summaryrefslogtreecommitdiff
path: root/arch/arm/mach-pxa/time.c
blob: ec4286c7931cfdb821a996565c29ed17699d22cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/*
 * arch/arm/mach-pxa/time.c
 *
 * PXA clocksource, clockevents, and OST interrupt handlers.
 * Copyright (c) 2007 by Bill Gatliff <bgat@billgatliff.com>.
 *
 * Derived from Nicolas Pitre's PXA timer handler Copyright (c) 2001
 * by MontaVista Software, Inc.  (Nico, your code rocks!)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/clockchips.h>
#include <linux/sched.h>

#include <asm/div64.h>
#include <asm/cnt32_to_63.h>
#include <asm/mach/irq.h>
#include <asm/mach/time.h>
#include <asm/arch/pxa-regs.h>
#include <asm/mach-types.h>

/*
 * This is PXA's sched_clock implementation. This has a resolution
 * of at least 308 ns and a maximum value of 208 days.
 *
 * The return value is guaranteed to be monotonic in that range as
 * long as there is always less than 582 seconds between successive
 * calls to sched_clock() which should always be the case in practice.
 */

#define OSCR2NS_SCALE_FACTOR 10

static unsigned long oscr2ns_scale;

static void __init set_oscr2ns_scale(unsigned long oscr_rate)
{
	unsigned long long v = 1000000000ULL << OSCR2NS_SCALE_FACTOR;
	do_div(v, oscr_rate);
	oscr2ns_scale = v;
	/*
	 * We want an even value to automatically clear the top bit
	 * returned by cnt32_to_63() without an additional run time
	 * instruction. So if the LSB is 1 then round it up.
	 */
	if (oscr2ns_scale & 1)
		oscr2ns_scale++;
}

unsigned long long sched_clock(void)
{
	unsigned long long v = cnt32_to_63(OSCR);
	return (v * oscr2ns_scale) >> OSCR2NS_SCALE_FACTOR;
}


static irqreturn_t
pxa_ost0_interrupt(int irq, void *dev_id)
{
	int next_match;
	struct clock_event_device *c = dev_id;

	if (c->mode == CLOCK_EVT_MODE_ONESHOT) {
		/* Disarm the compare/match, signal the event. */
		OIER &= ~OIER_E0;
		c->event_handler(c);
	} else if (c->mode == CLOCK_EVT_MODE_PERIODIC) {
		/* Call the event handler as many times as necessary
		 * to recover missed events, if any (if we update
		 * OSMR0 and OSCR0 is still ahead of us, we've missed
		 * the event).  As we're dealing with that, re-arm the
		 * compare/match for the next event.
		 *
		 * HACK ALERT:
		 *
		 * There's a latency between the instruction that
		 * writes to OSMR0 and the actual commit to the
		 * physical hardware, because the CPU doesn't (have
		 * to) run at bus speed, there's a write buffer
		 * between the CPU and the bus, etc. etc.  So if the
		 * target OSCR0 is "very close", to the OSMR0 load
		 * value, the update to OSMR0 might not get to the
		 * hardware in time and we'll miss that interrupt.
		 *
		 * To be safe, if the new OSMR0 is "very close" to the
		 * target OSCR0 value, we call the event_handler as
		 * though the event actually happened.  According to
		 * Nico's comment in the previous version of this
		 * code, experience has shown that 6 OSCR ticks is
		 * "very close" but he went with 8.  We will use 16,
		 * based on the results of testing on PXA270.
		 *
		 * To be doubly sure, we also tell clkevt via
		 * clockevents_register_device() not to ask for
		 * anything that might put us "very close".
	 */
#define MIN_OSCR_DELTA 16
	do {
			OSSR = OSSR_M0;
		next_match = (OSMR0 += LATCH);
			c->event_handler(c);
		} while (((signed long)(next_match - OSCR) <= MIN_OSCR_DELTA)
			 && (c->mode == CLOCK_EVT_MODE_PERIODIC));
	}

	return IRQ_HANDLED;
}

static int
pxa_osmr0_set_next_event(unsigned long delta, struct clock_event_device *dev)
{
	unsigned long irqflags;

	raw_local_irq_save(irqflags);
	OSMR0 = OSCR + delta;
	OSSR = OSSR_M0;
	OIER |= OIER_E0;
	raw_local_irq_restore(irqflags);
	return 0;
}

static void
pxa_osmr0_set_mode(enum clock_event_mode mode, struct clock_event_device *dev)
{
	unsigned long irqflags;

	switch (mode) {
	case CLOCK_EVT_MODE_PERIODIC:
		raw_local_irq_save(irqflags);
		OSMR0 = OSCR + LATCH;
		OSSR = OSSR_M0;
		OIER |= OIER_E0;
		raw_local_irq_restore(irqflags);
		break;

	case CLOCK_EVT_MODE_ONESHOT:
		raw_local_irq_save(irqflags);
		OIER &= ~OIER_E0;
		raw_local_irq_restore(irqflags);
		break;

	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
		/* initializing, released, or preparing for suspend */
		raw_local_irq_save(irqflags);
		OIER &= ~OIER_E0;
		raw_local_irq_restore(irqflags);
		break;
	}
}

static struct clock_event_device ckevt_pxa_osmr0 = {
	.name		= "osmr0",
	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
	.shift		= 32,
	.rating		= 200,
	.cpumask	= CPU_MASK_CPU0,
	.set_next_event	= pxa_osmr0_set_next_event,
	.set_mode	= pxa_osmr0_set_mode,
};

static cycle_t pxa_read_oscr(void)
{
	return OSCR;
}

static struct clocksource cksrc_pxa_oscr0 = {
	.name           = "oscr0",
	.rating         = 200,
	.read           = pxa_read_oscr,
	.mask           = CLOCKSOURCE_MASK(32),
	.shift          = 20,
	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
};

static struct irqaction pxa_ost0_irq = {
	.name		= "ost0",
	.flags		= IRQF_DISABLED | IRQF_TIMER | IRQF_IRQPOLL,
	.handler	= pxa_ost0_interrupt,
	.dev_id		= &ckevt_pxa_osmr0,
};

static void __init pxa_timer_init(void)
{
	unsigned long clock_tick_rate;

	OIER = 0;
	OSSR = OSSR_M0 | OSSR_M1 | OSSR_M2 | OSSR_M3;

	if (cpu_is_pxa21x() || cpu_is_pxa25x())
		clock_tick_rate = 3686400;
	else if (machine_is_mainstone())
		clock_tick_rate = 3249600;
	else
		clock_tick_rate = 3250000;

	set_oscr2ns_scale(clock_tick_rate);

	ckevt_pxa_osmr0.mult =
		div_sc(clock_tick_rate, NSEC_PER_SEC, ckevt_pxa_osmr0.shift);
	ckevt_pxa_osmr0.max_delta_ns =
		clockevent_delta2ns(0x7fffffff, &ckevt_pxa_osmr0);
	ckevt_pxa_osmr0.min_delta_ns =
		clockevent_delta2ns(MIN_OSCR_DELTA, &ckevt_pxa_osmr0) + 1;

	cksrc_pxa_oscr0.mult =
		clocksource_hz2mult(clock_tick_rate, cksrc_pxa_oscr0.shift);

	setup_irq(IRQ_OST0, &pxa_ost0_irq);

	clocksource_register(&cksrc_pxa_oscr0);
	clockevents_register_device(&ckevt_pxa_osmr0);
}

#ifdef CONFIG_PM
static unsigned long osmr[4], oier;

static void pxa_timer_suspend(void)
{
	osmr[0] = OSMR0;
	osmr[1] = OSMR1;
	osmr[2] = OSMR2;
	osmr[3] = OSMR3;
	oier = OIER;
}

static void pxa_timer_resume(void)
{
	OSMR0 = osmr[0];
	OSMR1 = osmr[1];
	OSMR2 = osmr[2];
	OSMR3 = osmr[3];
	OIER = oier;

	/*
	 * OSCR0 is the system timer, which has to increase
	 * monotonically until it rolls over in hardware.  The value
	 * (OSMR0 - LATCH) is OSCR0 at the most recent system tick,
	 * which is a handy value to restore to OSCR0.
	 */
	OSCR = OSMR0 - LATCH;
}
#else
#define pxa_timer_suspend NULL
#define pxa_timer_resume NULL
#endif

struct sys_timer pxa_timer = {
	.init		= pxa_timer_init,
	.suspend	= pxa_timer_suspend,
	.resume		= pxa_timer_resume,
};