summaryrefslogtreecommitdiff
path: root/Documentation/networking/devlink/devlink-port.rst
blob: 7627b1da01f26f3b6fd9c60e8ab35c1b18bd4058 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
.. SPDX-License-Identifier: GPL-2.0

.. _devlink_port:

============
Devlink Port
============

``devlink-port`` is a port that exists on the device. It has a logically
separate ingress/egress point of the device. A devlink port can be any one
of many flavours. A devlink port flavour along with port attributes
describe what a port represents.

A device driver that intends to publish a devlink port sets the
devlink port attributes and registers the devlink port.

Devlink port flavours are described below.

.. list-table:: List of devlink port flavours
   :widths: 33 90

   * - Flavour
     - Description
   * - ``DEVLINK_PORT_FLAVOUR_PHYSICAL``
     - Any kind of physical port. This can be an eswitch physical port or any
       other physical port on the device.
   * - ``DEVLINK_PORT_FLAVOUR_DSA``
     - This indicates a DSA interconnect port.
   * - ``DEVLINK_PORT_FLAVOUR_CPU``
     - This indicates a CPU port applicable only to DSA.
   * - ``DEVLINK_PORT_FLAVOUR_PCI_PF``
     - This indicates an eswitch port representing a port of PCI
       physical function (PF).
   * - ``DEVLINK_PORT_FLAVOUR_PCI_VF``
     - This indicates an eswitch port representing a port of PCI
       virtual function (VF).
   * - ``DEVLINK_PORT_FLAVOUR_PCI_SF``
     - This indicates an eswitch port representing a port of PCI
       subfunction (SF).
   * - ``DEVLINK_PORT_FLAVOUR_VIRTUAL``
     - This indicates a virtual port for the PCI virtual function.

Devlink port can have a different type based on the link layer described below.

.. list-table:: List of devlink port types
   :widths: 23 90

   * - Type
     - Description
   * - ``DEVLINK_PORT_TYPE_ETH``
     - Driver should set this port type when a link layer of the port is
       Ethernet.
   * - ``DEVLINK_PORT_TYPE_IB``
     - Driver should set this port type when a link layer of the port is
       InfiniBand.
   * - ``DEVLINK_PORT_TYPE_AUTO``
     - This type is indicated by the user when driver should detect the port
       type automatically.

PCI controllers
---------------
In most cases a PCI device has only one controller. A controller consists of
potentially multiple physical, virtual functions and subfunctions. A function
consists of one or more ports. This port is represented by the devlink eswitch
port.

A PCI device connected to multiple CPUs or multiple PCI root complexes or a
SmartNIC, however, may have multiple controllers. For a device with multiple
controllers, each controller is distinguished by a unique controller number.
An eswitch is on the PCI device which supports ports of multiple controllers.

An example view of a system with two controllers::

                 ---------------------------------------------------------
                 |                                                       |
                 |           --------- ---------         ------- ------- |
    -----------  |           | vf(s) | | sf(s) |         |vf(s)| |sf(s)| |
    | server  |  | -------   ----/---- ---/----- ------- ---/--- ---/--- |
    | pci rc  |=== | pf0 |______/________/       | pf1 |___/_______/     |
    | connect |  | -------                       -------                 |
    -----------  |     | controller_num=1 (no eswitch)                   |
                 ------|--------------------------------------------------
                 (internal wire)
                       |
                 ---------------------------------------------------------
                 | devlink eswitch ports and reps                        |
                 | ----------------------------------------------------- |
                 | |ctrl-0 | ctrl-0 | ctrl-0 | ctrl-0 | ctrl-0 |ctrl-0 | |
                 | |pf0    | pf0vfN | pf0sfN | pf1    | pf1vfN |pf1sfN | |
                 | ----------------------------------------------------- |
                 | |ctrl-1 | ctrl-1 | ctrl-1 | ctrl-1 | ctrl-1 |ctrl-1 | |
                 | |pf0    | pf0vfN | pf0sfN | pf1    | pf1vfN |pf1sfN | |
                 | ----------------------------------------------------- |
                 |                                                       |
                 |                                                       |
    -----------  |           --------- ---------         ------- ------- |
    | smartNIC|  |           | vf(s) | | sf(s) |         |vf(s)| |sf(s)| |
    | pci rc  |==| -------   ----/---- ---/----- ------- ---/--- ---/--- |
    | connect |  | | pf0 |______/________/       | pf1 |___/_______/     |
    -----------  | -------                       -------                 |
                 |                                                       |
                 |  local controller_num=0 (eswitch)                     |
                 ---------------------------------------------------------

In the above example, the external controller (identified by controller number = 1)
doesn't have the eswitch. Local controller (identified by controller number = 0)
has the eswitch. The Devlink instance on the local controller has eswitch
devlink ports for both the controllers.

Function configuration
======================

A user can configure the function attribute before enumerating the PCI
function. Usually it means, user should configure function attribute
before a bus specific device for the function is created. However, when
SRIOV is enabled, virtual function devices are created on the PCI bus.
Hence, function attribute should be configured before binding virtual
function device to the driver. For subfunctions, this means user should
configure port function attribute before activating the port function.

A user may set the hardware address of the function using
'devlink port function set hw_addr' command. For Ethernet port function
this means a MAC address.

Subfunction
============

Subfunction is a lightweight function that has a parent PCI function on which
it is deployed. Subfunction is created and deployed in unit of 1. Unlike
SRIOV VFs, a subfunction doesn't require its own PCI virtual function.
A subfunction communicates with the hardware through the parent PCI function.

To use a subfunction, 3 steps setup sequence is followed.
(1) create - create a subfunction;
(2) configure - configure subfunction attributes;
(3) deploy - deploy the subfunction;

Subfunction management is done using devlink port user interface.
User performs setup on the subfunction management device.

(1) Create
----------
A subfunction is created using a devlink port interface. A user adds the
subfunction by adding a devlink port of subfunction flavour. The devlink
kernel code calls down to subfunction management driver (devlink ops) and asks
it to create a subfunction devlink port. Driver then instantiates the
subfunction port and any associated objects such as health reporters and
representor netdevice.

(2) Configure
-------------
A subfunction devlink port is created but it is not active yet. That means the
entities are created on devlink side, the e-switch port representor is created,
but the subfunction device itself is not created. A user might use e-switch port
representor to do settings, putting it into bridge, adding TC rules, etc. A user
might as well configure the hardware address (such as MAC address) of the
subfunction while subfunction is inactive.

(3) Deploy
----------
Once a subfunction is configured, user must activate it to use it. Upon
activation, subfunction management driver asks the subfunction management
device to instantiate the subfunction device on particular PCI function.
A subfunction device is created on the :ref:`Documentation/driver-api/auxiliary_bus.rst <auxiliary_bus>`.
At this point a matching subfunction driver binds to the subfunction's auxiliary device.

Rate object management
======================

Devlink provides API to manage tx rates of single devlink port or a group.
This is done through rate objects, which can be one of the two types:

``leaf``
  Represents a single devlink port; created/destroyed by the driver. Since leaf
  have 1to1 mapping to its devlink port, in user space it is referred as
  ``pci/<bus_addr>/<port_index>``;

``node``
  Represents a group of rate objects (leafs and/or nodes); created/deleted by
  request from the userspace; initially empty (no rate objects added). In
  userspace it is referred as ``pci/<bus_addr>/<node_name>``, where
  ``node_name`` can be any identifier, except decimal number, to avoid
  collisions with leafs.

API allows to configure following rate object's parameters:

``tx_share``
  Minimum TX rate value shared among all other rate objects, or rate objects
  that parts of the parent group, if it is a part of the same group.

``tx_max``
  Maximum TX rate value.

``parent``
  Parent node name. Parent node rate limits are considered as additional limits
  to all node children limits. ``tx_max`` is an upper limit for children.
  ``tx_share`` is a total bandwidth distributed among children.

Driver implementations are allowed to support both or either rate object types
and setting methods of their parameters.

Terms and Definitions
=====================

.. list-table:: Terms and Definitions
   :widths: 22 90

   * - Term
     - Definitions
   * - ``PCI device``
     - A physical PCI device having one or more PCI buses consists of one or
       more PCI controllers.
   * - ``PCI controller``
     -  A controller consists of potentially multiple physical functions,
        virtual functions and subfunctions.
   * - ``Port function``
     -  An object to manage the function of a port.
   * - ``Subfunction``
     -  A lightweight function that has parent PCI function on which it is
        deployed.
   * - ``Subfunction device``
     -  A bus device of the subfunction, usually on a auxiliary bus.
   * - ``Subfunction driver``
     -  A device driver for the subfunction auxiliary device.
   * - ``Subfunction management device``
     -  A PCI physical function that supports subfunction management.
   * - ``Subfunction management driver``
     -  A device driver for PCI physical function that supports
        subfunction management using devlink port interface.
   * - ``Subfunction host driver``
     -  A device driver for PCI physical function that hosts subfunction
        devices. In most cases it is same as subfunction management driver. When
        subfunction is used on external controller, subfunction management and
        host drivers are different.