summaryrefslogtreecommitdiff
path: root/arch/arm64/kvm/hyp/vgic-v3-sr.c
blob: a76945874d5d908f54c20ff1346f5570de66a870 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
/*
 * Copyright (C) 2012-2015 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include <linux/compiler.h>
#include <linux/irqchip/arm-gic-v3.h>
#include <linux/kvm_host.h>

#include <asm/kvm_mmu.h>

#include "hyp.h"

#define vtr_to_max_lr_idx(v)		((v) & 0xf)
#define vtr_to_nr_pri_bits(v)		(((u32)(v) >> 29) + 1)

#define read_gicreg(r)							\
	({								\
		u64 reg;						\
		asm volatile("mrs_s %0, " __stringify(r) : "=r" (reg));	\
		reg;							\
	})

#define write_gicreg(v,r)						\
	do {								\
		u64 __val = (v);					\
		asm volatile("msr_s " __stringify(r) ", %0" : : "r" (__val));\
	} while (0)

/* vcpu is already in the HYP VA space */
void __hyp_text __vgic_v3_save_state(struct kvm_vcpu *vcpu)
{
	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
	u64 val;
	u32 max_lr_idx, nr_pri_bits;

	/*
	 * Make sure stores to the GIC via the memory mapped interface
	 * are now visible to the system register interface.
	 */
	dsb(st);

	cpu_if->vgic_vmcr  = read_gicreg(ICH_VMCR_EL2);
	cpu_if->vgic_misr  = read_gicreg(ICH_MISR_EL2);
	cpu_if->vgic_eisr  = read_gicreg(ICH_EISR_EL2);
	cpu_if->vgic_elrsr = read_gicreg(ICH_ELSR_EL2);

	write_gicreg(0, ICH_HCR_EL2);
	val = read_gicreg(ICH_VTR_EL2);
	max_lr_idx = vtr_to_max_lr_idx(val);
	nr_pri_bits = vtr_to_nr_pri_bits(val);

	switch (max_lr_idx) {
	case 15:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(15)] = read_gicreg(ICH_LR15_EL2);
	case 14:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(14)] = read_gicreg(ICH_LR14_EL2);
	case 13:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(13)] = read_gicreg(ICH_LR13_EL2);
	case 12:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(12)] = read_gicreg(ICH_LR12_EL2);
	case 11:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(11)] = read_gicreg(ICH_LR11_EL2);
	case 10:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(10)] = read_gicreg(ICH_LR10_EL2);
	case 9:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(9)] = read_gicreg(ICH_LR9_EL2);
	case 8:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(8)] = read_gicreg(ICH_LR8_EL2);
	case 7:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(7)] = read_gicreg(ICH_LR7_EL2);
	case 6:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(6)] = read_gicreg(ICH_LR6_EL2);
	case 5:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(5)] = read_gicreg(ICH_LR5_EL2);
	case 4:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(4)] = read_gicreg(ICH_LR4_EL2);
	case 3:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(3)] = read_gicreg(ICH_LR3_EL2);
	case 2:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(2)] = read_gicreg(ICH_LR2_EL2);
	case 1:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(1)] = read_gicreg(ICH_LR1_EL2);
	case 0:
		cpu_if->vgic_lr[VGIC_V3_LR_INDEX(0)] = read_gicreg(ICH_LR0_EL2);
	}

	switch (nr_pri_bits) {
	case 7:
		cpu_if->vgic_ap0r[3] = read_gicreg(ICH_AP0R3_EL2);
		cpu_if->vgic_ap0r[2] = read_gicreg(ICH_AP0R2_EL2);
	case 6:
		cpu_if->vgic_ap0r[1] = read_gicreg(ICH_AP0R1_EL2);
	default:
		cpu_if->vgic_ap0r[0] = read_gicreg(ICH_AP0R0_EL2);
	}

	switch (nr_pri_bits) {
	case 7:
		cpu_if->vgic_ap1r[3] = read_gicreg(ICH_AP1R3_EL2);
		cpu_if->vgic_ap1r[2] = read_gicreg(ICH_AP1R2_EL2);
	case 6:
		cpu_if->vgic_ap1r[1] = read_gicreg(ICH_AP1R1_EL2);
	default:
		cpu_if->vgic_ap1r[0] = read_gicreg(ICH_AP1R0_EL2);
	}

	val = read_gicreg(ICC_SRE_EL2);
	write_gicreg(val | ICC_SRE_EL2_ENABLE, ICC_SRE_EL2);
	isb(); /* Make sure ENABLE is set at EL2 before setting SRE at EL1 */
	write_gicreg(1, ICC_SRE_EL1);
}

void __hyp_text __vgic_v3_restore_state(struct kvm_vcpu *vcpu)
{
	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
	u64 val;
	u32 max_lr_idx, nr_pri_bits;

	/*
	 * VFIQEn is RES1 if ICC_SRE_EL1.SRE is 1. This causes a
	 * Group0 interrupt (as generated in GICv2 mode) to be
	 * delivered as a FIQ to the guest, with potentially fatal
	 * consequences. So we must make sure that ICC_SRE_EL1 has
	 * been actually programmed with the value we want before
	 * starting to mess with the rest of the GIC.
	 */
	write_gicreg(cpu_if->vgic_sre, ICC_SRE_EL1);
	isb();

	write_gicreg(cpu_if->vgic_hcr, ICH_HCR_EL2);
	write_gicreg(cpu_if->vgic_vmcr, ICH_VMCR_EL2);

	val = read_gicreg(ICH_VTR_EL2);
	max_lr_idx = vtr_to_max_lr_idx(val);
	nr_pri_bits = vtr_to_nr_pri_bits(val);

	switch (nr_pri_bits) {
	case 7:
		 write_gicreg(cpu_if->vgic_ap1r[3], ICH_AP1R3_EL2);
		 write_gicreg(cpu_if->vgic_ap1r[2], ICH_AP1R2_EL2);
	case 6:
		 write_gicreg(cpu_if->vgic_ap1r[1], ICH_AP1R1_EL2);
	default:
		 write_gicreg(cpu_if->vgic_ap1r[0], ICH_AP1R0_EL2);
	}	 	                           
		 	                           
	switch (nr_pri_bits) {
	case 7:
		 write_gicreg(cpu_if->vgic_ap0r[3], ICH_AP0R3_EL2);
		 write_gicreg(cpu_if->vgic_ap0r[2], ICH_AP0R2_EL2);
	case 6:
		 write_gicreg(cpu_if->vgic_ap0r[1], ICH_AP0R1_EL2);
	default:
		 write_gicreg(cpu_if->vgic_ap0r[0], ICH_AP0R0_EL2);
	}

	switch (max_lr_idx) {
	case 15:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(15)], ICH_LR15_EL2);
	case 14:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(14)], ICH_LR14_EL2);
	case 13:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(13)], ICH_LR13_EL2);
	case 12:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(12)], ICH_LR12_EL2);
	case 11:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(11)], ICH_LR11_EL2);
	case 10:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(10)], ICH_LR10_EL2);
	case 9:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(9)], ICH_LR9_EL2);
	case 8:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(8)], ICH_LR8_EL2);
	case 7:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(7)], ICH_LR7_EL2);
	case 6:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(6)], ICH_LR6_EL2);
	case 5:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(5)], ICH_LR5_EL2);
	case 4:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(4)], ICH_LR4_EL2);
	case 3:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(3)], ICH_LR3_EL2);
	case 2:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(2)], ICH_LR2_EL2);
	case 1:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(1)], ICH_LR1_EL2);
	case 0:
		write_gicreg(cpu_if->vgic_lr[VGIC_V3_LR_INDEX(0)], ICH_LR0_EL2);
	}

	/*
	 * Ensures that the above will have reached the
	 * (re)distributors. This ensure the guest will read the
	 * correct values from the memory-mapped interface.
	 */
	isb();
	dsb(sy);

	/*
	 * Prevent the guest from touching the GIC system registers if
	 * SRE isn't enabled for GICv3 emulation.
	 */
	if (!cpu_if->vgic_sre) {
		write_gicreg(read_gicreg(ICC_SRE_EL2) & ~ICC_SRE_EL2_ENABLE,
			     ICC_SRE_EL2);
	}
}

u64 __hyp_text __vgic_v3_read_ich_vtr_el2(void)
{
	return read_gicreg(ICH_VTR_EL2);
}

__alias(__vgic_v3_read_ich_vtr_el2)
u64 __weak __vgic_v3_get_ich_vtr_el2(void);