1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
|
.. include:: <isonum.txt>
=====================================
EDAC - Error Detection And Correction
=====================================
.. note::
"bluesmoke" was the name for this device driver when it
was "out-of-tree" and maintained at http://bluesmoke.sourceforge.net.
That site is mostly archaic now and can be used only for historical
purposes.
When the subsystem was pushed into 2.6.16 for the first time, it was
renamed to ``EDAC``.
Purpose
-------
The ``edac`` kernel module's goal is to detect and report hardware errors
that occur within the computer system running under linux.
Memory
------
Memory Correctable Errors (CE) and Uncorrectable Errors (UE) are the
primary errors being harvested. These types of errors are harvested by
the ``edac_mc`` device.
Detecting CE events, then harvesting those events and reporting them,
**can** but must not necessarily be a predictor of future UE events. With
CE events only, the system can and will continue to operate as no data
has been damaged yet.
However, preventive maintenance and proactive part replacement of memory
DIMMs exhibiting CEs can reduce the likelihood of the dreaded UE events
and system panics.
Other hardware elements
-----------------------
A new feature for EDAC, the ``edac_device`` class of device, was added in
the 2.6.23 version of the kernel.
This new device type allows for non-memory type of ECC hardware detectors
to have their states harvested and presented to userspace via the sysfs
interface.
Some architectures have ECC detectors for L1, L2 and L3 caches,
along with DMA engines, fabric switches, main data path switches,
interconnections, and various other hardware data paths. If the hardware
reports it, then a edac_device device probably can be constructed to
harvest and present that to userspace.
PCI bus scanning
----------------
In addition, PCI devices are scanned for PCI Bus Parity and SERR Errors
in order to determine if errors are occurring during data transfers.
The presence of PCI Parity errors must be examined with a grain of salt.
There are several add-in adapters that do **not** follow the PCI specification
with regards to Parity generation and reporting. The specification says
the vendor should tie the parity status bits to 0 if they do not intend
to generate parity. Some vendors do not do this, and thus the parity bit
can "float" giving false positives.
There is a PCI device attribute located in sysfs that is checked by
the EDAC PCI scanning code. If that attribute is set, PCI parity/error
scanning is skipped for that device. The attribute is::
broken_parity_status
and is located in ``/sys/devices/pci<XXX>/0000:XX:YY.Z`` directories for
PCI devices.
Versioning
----------
EDAC is composed of a "core" module (``edac_core.ko``) and several Memory
Controller (MC) driver modules. On a given system, the CORE is loaded
and one MC driver will be loaded. Both the CORE and the MC driver (or
``edac_device`` driver) have individual versions that reflect current
release level of their respective modules.
Thus, to "report" on what version a system is running, one must report
both the CORE's and the MC driver's versions.
Loading
-------
If ``edac`` was statically linked with the kernel then no loading
is necessary. If ``edac`` was built as modules then simply modprobe
the ``edac`` pieces that you need. You should be able to modprobe
hardware-specific modules and have the dependencies load the necessary
core modules.
Example::
$ modprobe amd76x_edac
loads both the ``amd76x_edac.ko`` memory controller module and the
``edac_mc.ko`` core module.
Sysfs interface
---------------
EDAC presents a ``sysfs`` interface for control and reporting purposes. It
lives in the /sys/devices/system/edac directory.
Within this directory there currently reside 2 components:
======= ==============================
mc memory controller(s) system
pci PCI control and status system
======= ==============================
Memory Controller (mc) Model
----------------------------
Each ``mc`` device controls a set of DIMM memory modules. These modules
are laid out in a Chip-Select Row (``csrowX``) and Channel table (``chX``).
There can be multiple csrows and multiple channels.
Memory controllers allow for several csrows, with 8 csrows being a
typical value. Yet, the actual number of csrows depends on the layout of
a given motherboard, memory controller and DIMM characteristics.
Dual channels allows for 128 bit data transfers to/from the CPU from/to
memory. Some newer chipsets allow for more than 2 channels, like Fully
Buffered DIMMs (FB-DIMMs). The following example will assume 2 channels:
+--------+-----------+-----------+
| | Channel 0 | Channel 1 |
+========+===========+===========+
| csrow0 | DIMM_A0 | DIMM_B0 |
+--------+ | |
| csrow1 | | |
+--------+-----------+-----------+
| csrow2 | DIMM_A1 | DIMM_B1 |
+--------+ | |
| csrow3 | | |
+--------+-----------+-----------+
In the above example table there are 4 physical slots on the motherboard
for memory DIMMs:
- DIMM_A0
- DIMM_B0
- DIMM_A1
- DIMM_B1
Labels for these slots are usually silk-screened on the motherboard.
Slots labeled ``A`` are channel 0 in this example. Slots labeled ``B`` are
channel 1. Notice that there are two csrows possible on a physical DIMM.
These csrows are allocated their csrow assignment based on the slot into
which the memory DIMM is placed. Thus, when 1 DIMM is placed in each
Channel, the csrows cross both DIMMs.
Memory DIMMs come single or dual "ranked". A rank is a populated csrow.
Thus, 2 single ranked DIMMs, placed in slots DIMM_A0 and DIMM_B0 above
will have 1 csrow, csrow0. csrow1 will be empty. On the other hand,
when 2 dual ranked DIMMs are similarly placed, then both csrow0 and
csrow1 will be populated. The pattern repeats itself for csrow2 and
csrow3.
The representation of the above is reflected in the directory
tree in EDAC's sysfs interface. Starting in directory
/sys/devices/system/edac/mc each memory controller will be represented
by its own ``mcX`` directory, where ``X`` is the index of the MC::
..../edac/mc/
|
|->mc0
|->mc1
|->mc2
....
Under each ``mcX`` directory each ``csrowX`` is again represented by a
``csrowX``, where ``X`` is the csrow index::
.../mc/mc0/
|
|->csrow0
|->csrow2
|->csrow3
....
Notice that there is no csrow1, which indicates that csrow0 is composed
of a single ranked DIMMs. This should also apply in both Channels, in
order to have dual-channel mode be operational. Since both csrow2 and
csrow3 are populated, this indicates a dual ranked set of DIMMs for
channels 0 and 1.
Within each of the ``mcX`` and ``csrowX`` directories are several EDAC
control and attribute files.
``mcX`` directories
-------------------
In ``mcX`` directories are EDAC control and attribute files for
this ``X`` instance of the memory controllers.
For a description of the sysfs API, please see:
Documentation/ABI/testing/sysfs-devices-edac
``dimmX`` or ``rankX`` directories
----------------------------------
The recommended way to use the EDAC subsystem is to look at the information
provided by the ``dimmX`` or ``rankX`` directories [#f5]_.
A typical EDAC system has the following structure under
``/sys/devices/system/edac/``\ [#f6]_::
/sys/devices/system/edac/
├── mc
│ ├── mc0
│ │ ├── ce_count
│ │ ├── ce_noinfo_count
│ │ ├── dimm0
│ │ │ ├── dimm_dev_type
│ │ │ ├── dimm_edac_mode
│ │ │ ├── dimm_label
│ │ │ ├── dimm_location
│ │ │ ├── dimm_mem_type
│ │ │ ├── size
│ │ │ └── uevent
│ │ ├── max_location
│ │ ├── mc_name
│ │ ├── reset_counters
│ │ ├── seconds_since_reset
│ │ ├── size_mb
│ │ ├── ue_count
│ │ ├── ue_noinfo_count
│ │ └── uevent
│ ├── mc1
│ │ ├── ce_count
│ │ ├── ce_noinfo_count
│ │ ├── dimm0
│ │ │ ├── dimm_dev_type
│ │ │ ├── dimm_edac_mode
│ │ │ ├── dimm_label
│ │ │ ├── dimm_location
│ │ │ ├── dimm_mem_type
│ │ │ ├── size
│ │ │ └── uevent
│ │ ├── max_location
│ │ ├── mc_name
│ │ ├── reset_counters
│ │ ├── seconds_since_reset
│ │ ├── size_mb
│ │ ├── ue_count
│ │ ├── ue_noinfo_count
│ │ └── uevent
│ └── uevent
└── uevent
In the ``dimmX`` directories are EDAC control and attribute files for
this ``X`` memory module:
- ``size`` - Total memory managed by this csrow attribute file
This attribute file displays, in count of megabytes, the memory
that this csrow contains.
- ``dimm_dev_type`` - Device type attribute file
This attribute file will display what type of DRAM device is
being utilized on this DIMM.
Examples:
- x1
- x2
- x4
- x8
- ``dimm_edac_mode`` - EDAC Mode of operation attribute file
This attribute file will display what type of Error detection
and correction is being utilized.
- ``dimm_label`` - memory module label control file
This control file allows this DIMM to have a label assigned
to it. With this label in the module, when errors occur
the output can provide the DIMM label in the system log.
This becomes vital for panic events to isolate the
cause of the UE event.
DIMM Labels must be assigned after booting, with information
that correctly identifies the physical slot with its
silk screen label. This information is currently very
motherboard specific and determination of this information
must occur in userland at this time.
- ``dimm_location`` - location of the memory module
The location can have up to 3 levels, and describe how the
memory controller identifies the location of a memory module.
Depending on the type of memory and memory controller, it
can be:
- *csrow* and *channel* - used when the memory controller
doesn't identify a single DIMM - e. g. in ``rankX`` dir;
- *branch*, *channel*, *slot* - typically used on FB-DIMM memory
controllers;
- *channel*, *slot* - used on Nehalem and newer Intel drivers.
- ``dimm_mem_type`` - Memory Type attribute file
This attribute file will display what type of memory is currently
on this csrow. Normally, either buffered or unbuffered memory.
Examples:
- Registered-DDR
- Unbuffered-DDR
.. [#f5] On some systems, the memory controller doesn't have any logic
to identify the memory module. On such systems, the directory is called ``rankX`` and works on a similar way as the ``csrowX`` directories.
On modern Intel memory controllers, the memory controller identifies the
memory modules directly. On such systems, the directory is called ``dimmX``.
.. [#f6] There are also some ``power`` directories and ``subsystem``
symlinks inside the sysfs mapping that are automatically created by
the sysfs subsystem. Currently, they serve no purpose.
``csrowX`` directories
----------------------
When CONFIG_EDAC_LEGACY_SYSFS is enabled, sysfs will contain the csrowX
directories. As this API doesn't work properly for Rambus, FB-DIMMs and
modern Intel Memory Controllers, this is being deprecated in favor of
dimmX directories.
In the ``csrowX`` directories are EDAC control and attribute files for
this ``X`` instance of csrow:
- ``ue_count`` - Total Uncorrectable Errors count attribute file
This attribute file displays the total count of uncorrectable
errors that have occurred on this csrow. If panic_on_ue is set
this counter will not have a chance to increment, since EDAC
will panic the system.
- ``ce_count`` - Total Correctable Errors count attribute file
This attribute file displays the total count of correctable
errors that have occurred on this csrow. This count is very
important to examine. CEs provide early indications that a
DIMM is beginning to fail. This count field should be
monitored for non-zero values and report such information
to the system administrator.
- ``size_mb`` - Total memory managed by this csrow attribute file
This attribute file displays, in count of megabytes, the memory
that this csrow contains.
- ``mem_type`` - Memory Type attribute file
This attribute file will display what type of memory is currently
on this csrow. Normally, either buffered or unbuffered memory.
Examples:
- Registered-DDR
- Unbuffered-DDR
- ``edac_mode`` - EDAC Mode of operation attribute file
This attribute file will display what type of Error detection
and correction is being utilized.
- ``dev_type`` - Device type attribute file
This attribute file will display what type of DRAM device is
being utilized on this DIMM.
Examples:
- x1
- x2
- x4
- x8
- ``ch0_ce_count`` - Channel 0 CE Count attribute file
This attribute file will display the count of CEs on this
DIMM located in channel 0.
- ``ch0_ue_count`` - Channel 0 UE Count attribute file
This attribute file will display the count of UEs on this
DIMM located in channel 0.
- ``ch0_dimm_label`` - Channel 0 DIMM Label control file
This control file allows this DIMM to have a label assigned
to it. With this label in the module, when errors occur
the output can provide the DIMM label in the system log.
This becomes vital for panic events to isolate the
cause of the UE event.
DIMM Labels must be assigned after booting, with information
that correctly identifies the physical slot with its
silk screen label. This information is currently very
motherboard specific and determination of this information
must occur in userland at this time.
- ``ch1_ce_count`` - Channel 1 CE Count attribute file
This attribute file will display the count of CEs on this
DIMM located in channel 1.
- ``ch1_ue_count`` - Channel 1 UE Count attribute file
This attribute file will display the count of UEs on this
DIMM located in channel 0.
- ``ch1_dimm_label`` - Channel 1 DIMM Label control file
This control file allows this DIMM to have a label assigned
to it. With this label in the module, when errors occur
the output can provide the DIMM label in the system log.
This becomes vital for panic events to isolate the
cause of the UE event.
DIMM Labels must be assigned after booting, with information
that correctly identifies the physical slot with its
silk screen label. This information is currently very
motherboard specific and determination of this information
must occur in userland at this time.
System Logging
--------------
If logging for UEs and CEs is enabled, then system logs will contain
information indicating that errors have been detected::
EDAC MC0: CE page 0x283, offset 0xce0, grain 8, syndrome 0x6ec3, row 0, channel 1 "DIMM_B1": amd76x_edac
EDAC MC0: CE page 0x1e5, offset 0xfb0, grain 8, syndrome 0xb741, row 0, channel 1 "DIMM_B1": amd76x_edac
The structure of the message is:
+---------------------------------------+-------------+
| Content + Example |
+=======================================+=============+
| The memory controller | MC0 |
+---------------------------------------+-------------+
| Error type | CE |
+---------------------------------------+-------------+
| Memory page | 0x283 |
+---------------------------------------+-------------+
| Offset in the page | 0xce0 |
+---------------------------------------+-------------+
| The byte granularity | grain 8 |
| or resolution of the error | |
+---------------------------------------+-------------+
| The error syndrome | 0xb741 |
+---------------------------------------+-------------+
| Memory row | row 0 +
+---------------------------------------+-------------+
| Memory channel | channel 1 |
+---------------------------------------+-------------+
| DIMM label, if set prior | DIMM B1 |
+---------------------------------------+-------------+
| And then an optional, driver-specific | |
| message that may have additional | |
| information. | |
+---------------------------------------+-------------+
Both UEs and CEs with no info will lack all but memory controller, error
type, a notice of "no info" and then an optional, driver-specific error
message.
PCI Bus Parity Detection
------------------------
On Header Type 00 devices, the primary status is looked at for any
parity error regardless of whether parity is enabled on the device or
not. (The spec indicates parity is generated in some cases). On Header
Type 01 bridges, the secondary status register is also looked at to see
if parity occurred on the bus on the other side of the bridge.
Sysfs configuration
-------------------
Under ``/sys/devices/system/edac/pci`` are control and attribute files as
follows:
- ``check_pci_parity`` - Enable/Disable PCI Parity checking control file
This control file enables or disables the PCI Bus Parity scanning
operation. Writing a 1 to this file enables the scanning. Writing
a 0 to this file disables the scanning.
Enable::
echo "1" >/sys/devices/system/edac/pci/check_pci_parity
Disable::
echo "0" >/sys/devices/system/edac/pci/check_pci_parity
- ``pci_parity_count`` - Parity Count
This attribute file will display the number of parity errors that
have been detected.
Module parameters
-----------------
- ``edac_mc_panic_on_ue`` - Panic on UE control file
An uncorrectable error will cause a machine panic. This is usually
desirable. It is a bad idea to continue when an uncorrectable error
occurs - it is indeterminate what was uncorrected and the operating
system context might be so mangled that continuing will lead to further
corruption. If the kernel has MCE configured, then EDAC will never
notice the UE.
LOAD TIME::
module/kernel parameter: edac_mc_panic_on_ue=[0|1]
RUN TIME::
echo "1" > /sys/module/edac_core/parameters/edac_mc_panic_on_ue
- ``edac_mc_log_ue`` - Log UE control file
Generate kernel messages describing uncorrectable errors. These errors
are reported through the system message log system. UE statistics
will be accumulated even when UE logging is disabled.
LOAD TIME::
module/kernel parameter: edac_mc_log_ue=[0|1]
RUN TIME::
echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ue
- ``edac_mc_log_ce`` - Log CE control file
Generate kernel messages describing correctable errors. These
errors are reported through the system message log system.
CE statistics will be accumulated even when CE logging is disabled.
LOAD TIME::
module/kernel parameter: edac_mc_log_ce=[0|1]
RUN TIME::
echo "1" > /sys/module/edac_core/parameters/edac_mc_log_ce
- ``edac_mc_poll_msec`` - Polling period control file
The time period, in milliseconds, for polling for error information.
Too small a value wastes resources. Too large a value might delay
necessary handling of errors and might loose valuable information for
locating the error. 1000 milliseconds (once each second) is the current
default. Systems which require all the bandwidth they can get, may
increase this.
LOAD TIME::
module/kernel parameter: edac_mc_poll_msec=[0|1]
RUN TIME::
echo "1000" > /sys/module/edac_core/parameters/edac_mc_poll_msec
- ``panic_on_pci_parity`` - Panic on PCI PARITY Error
This control file enables or disables panicking when a parity
error has been detected.
module/kernel parameter::
edac_panic_on_pci_pe=[0|1]
Enable::
echo "1" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
Disable::
echo "0" > /sys/module/edac_core/parameters/edac_panic_on_pci_pe
EDAC device type
----------------
In the header file, edac_core.h, there is a series of edac_device structures
and APIs for the EDAC_DEVICE.
User space access to an edac_device is through the sysfs interface.
At the location ``/sys/devices/system/edac`` (sysfs) new edac_device devices
will appear.
There is a three level tree beneath the above ``edac`` directory. For example,
the ``test_device_edac`` device (found at the http://bluesmoke.sourceforget.net
website) installs itself as::
/sys/devices/system/edac/test-instance
in this directory are various controls, a symlink and one or more ``instance``
directories.
The standard default controls are:
============== =======================================================
log_ce boolean to log CE events
log_ue boolean to log UE events
panic_on_ue boolean to ``panic`` the system if an UE is encountered
(default off, can be set true via startup script)
poll_msec time period between POLL cycles for events
============== =======================================================
The test_device_edac device adds at least one of its own custom control:
============== ==================================================
test_bits which in the current test driver does nothing but
show how it is installed. A ported driver can
add one or more such controls and/or attributes
for specific uses.
One out-of-tree driver uses controls here to allow
for ERROR INJECTION operations to hardware
injection registers
============== ==================================================
The symlink points to the 'struct dev' that is registered for this edac_device.
Instances
---------
One or more instance directories are present. For the ``test_device_edac``
case:
+----------------+
| test-instance0 |
+----------------+
In this directory there are two default counter attributes, which are totals of
counter in deeper subdirectories.
============== ====================================
ce_count total of CE events of subdirectories
ue_count total of UE events of subdirectories
============== ====================================
Blocks
------
At the lowest directory level is the ``block`` directory. There can be 0, 1
or more blocks specified in each instance:
+-------------+
| test-block0 |
+-------------+
In this directory the default attributes are:
============== ================================================
ce_count which is counter of CE events for this ``block``
of hardware being monitored
ue_count which is counter of UE events for this ``block``
of hardware being monitored
============== ================================================
The ``test_device_edac`` device adds 4 attributes and 1 control:
================== ====================================================
test-block-bits-0 for every POLL cycle this counter
is incremented
test-block-bits-1 every 10 cycles, this counter is bumped once,
and test-block-bits-0 is set to 0
test-block-bits-2 every 100 cycles, this counter is bumped once,
and test-block-bits-1 is set to 0
test-block-bits-3 every 1000 cycles, this counter is bumped once,
and test-block-bits-2 is set to 0
================== ====================================================
================== ====================================================
reset-counters writing ANY thing to this control will
reset all the above counters.
================== ====================================================
Use of the ``test_device_edac`` driver should enable any others to create their own
unique drivers for their hardware systems.
The ``test_device_edac`` sample driver is located at the
http://bluesmoke.sourceforge.net project site for EDAC.
Usage of EDAC APIs on Nehalem and newer Intel CPUs
--------------------------------------------------
On older Intel architectures, the memory controller was part of the North
Bridge chipset. Nehalem, Sandy Bridge, Ivy Bridge, Haswell, Sky Lake and
newer Intel architectures integrated an enhanced version of the memory
controller (MC) inside the CPUs.
This chapter will cover the differences of the enhanced memory controllers
found on newer Intel CPUs, such as ``i7core_edac``, ``sb_edac`` and
``sbx_edac`` drivers.
.. note::
The Xeon E7 processor families use a separate chip for the memory
controller, called Intel Scalable Memory Buffer. This section doesn't
apply for such families.
1) There is one Memory Controller per Quick Patch Interconnect
(QPI). At the driver, the term "socket" means one QPI. This is
associated with a physical CPU socket.
Each MC have 3 physical read channels, 3 physical write channels and
3 logic channels. The driver currently sees it as just 3 channels.
Each channel can have up to 3 DIMMs.
The minimum known unity is DIMMs. There are no information about csrows.
As EDAC API maps the minimum unity is csrows, the driver sequentially
maps channel/DIMM into different csrows.
For example, supposing the following layout::
Ch0 phy rd0, wr0 (0x063f4031): 2 ranks, UDIMMs
dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
dimm 1 1024 Mb offset: 4, bank: 8, rank: 1, row: 0x4000, col: 0x400
Ch1 phy rd1, wr1 (0x063f4031): 2 ranks, UDIMMs
dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
Ch2 phy rd3, wr3 (0x063f4031): 2 ranks, UDIMMs
dimm 0 1024 Mb offset: 0, bank: 8, rank: 1, row: 0x4000, col: 0x400
The driver will map it as::
csrow0: channel 0, dimm0
csrow1: channel 0, dimm1
csrow2: channel 1, dimm0
csrow3: channel 2, dimm0
exports one DIMM per csrow.
Each QPI is exported as a different memory controller.
2) The MC has the ability to inject errors to test drivers. The drivers
implement this functionality via some error injection nodes:
For injecting a memory error, there are some sysfs nodes, under
``/sys/devices/system/edac/mc/mc?/``:
- ``inject_addrmatch/*``:
Controls the error injection mask register. It is possible to specify
several characteristics of the address to match an error code::
dimm = the affected dimm. Numbers are relative to a channel;
rank = the memory rank;
channel = the channel that will generate an error;
bank = the affected bank;
page = the page address;
column (or col) = the address column.
each of the above values can be set to "any" to match any valid value.
At driver init, all values are set to any.
For example, to generate an error at rank 1 of dimm 2, for any channel,
any bank, any page, any column::
echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
echo 1 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank
To return to the default behaviour of matching any, you can do::
echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/dimm
echo any >/sys/devices/system/edac/mc/mc0/inject_addrmatch/rank
- ``inject_eccmask``:
specifies what bits will have troubles,
- ``inject_section``:
specifies what ECC cache section will get the error::
3 for both
2 for the highest
1 for the lowest
- ``inject_type``:
specifies the type of error, being a combination of the following bits::
bit 0 - repeat
bit 1 - ecc
bit 2 - parity
- ``inject_enable``:
starts the error generation when something different than 0 is written.
All inject vars can be read. root permission is needed for write.
Datasheet states that the error will only be generated after a write on an
address that matches inject_addrmatch. It seems, however, that reading will
also produce an error.
For example, the following code will generate an error for any write access
at socket 0, on any DIMM/address on channel 2::
echo 2 >/sys/devices/system/edac/mc/mc0/inject_addrmatch/channel
echo 2 >/sys/devices/system/edac/mc/mc0/inject_type
echo 64 >/sys/devices/system/edac/mc/mc0/inject_eccmask
echo 3 >/sys/devices/system/edac/mc/mc0/inject_section
echo 1 >/sys/devices/system/edac/mc/mc0/inject_enable
dd if=/dev/mem of=/dev/null seek=16k bs=4k count=1 >& /dev/null
For socket 1, it is needed to replace "mc0" by "mc1" at the above
commands.
The generated error message will look like::
EDAC MC0: UE row 0, channel-a= 0 channel-b= 0 labels "-": NON_FATAL (addr = 0x0075b980, socket=0, Dimm=0, Channel=2, syndrome=0x00000040, count=1, Err=8c0000400001009f:4000080482 (read error: read ECC error))
3) Corrected Error memory register counters
Those newer MCs have some registers to count memory errors. The driver
uses those registers to report Corrected Errors on devices with Registered
DIMMs.
However, those counters don't work with Unregistered DIMM. As the chipset
offers some counters that also work with UDIMMs (but with a worse level of
granularity than the default ones), the driver exposes those registers for
UDIMM memories.
They can be read by looking at the contents of ``all_channel_counts/``::
$ for i in /sys/devices/system/edac/mc/mc0/all_channel_counts/*; do echo $i; cat $i; done
/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm0
0
/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm1
0
/sys/devices/system/edac/mc/mc0/all_channel_counts/udimm2
0
What happens here is that errors on different csrows, but at the same
dimm number will increment the same counter.
So, in this memory mapping::
csrow0: channel 0, dimm0
csrow1: channel 0, dimm1
csrow2: channel 1, dimm0
csrow3: channel 2, dimm0
The hardware will increment udimm0 for an error at the first dimm at either
csrow0, csrow2 or csrow3;
The hardware will increment udimm1 for an error at the second dimm at either
csrow0, csrow2 or csrow3;
The hardware will increment udimm2 for an error at the third dimm at either
csrow0, csrow2 or csrow3;
4) Standard error counters
The standard error counters are generated when an mcelog error is received
by the driver. Since, with UDIMM, this is counted by software, it is
possible that some errors could be lost. With RDIMM's, they display the
contents of the registers
Reference documents used on ``amd64_edac``
------------------------------------------
``amd64_edac`` module is based on the following documents
(available from http://support.amd.com/en-us/search/tech-docs):
1. :Title: BIOS and Kernel Developer's Guide for AMD Athlon 64 and AMD
Opteron Processors
:AMD publication #: 26094
:Revision: 3.26
:Link: http://support.amd.com/TechDocs/26094.PDF
2. :Title: BIOS and Kernel Developer's Guide for AMD NPT Family 0Fh
Processors
:AMD publication #: 32559
:Revision: 3.00
:Issue Date: May 2006
:Link: http://support.amd.com/TechDocs/32559.pdf
3. :Title: BIOS and Kernel Developer's Guide (BKDG) For AMD Family 10h
Processors
:AMD publication #: 31116
:Revision: 3.00
:Issue Date: September 07, 2007
:Link: http://support.amd.com/TechDocs/31116.pdf
4. :Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h
Models 30h-3Fh Processors
:AMD publication #: 49125
:Revision: 3.06
:Issue Date: 2/12/2015 (latest release)
:Link: http://support.amd.com/TechDocs/49125_15h_Models_30h-3Fh_BKDG.pdf
5. :Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 15h
Models 60h-6Fh Processors
:AMD publication #: 50742
:Revision: 3.01
:Issue Date: 7/23/2015 (latest release)
:Link: http://support.amd.com/TechDocs/50742_15h_Models_60h-6Fh_BKDG.pdf
6. :Title: BIOS and Kernel Developer's Guide (BKDG) for AMD Family 16h
Models 00h-0Fh Processors
:AMD publication #: 48751
:Revision: 3.03
:Issue Date: 2/23/2015 (latest release)
:Link: http://support.amd.com/TechDocs/48751_16h_bkdg.pdf
Credits
=======
* Written by Doug Thompson <dougthompson@xmission.com>
- 7 Dec 2005
- 17 Jul 2007 Updated
* |copy| Mauro Carvalho Chehab
- 05 Aug 2009 Nehalem interface
- 26 Oct 2016 Converted to ReST and cleanups at the Nehalem section
* EDAC authors/maintainers:
- Doug Thompson, Dave Jiang, Dave Peterson et al,
- Mauro Carvalho Chehab
- Borislav Petkov
- original author: Thayne Harbaugh
|