp_pte) \
((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0))
#define __swp_entry(type, offset) \
((swp_entry_t) { \
((type << 1) | \
((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) })
#endif
|