summaryrefslogtreecommitdiff
path: root/Documentation/networking/device_drivers/freescale/dpaa.txt
blob: f88194f71c5465fd77fd8cbc5a71d60172e46a79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
The QorIQ DPAA Ethernet Driver
==============================

Authors:
Madalin Bucur <madalin.bucur@nxp.com>
Camelia Groza <camelia.groza@nxp.com>

Contents
========

	- DPAA Ethernet Overview
	- DPAA Ethernet Supported SoCs
	- Configuring DPAA Ethernet in your kernel
	- DPAA Ethernet Frame Processing
	- DPAA Ethernet Features
	- DPAA IRQ Affinity and Receive Side Scaling
	- Debugging

DPAA Ethernet Overview
======================

DPAA stands for Data Path Acceleration Architecture and it is a
set of networking acceleration IPs that are available on several
generations of SoCs, both on PowerPC and ARM64.

The Freescale DPAA architecture consists of a series of hardware blocks
that support Ethernet connectivity. The Ethernet driver depends upon the
following drivers in the Linux kernel:

 - Peripheral Access Memory Unit (PAMU) (* needed only for PPC platforms)
    drivers/iommu/fsl_*
 - Frame Manager (FMan)
    drivers/net/ethernet/freescale/fman
 - Queue Manager (QMan), Buffer Manager (BMan)
    drivers/soc/fsl/qbman

A simplified view of the dpaa_eth interfaces mapped to FMan MACs:

  dpaa_eth       /eth0\     ...       /ethN\
  driver        |      |             |      |
  -------------   ----   -----------   ----   -------------
       -Ports  / Tx  Rx \    ...    / Tx  Rx \
  FMan        |          |         |          |
       -MACs  |   MAC0   |         |   MACN   |
             /   dtsec0   \  ...  /   dtsecN   \ (or tgec)
            /              \     /              \(or memac)
  ---------  --------------  ---  --------------  ---------
      FMan, FMan Port, FMan SP, FMan MURAM drivers
  ---------------------------------------------------------
      FMan HW blocks: MURAM, MACs, Ports, SP
  ---------------------------------------------------------

The dpaa_eth relation to the QMan, BMan and FMan:
              ________________________________
  dpaa_eth   /            eth0                \
  driver    /                                  \
  ---------   -^-   -^-   -^-   ---    ---------
  QMan driver / \   / \   / \  \   /  | BMan    |
             |Rx | |Rx | |Tx | |Tx |  | driver  |
  ---------  |Dfl| |Err| |Cnf| |FQs|  |         |
  QMan HW    |FQ | |FQ | |FQs| |   |  |         |
             /   \ /   \ /   \  \ /   |         |
  ---------   ---   ---   ---   -v-    ---------
            |        FMan QMI         |         |
            | FMan HW       FMan BMI  | BMan HW |
              -----------------------   --------

where the acronyms used above (and in the code) are:
DPAA = Data Path Acceleration Architecture
FMan = DPAA Frame Manager
QMan = DPAA Queue Manager
BMan = DPAA Buffers Manager
QMI = QMan interface in FMan
BMI = BMan interface in FMan
FMan SP = FMan Storage Profiles
MURAM = Multi-user RAM in FMan
FQ = QMan Frame Queue
Rx Dfl FQ = default reception FQ
Rx Err FQ = Rx error frames FQ
Tx Cnf FQ = Tx confirmation FQs
Tx FQs = transmission frame queues
dtsec = datapath three speed Ethernet controller (10/100/1000 Mbps)
tgec = ten gigabit Ethernet controller (10 Gbps)
memac = multirate Ethernet MAC (10/100/1000/10000)

DPAA Ethernet Supported SoCs
============================

The DPAA drivers enable the Ethernet controllers present on the following SoCs:

# PPC
P1023
P2041
P3041
P4080
P5020
P5040
T1023
T1024
T1040
T1042
T2080
T4240
B4860

# ARM
LS1043A
LS1046A

Configuring DPAA Ethernet in your kernel
========================================

To enable the DPAA Ethernet driver, the following Kconfig options are required:

# common for arch/arm64 and arch/powerpc platforms
CONFIG_FSL_DPAA=y
CONFIG_FSL_FMAN=y
CONFIG_FSL_DPAA_ETH=y
CONFIG_FSL_XGMAC_MDIO=y

# for arch/powerpc only
CONFIG_FSL_PAMU=y

# common options needed for the PHYs used on the RDBs
CONFIG_VITESSE_PHY=y
CONFIG_REALTEK_PHY=y
CONFIG_AQUANTIA_PHY=y

DPAA Ethernet Frame Processing
==============================

On Rx, buffers for the incoming frames are retrieved from one of the three
existing buffers pools. The driver initializes and seeds these, each with
buffers of different sizes: 1KB, 2KB and 4KB.

On Tx, all transmitted frames are returned to the driver through Tx
confirmation frame queues. The driver is then responsible for freeing the
buffers. In order to do this properly, a backpointer is added to the buffer
before transmission that points to the skb. When the buffer returns to the
driver on a confirmation FQ, the skb can be correctly consumed.

DPAA Ethernet Features
======================

Currently the DPAA Ethernet driver enables the basic features required for
a Linux Ethernet driver. The support for advanced features will be added
gradually.

The driver has Rx and Tx checksum offloading for UDP and TCP. Currently the Rx
checksum offload feature is enabled by default and cannot be controlled through
ethtool. Also, rx-flow-hash and rx-hashing was added. The addition of RSS
provides a big performance boost for the forwarding scenarios, allowing
different traffic flows received by one interface to be processed by different
CPUs in parallel.

The driver has support for multiple prioritized Tx traffic classes. Priorities
range from 0 (lowest) to 3 (highest). These are mapped to HW workqueues with
strict priority levels. Each traffic class contains NR_CPU TX queues. By
default, only one traffic class is enabled and the lowest priority Tx queues
are used. Higher priority traffic classes can be enabled with the mqprio
qdisc. For example, all four traffic classes are enabled on an interface with
the following command. Furthermore, skb priority levels are mapped to traffic
classes as follows:

	* priorities 0 to 3 - traffic class 0 (low priority)
	* priorities 4 to 7 - traffic class 1 (medium-low priority)
	* priorities 8 to 11 - traffic class 2 (medium-high priority)
	* priorities 12 to 15 - traffic class 3 (high priority)

tc qdisc add dev <int> root handle 1: \
	 mqprio num_tc 4 map 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 hw 1

DPAA IRQ Affinity and Receive Side Scaling
==========================================

Traffic coming on the DPAA Rx queues or on the DPAA Tx confirmation
queues is seen by the CPU as ingress traffic on a certain portal.
The DPAA QMan portal interrupts are affined each to a certain CPU.
The same portal interrupt services all the QMan portal consumers.

By default the DPAA Ethernet driver enables RSS, making use of the
DPAA FMan Parser and Keygen blocks to distribute traffic on 128
hardware frame queues using a hash on IP v4/v6 source and destination
and L4 source and destination ports, in present in the received frame.
When RSS is disabled, all traffic received by a certain interface is
received on the default Rx frame queue. The default DPAA Rx frame
queues are configured to put the received traffic into a pool channel
that allows any available CPU portal to dequeue the ingress traffic.
The default frame queues have the HOLDACTIVE option set, ensuring that
traffic bursts from a certain queue are serviced by the same CPU.
This ensures a very low rate of frame reordering. A drawback of this
is that only one CPU at a time can service the traffic received by a
certain interface when RSS is not enabled.

To implement RSS, the DPAA Ethernet driver allocates an extra set of
128 Rx frame queues that are configured to dedicated channels, in a
round-robin manner. The mapping of the frame queues to CPUs is now
hardcoded, there is no indirection table to move traffic for a certain
FQ (hash result) to another CPU. The ingress traffic arriving on one
of these frame queues will arrive at the same portal and will always
be processed by the same CPU. This ensures intra-flow order preservation
and workload distribution for multiple traffic flows.

RSS can be turned off for a certain interface using ethtool, i.e.

	# ethtool -N fm1-mac9 rx-flow-hash tcp4 ""

To turn it back on, one needs to set rx-flow-hash for tcp4/6 or udp4/6:

	# ethtool -N fm1-mac9 rx-flow-hash udp4 sfdn

There is no independent control for individual protocols, any command
run for one of tcp4|udp4|ah4|esp4|sctp4|tcp6|udp6|ah6|esp6|sctp6 is
going to control the rx-flow-hashing for all protocols on that interface.

Besides using the FMan Keygen computed hash for spreading traffic on the
128 Rx FQs, the DPAA Ethernet driver also sets the skb hash value when
the NETIF_F_RXHASH feature is on (active by default). This can be turned
on or off through ethtool, i.e.:

	# ethtool -K fm1-mac9 rx-hashing off
	# ethtool -k fm1-mac9 | grep hash
	receive-hashing: off
	# ethtool -K fm1-mac9 rx-hashing on
	Actual changes:
	receive-hashing: on
	# ethtool -k fm1-mac9 | grep hash
	receive-hashing: on

Please note that Rx hashing depends upon the rx-flow-hashing being on
for that interface - turning off rx-flow-hashing will also disable the
rx-hashing (without ethtool reporting it as off as that depends on the
NETIF_F_RXHASH feature flag).

Debugging
=========

The following statistics are exported for each interface through ethtool:

	- interrupt count per CPU
	- Rx packets count per CPU
	- Tx packets count per CPU
	- Tx confirmed packets count per CPU
	- Tx S/G frames count per CPU
	- Tx error count per CPU
	- Rx error count per CPU
	- Rx error count per type
	- congestion related statistics:
		- congestion status
		- time spent in congestion
		- number of time the device entered congestion
		- dropped packets count per cause

The driver also exports the following information in sysfs:

	- the FQ IDs for each FQ type
	/sys/devices/platform/dpaa-ethernet.0/net/<int>/fqids

	- the IDs of the buffer pools in use
	/sys/devices/platform/dpaa-ethernet.0/net/<int>/bpids