/* * Copyright (C) 2012 ARM Ltd. * Author: Marc Zyngier * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define CREATE_TRACE_POINTS #include "trace.h" /* * How the whole thing works (courtesy of Christoffer Dall): * * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if * something is pending on the CPU interface. * - Interrupts that are pending on the distributor are stored on the * vgic.irq_pending vgic bitmap (this bitmap is updated by both user land * ioctls and guest mmio ops, and other in-kernel peripherals such as the * arch. timers). * - Every time the bitmap changes, the irq_pending_on_cpu oracle is * recalculated * - To calculate the oracle, we need info for each cpu from * compute_pending_for_cpu, which considers: * - PPI: dist->irq_pending & dist->irq_enable * - SPI: dist->irq_pending & dist->irq_enable & dist->irq_spi_target * - irq_spi_target is a 'formatted' version of the GICD_ITARGETSRn * registers, stored on each vcpu. We only keep one bit of * information per interrupt, making sure that only one vcpu can * accept the interrupt. * - If any of the above state changes, we must recalculate the oracle. * - The same is true when injecting an interrupt, except that we only * consider a single interrupt at a time. The irq_spi_cpu array * contains the target CPU for each SPI. * * The handling of level interrupts adds some extra complexity. We * need to track when the interrupt has been EOIed, so we can sample * the 'line' again. This is achieved as such: * * - When a level interrupt is moved onto a vcpu, the corresponding * bit in irq_queued is set. As long as this bit is set, the line * will be ignored for further interrupts. The interrupt is injected * into the vcpu with the GICH_LR_EOI bit set (generate a * maintenance interrupt on EOI). * - When the interrupt is EOIed, the maintenance interrupt fires, * and clears the corresponding bit in irq_queued. This allows the * interrupt line to be sampled again. * - Note that level-triggered interrupts can also be set to pending from * writes to GICD_ISPENDRn and lowering the external input line does not * cause the interrupt to become inactive in such a situation. * Conversely, writes to GICD_ICPENDRn do not cause the interrupt to become * inactive as long as the external input line is held high. * * * Initialization rules: there are multiple stages to the vgic * initialization, both for the distributor and the CPU interfaces. * * Distributor: * * - kvm_vgic_early_init(): initialization of static data that doesn't * depend on any sizing information or emulation type. No allocation * is allowed there. * * - vgic_init(): allocation and initialization of the generic data * structures that depend on sizing information (number of CPUs, * number of interrupts). Also initializes the vcpu specific data * structures. Can be executed lazily for GICv2. * [to be renamed to kvm_vgic_init??] * * CPU Interface: * * - kvm_vgic_cpu_early_init(): initialization of static data that * doesn't depend on any sizing information or emulation type. No * allocation is allowed there. */ #include "vgic.h" static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu); static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu); static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr); static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr lr_desc); static u64 vgic_get_elrsr(struct kvm_vcpu *vcpu); static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu, int virt_irq); static int compute_pending_for_cpu(struct kvm_vcpu *vcpu); static const struct vgic_ops *vgic_ops; static const struct vgic_params *vgic; static void add_sgi_source(struct kvm_vcpu *vcpu, int irq, int source) { vcpu->kvm->arch.vgic.vm_ops.add_sgi_source(vcpu, irq, source); } static bool queue_sgi(struct kvm_vcpu *vcpu, int irq) { return vcpu->kvm->arch.vgic.vm_ops.queue_sgi(vcpu, irq); } int kvm_vgic_map_resources(struct kvm *kvm) { return kvm->arch.vgic.vm_ops.map_resources(kvm, vgic); } /* * struct vgic_bitmap contains a bitmap made of unsigned longs, but * extracts u32s out of them. * * This does not work on 64-bit BE systems, because the bitmap access * will store two consecutive 32-bit words with the higher-addressed * register's bits at the lower index and the lower-addressed register's * bits at the higher index. * * Therefore, swizzle the register index when accessing the 32-bit word * registers to access the right register's value. */ #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 64 #define REG_OFFSET_SWIZZLE 1 #else #define REG_OFFSET_SWIZZLE 0 #endif static int vgic_init_bitmap(struct vgic_bitmap *b, int nr_cpus, int nr_irqs) { int nr_longs; nr_longs = nr_cpus + BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS); b->private = kzalloc(sizeof(unsigned long) * nr_longs, GFP_KERNEL); if (!b->private) return -ENOMEM; b->shared = b->private + nr_cpus; return 0; } static void vgic_free_bitmap(struct vgic_bitmap *b) { kfree(b->private); b->private = NULL; b->shared = NULL; } /* * Call this function to convert a u64 value to an unsigned long * bitmask * in a way that works on both 32-bit and 64-bit LE and BE platforms. * * Warning: Calling this function may modify *val. */ static unsigned long *u64_to_bitmask(u64 *val) { #if defined(CONFIG_CPU_BIG_ENDIAN) && BITS_PER_LONG == 32 *val = (*val >> 32) | (*val << 32); #endif return (unsigned long *)val; } u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset) { offset >>= 2; if (!offset) return (u32 *)(x->private + cpuid) + REG_OFFSET_SWIZZLE; else return (u32 *)(x->shared) + ((offset - 1) ^ REG_OFFSET_SWIZZLE); } static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x, int cpuid, int irq) { if (irq < VGIC_NR_PRIVATE_IRQS) return test_bit(irq, x->private + cpuid); return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared); } void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, int irq, int val) { unsigned long *reg; if (irq < VGIC_NR_PRIVATE_IRQS) { reg = x->private + cpuid; } else { reg = x->shared; irq -= VGIC_NR_PRIVATE_IRQS; } if (val) set_bit(irq, reg); else clear_bit(irq, reg); } static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid) { return x->private + cpuid; } unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) { return x->shared; } static int vgic_init_bytemap(struct vgic_bytemap *x, int nr_cpus, int nr_irqs) { int size; size = nr_cpus * VGIC_NR_PRIVATE_IRQS; size += nr_irqs - VGIC_NR_PRIVATE_IRQS; x->private = kzalloc(size, GFP_KERNEL); if (!x->private) return -ENOMEM; x->shared = x->private + nr_cpus * VGIC_NR_PRIVATE_IRQS / sizeof(u32); return 0; } static void vgic_free_bytemap(struct vgic_bytemap *b) { kfree(b->private); b->private = NULL; b->shared = NULL; } u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) { u32 *reg; if (offset < VGIC_NR_PRIVATE_IRQS) { reg = x->private; offset += cpuid * VGIC_NR_PRIVATE_IRQS; } else { reg = x->shared; offset -= VGIC_NR_PRIVATE_IRQS; } return reg + (offset / sizeof(u32)); } #define VGIC_CFG_LEVEL 0 #define VGIC_CFG_EDGE 1 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; int irq_val; irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq); return irq_val == VGIC_CFG_EDGE; } static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq); } static int vgic_irq_is_queued(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq); } static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq); } static void vgic_irq_set_queued(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 1); } static void vgic_irq_clear_queued(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_queued, vcpu->vcpu_id, irq, 0); } static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1); } static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0); } static int vgic_dist_irq_get_level(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_level, vcpu->vcpu_id, irq); } static void vgic_dist_irq_set_level(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 1); } static void vgic_dist_irq_clear_level(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_level, vcpu->vcpu_id, irq, 0); } static int vgic_dist_irq_soft_pend(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq); } static void vgic_dist_irq_clear_soft_pend(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_soft_pend, vcpu->vcpu_id, irq, 0); if (!vgic_dist_irq_get_level(vcpu, irq)) { vgic_dist_irq_clear_pending(vcpu, irq); if (!compute_pending_for_cpu(vcpu)) clear_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); } } static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq); } void vgic_dist_irq_set_pending(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 1); } void vgic_dist_irq_clear_pending(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_pending, vcpu->vcpu_id, irq, 0); } static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq) { if (irq < VGIC_NR_PRIVATE_IRQS) set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); else set_bit(irq - VGIC_NR_PRIVATE_IRQS, vcpu->arch.vgic_cpu.pending_shared); } void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) { if (irq < VGIC_NR_PRIVATE_IRQS) clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); else clear_bit(irq - VGIC_NR_PRIVATE_IRQS, vcpu->arch.vgic_cpu.pending_shared); } static bool vgic_can_sample_irq(struct kvm_vcpu *vcpu, int irq) { return !vgic_irq_is_queued(vcpu, irq); } /** * vgic_reg_access - access vgic register * @mmio: pointer to the data describing the mmio access * @reg: pointer to the virtual backing of vgic distributor data * @offset: least significant 2 bits used for word offset * @mode: ACCESS_ mode (see defines above) * * Helper to make vgic register access easier using one of the access * modes defined for vgic register access * (read,raz,write-ignored,setbit,clearbit,write) */ void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, phys_addr_t offset, int mode) { int word_offset = (offset & 3) * 8; u32 mask = (1UL << (mmio->len * 8)) - 1; u32 regval; /* * Any alignment fault should have been delivered to the guest * directly (ARM ARM B3.12.7 "Prioritization of aborts"). */ if (reg) { regval = *reg; } else { BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED)); regval = 0; } if (mmio->is_write) { u32 data = mmio_data_read(mmio, mask) << word_offset; switch (ACCESS_WRITE_MASK(mode)) { case ACCESS_WRITE_IGNORED: return; case ACCESS_WRITE_SETBIT: regval |= data; break; case ACCESS_WRITE_CLEARBIT: regval &= ~data; break; case ACCESS_WRITE_VALUE: regval = (regval & ~(mask << word_offset)) | data; break; } *reg = regval; } else { switch (ACCESS_READ_MASK(mode)) { case ACCESS_READ_RAZ: regval = 0; /* fall through */ case ACCESS_READ_VALUE: mmio_data_write(mmio, mask, regval >> word_offset); } } } bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } bool vgic_handle_enable_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, phys_addr_t offset, int vcpu_id, int access) { u32 *reg; int mode = ACCESS_READ_VALUE | access; struct kvm_vcpu *target_vcpu = kvm_get_vcpu(kvm, vcpu_id); reg = vgic_bitmap_get_reg(&kvm->arch.vgic.irq_enabled, vcpu_id, offset); vgic_reg_access(mmio, reg, offset, mode); if (mmio->is_write) { if (access & ACCESS_WRITE_CLEARBIT) { if (offset < 4) /* Force SGI enabled */ *reg |= 0xffff; vgic_retire_disabled_irqs(target_vcpu); } vgic_update_state(kvm); return true; } return false; } bool vgic_handle_set_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, phys_addr_t offset, int vcpu_id) { u32 *reg, orig; u32 level_mask; int mode = ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT; struct vgic_dist *dist = &kvm->arch.vgic; reg = vgic_bitmap_get_reg(&dist->irq_cfg, vcpu_id, offset); level_mask = (~(*reg)); /* Mark both level and edge triggered irqs as pending */ reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); orig = *reg; vgic_reg_access(mmio, reg, offset, mode); if (mmio->is_write) { /* Set the soft-pending flag only for level-triggered irqs */ reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, vcpu_id, offset); vgic_reg_access(mmio, reg, offset, mode); *reg &= level_mask; /* Ignore writes to SGIs */ if (offset < 2) { *reg &= ~0xffff; *reg |= orig & 0xffff; } vgic_update_state(kvm); return true; } return false; } bool vgic_handle_clear_pending_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, phys_addr_t offset, int vcpu_id) { u32 *level_active; u32 *reg, orig; int mode = ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT; struct vgic_dist *dist = &kvm->arch.vgic; reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); orig = *reg; vgic_reg_access(mmio, reg, offset, mode); if (mmio->is_write) { /* Re-set level triggered level-active interrupts */ level_active = vgic_bitmap_get_reg(&dist->irq_level, vcpu_id, offset); reg = vgic_bitmap_get_reg(&dist->irq_pending, vcpu_id, offset); *reg |= *level_active; /* Ignore writes to SGIs */ if (offset < 2) { *reg &= ~0xffff; *reg |= orig & 0xffff; } /* Clear soft-pending flags */ reg = vgic_bitmap_get_reg(&dist->irq_soft_pend, vcpu_id, offset); vgic_reg_access(mmio, reg, offset, mode); vgic_update_state(kvm); return true; } return false; } bool vgic_handle_set_active_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, phys_addr_t offset, int vcpu_id) { u32 *reg; struct vgic_dist *dist = &kvm->arch.vgic; reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); if (mmio->is_write) { vgic_update_state(kvm); return true; } return false; } bool vgic_handle_clear_active_reg(struct kvm *kvm, struct kvm_exit_mmio *mmio, phys_addr_t offset, int vcpu_id) { u32 *reg; struct vgic_dist *dist = &kvm->arch.vgic; reg = vgic_bitmap_get_reg(&dist->irq_active, vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); if (mmio->is_write) { vgic_update_state(kvm); return true; } return false; } static u32 vgic_cfg_expand(u16 val) { u32 res = 0; int i; /* * Turn a 16bit value like abcd...mnop into a 32bit word * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is. */ for (i = 0; i < 16; i++) res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1); return res; } static u16 vgic_cfg_compress(u32 val) { u16 res = 0; int i; /* * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like * abcd...mnop which is what we really care about. */ for (i = 0; i < 16; i++) res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i; return res; } /* * The distributor uses 2 bits per IRQ for the CFG register, but the * LSB is always 0. As such, we only keep the upper bit, and use the * two above functions to compress/expand the bits */ bool vgic_handle_cfg_reg(u32 *reg, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 val; if (offset & 4) val = *reg >> 16; else val = *reg & 0xffff; val = vgic_cfg_expand(val); vgic_reg_access(mmio, &val, offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); if (mmio->is_write) { /* Ignore writes to read-only SGI and PPI bits */ if (offset < 8) return false; val = vgic_cfg_compress(val); if (offset & 4) { *reg &= 0xffff; *reg |= val << 16; } else { *reg &= 0xffff << 16; *reg |= val; } } return false; } /** * vgic_unqueue_irqs - move pending/active IRQs from LRs to the distributor * @vgic_cpu: Pointer to the vgic_cpu struct holding the LRs * * Move any IRQs that have already been assigned to LRs back to the * emulated distributor state so that the complete emulated state can be read * from the main emulation structures without investigating the LRs. */ void vgic_unqueue_irqs(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; u64 elrsr = vgic_get_elrsr(vcpu); unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr); int i; for_each_clear_bit(i, elrsr_ptr, vgic_cpu->nr_lr) { struct vgic_lr lr = vgic_get_lr(vcpu, i); /* * There are three options for the state bits: * * 01: pending * 10: active * 11: pending and active */ BUG_ON(!(lr.state & LR_STATE_MASK)); /* Reestablish SGI source for pending and active IRQs */ if (lr.irq < VGIC_NR_SGIS) add_sgi_source(vcpu, lr.irq, lr.source); /* * If the LR holds an active (10) or a pending and active (11) * interrupt then move the active state to the * distributor tracking bit. */ if (lr.state & LR_STATE_ACTIVE) vgic_irq_set_active(vcpu, lr.irq); /* * Reestablish the pending state on the distributor and the * CPU interface and mark the LR as free for other use. */ vgic_retire_lr(i, vcpu); /* Finally update the VGIC state. */ vgic_update_state(vcpu->kvm); } } const struct vgic_io_range *vgic_find_range(const struct vgic_io_range *ranges, int len, gpa_t offset) { while (ranges->len) { if (offset >= ranges->base && (offset + len) <= (ranges->base + ranges->len)) return ranges; ranges++; } return NULL; } static bool vgic_validate_access(const struct vgic_dist *dist, const struct vgic_io_range *range, unsigned long offset) { int irq; if (!range->bits_per_irq) return true; /* Not an irq-based access */ irq = offset * 8 / range->bits_per_irq; if (irq >= dist->nr_irqs) return false; return true; } /* * Call the respective handler function for the given range. * We split up any 64 bit accesses into two consecutive 32 bit * handler calls and merge the result afterwards. * We do this in a little endian fashion regardless of the host's * or guest's endianness, because the GIC is always LE and the rest of * the code (vgic_reg_access) also puts it in a LE fashion already. * At this point we have already identified the handle function, so * range points to that one entry and offset is relative to this. */ static bool call_range_handler(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, unsigned long offset, const struct vgic_io_range *range) { struct kvm_exit_mmio mmio32; bool ret; if (likely(mmio->len <= 4)) return range->handle_mmio(vcpu, mmio, offset); /* * Any access bigger than 4 bytes (that we currently handle in KVM) * is actually 8 bytes long, caused by a 64-bit access */ mmio32.len = 4; mmio32.is_write = mmio->is_write; mmio32.private = mmio->private; mmio32.phys_addr = mmio->phys_addr + 4; mmio32.data = &((u32 *)mmio->data)[1]; ret = range->handle_mmio(vcpu, &mmio32, offset + 4); mmio32.phys_addr = mmio->phys_addr; mmio32.data = &((u32 *)mmio->data)[0]; ret |= range->handle_mmio(vcpu, &mmio32, offset); return ret; } /** * vgic_handle_mmio_access - handle an in-kernel MMIO access * This is called by the read/write KVM IO device wrappers below. * @vcpu: pointer to the vcpu performing the access * @this: pointer to the KVM IO device in charge * @addr: guest physical address of the access * @len: size of the access * @val: pointer to the data region * @is_write: read or write access * * returns true if the MMIO access could be performed */ static int vgic_handle_mmio_access(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, void *val, bool is_write) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct vgic_io_device *iodev = container_of(this, struct vgic_io_device, dev); struct kvm_run *run = vcpu->run; const struct vgic_io_range *range; struct kvm_exit_mmio mmio; bool updated_state; gpa_t offset; offset = addr - iodev->addr; range = vgic_find_range(iodev->reg_ranges, len, offset); if (unlikely(!range || !range->handle_mmio)) { pr_warn("Unhandled access %d %08llx %d\n", is_write, addr, len); return -ENXIO; } mmio.phys_addr = addr; mmio.len = len; mmio.is_write = is_write; mmio.data = val; mmio.private = iodev->redist_vcpu; spin_lock(&dist->lock); offset -= range->base; if (vgic_validate_access(dist, range, offset)) { updated_state = call_range_handler(vcpu, &mmio, offset, range); } else { if (!is_write) memset(val, 0, len); updated_state = false; } spin_unlock(&dist->lock); run->mmio.is_write = is_write; run->mmio.len = len; run->mmio.phys_addr = addr; memcpy(run->mmio.data, val, len); kvm_handle_mmio_return(vcpu, run); if (updated_state) vgic_kick_vcpus(vcpu->kvm); return 0; } static int vgic_handle_mmio_read(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, void *val) { return vgic_handle_mmio_access(vcpu, this, addr, len, val, false); } static int vgic_handle_mmio_write(struct kvm_vcpu *vcpu, struct kvm_io_device *this, gpa_t addr, int len, const void *val) { return vgic_handle_mmio_access(vcpu, this, addr, len, (void *)val, true); } static struct kvm_io_device_ops vgic_io_ops = { .read = vgic_handle_mmio_read, .write = vgic_handle_mmio_write, }; /** * vgic_register_kvm_io_dev - register VGIC register frame on the KVM I/O bus * @kvm: The VM structure pointer * @base: The (guest) base address for the register frame * @len: Length of the register frame window * @ranges: Describing the handler functions for each register * @redist_vcpu_id: The VCPU ID to pass on to the handlers on call * @iodev: Points to memory to be passed on to the handler * * @iodev stores the parameters of this function to be usable by the handler * respectively the dispatcher function (since the KVM I/O bus framework lacks * an opaque parameter). Initialization is done in this function, but the * reference should be valid and unique for the whole VGIC lifetime. * If the register frame is not mapped for a specific VCPU, pass -1 to * @redist_vcpu_id. */ int vgic_register_kvm_io_dev(struct kvm *kvm, gpa_t base, int len, const struct vgic_io_range *ranges, int redist_vcpu_id, struct vgic_io_device *iodev) { struct kvm_vcpu *vcpu = NULL; int ret; if (redist_vcpu_id >= 0) vcpu = kvm_get_vcpu(kvm, redist_vcpu_id); iodev->addr = base; iodev->len = len; iodev->reg_ranges = ranges; iodev->redist_vcpu = vcpu; kvm_iodevice_init(&iodev->dev, &vgic_io_ops); mutex_lock(&kvm->slots_lock); ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, base, len, &iodev->dev); mutex_unlock(&kvm->slots_lock); /* Mark the iodev as invalid if registration fails. */ if (ret) iodev->dev.ops = NULL; return ret; } static int vgic_nr_shared_irqs(struct vgic_dist *dist) { return dist->nr_irqs - VGIC_NR_PRIVATE_IRQS; } static int compute_active_for_cpu(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; unsigned long *active, *enabled, *act_percpu, *act_shared; unsigned long active_private, active_shared; int nr_shared = vgic_nr_shared_irqs(dist); int vcpu_id; vcpu_id = vcpu->vcpu_id; act_percpu = vcpu->arch.vgic_cpu.active_percpu; act_shared = vcpu->arch.vgic_cpu.active_shared; active = vgic_bitmap_get_cpu_map(&dist->irq_active, vcpu_id); enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id); bitmap_and(act_percpu, active, enabled, VGIC_NR_PRIVATE_IRQS); active = vgic_bitmap_get_shared_map(&dist->irq_active); enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled); bitmap_and(act_shared, active, enabled, nr_shared); bitmap_and(act_shared, act_shared, vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]), nr_shared); active_private = find_first_bit(act_percpu, VGIC_NR_PRIVATE_IRQS); active_shared = find_first_bit(act_shared, nr_shared); return (active_private < VGIC_NR_PRIVATE_IRQS || active_shared < nr_shared); } static int compute_pending_for_cpu(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; unsigned long *pending, *enabled, *pend_percpu, *pend_shared; unsigned long pending_private, pending_shared; int nr_shared = vgic_nr_shared_irqs(dist); int vcpu_id; vcpu_id = vcpu->vcpu_id; pend_percpu = vcpu->arch.vgic_cpu.pending_percpu; pend_shared = vcpu->arch.vgic_cpu.pending_shared; if (!dist->enabled) { bitmap_zero(pend_percpu, VGIC_NR_PRIVATE_IRQS); bitmap_zero(pend_shared, nr_shared); return 0; } pending = vgic_bitmap_get_cpu_map(&dist->irq_pending, vcpu_id); enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id); bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS); pending = vgic_bitmap_get_shared_map(&dist->irq_pending); enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled); bitmap_and(pend_shared, pending, enabled, nr_shared); bitmap_and(pend_shared, pend_shared, vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]), nr_shared); pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS); pending_shared = find_first_bit(pend_shared, nr_shared); return (pending_private < VGIC_NR_PRIVATE_IRQS || pending_shared < vgic_nr_shared_irqs(dist)); } /* * Update the interrupt state and determine which CPUs have pending * or active interrupts. Must be called with distributor lock held. */ void vgic_update_state(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int c; kvm_for_each_vcpu(c, vcpu, kvm) { if (compute_pending_for_cpu(vcpu)) set_bit(c, dist->irq_pending_on_cpu); if (compute_active_for_cpu(vcpu)) set_bit(c, dist->irq_active_on_cpu); else clear_bit(c, dist->irq_active_on_cpu); } } static struct vgic_lr vgic_get_lr(const struct kvm_vcpu *vcpu, int lr) { return vgic_ops->get_lr(vcpu, lr); } static void vgic_set_lr(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr) { vgic_ops->set_lr(vcpu, lr, vlr); } static inline u64 vgic_get_elrsr(struct kvm_vcpu *vcpu) { return vgic_ops->get_elrsr(vcpu); } static inline u64 vgic_get_eisr(struct kvm_vcpu *vcpu) { return vgic_ops->get_eisr(vcpu); } static inline void vgic_clear_eisr(struct kvm_vcpu *vcpu) { vgic_ops->clear_eisr(vcpu); } static inline u32 vgic_get_interrupt_status(struct kvm_vcpu *vcpu) { return vgic_ops->get_interrupt_status(vcpu); } static inline void vgic_enable_underflow(struct kvm_vcpu *vcpu) { vgic_ops->enable_underflow(vcpu); } static inline void vgic_disable_underflow(struct kvm_vcpu *vcpu) { vgic_ops->disable_underflow(vcpu); } void vgic_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) { vgic_ops->get_vmcr(vcpu, vmcr); } void vgic_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcr) { vgic_ops->set_vmcr(vcpu, vmcr); } static inline void vgic_enable(struct kvm_vcpu *vcpu) { vgic_ops->enable(vcpu); } static void vgic_retire_lr(int lr_nr, struct kvm_vcpu *vcpu) { struct vgic_lr vlr = vgic_get_lr(vcpu, lr_nr); vgic_irq_clear_queued(vcpu, vlr.irq); /* * We must transfer the pending state back to the distributor before * retiring the LR, otherwise we may loose edge-triggered interrupts. */ if (vlr.state & LR_STATE_PENDING) { vgic_dist_irq_set_pending(vcpu, vlr.irq); vlr.hwirq = 0; } vlr.state = 0; vgic_set_lr(vcpu, lr_nr, vlr); } static bool dist_active_irq(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return test_bit(vcpu->vcpu_id, dist->irq_active_on_cpu); } bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, struct irq_phys_map *map) { int i; for (i = 0; i < vcpu->arch.vgic_cpu.nr_lr; i++) { struct vgic_lr vlr = vgic_get_lr(vcpu, i); if (vlr.irq == map->virt_irq && vlr.state & LR_STATE_ACTIVE) return true; } return vgic_irq_is_active(vcpu, map->virt_irq); } /* * An interrupt may have been disabled after being made pending on the * CPU interface (the classic case is a timer running while we're * rebooting the guest - the interrupt would kick as soon as the CPU * interface gets enabled, with deadly consequences). * * The solution is to examine already active LRs, and check the * interrupt is still enabled. If not, just retire it. */ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu) { u64 elrsr = vgic_get_elrsr(vcpu); unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr); int lr; for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) { struct vgic_lr vlr = vgic_get_lr(vcpu, lr); if (!vgic_irq_is_enabled(vcpu, vlr.irq)) vgic_retire_lr(lr, vcpu); } } static void vgic_queue_irq_to_lr(struct kvm_vcpu *vcpu, int irq, int lr_nr, struct vgic_lr vlr) { if (vgic_irq_is_active(vcpu, irq)) { vlr.state |= LR_STATE_ACTIVE; kvm_debug("Set active, clear distributor: 0x%x\n", vlr.state); vgic_irq_clear_active(vcpu, irq); vgic_update_state(vcpu->kvm); } else { WARN_ON(!vgic_dist_irq_is_pending(vcpu, irq)); vlr.state |= LR_STATE_PENDING; kvm_debug("Set pending: 0x%x\n", vlr.state); } if (!vgic_irq_is_edge(vcpu, irq)) vlr.state |= LR_EOI_INT; if (vlr.irq >= VGIC_NR_SGIS) { struct irq_phys_map *map; map = vgic_irq_map_search(vcpu, irq); if (map) { vlr.hwirq = map->phys_irq; vlr.state |= LR_HW; vlr.state &= ~LR_EOI_INT; /* * Make sure we're not going to sample this * again, as a HW-backed interrupt cannot be * in the PENDING_ACTIVE stage. */ vgic_irq_set_queued(vcpu, irq); } } vgic_set_lr(vcpu, lr_nr, vlr); } /* * Queue an interrupt to a CPU virtual interface. Return true on success, * or false if it wasn't possible to queue it. * sgi_source must be zero for any non-SGI interrupts. */ bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; u64 elrsr = vgic_get_elrsr(vcpu); unsigned long *elrsr_ptr = u64_to_bitmask(&elrsr); struct vgic_lr vlr; int lr; /* Sanitize the input... */ BUG_ON(sgi_source_id & ~7); BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS); BUG_ON(irq >= dist->nr_irqs); kvm_debug("Queue IRQ%d\n", irq); /* Do we have an active interrupt for the same CPUID? */ for_each_clear_bit(lr, elrsr_ptr, vgic->nr_lr) { vlr = vgic_get_lr(vcpu, lr); if (vlr.irq == irq && vlr.source == sgi_source_id) { kvm_debug("LR%d piggyback for IRQ%d\n", lr, vlr.irq); vgic_queue_irq_to_lr(vcpu, irq, lr, vlr); return true; } } /* Try to use another LR for this interrupt */ lr = find_first_bit(elrsr_ptr, vgic->nr_lr); if (lr >= vgic->nr_lr) return false; kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id); vlr.irq = irq; vlr.source = sgi_source_id; vlr.state = 0; vgic_queue_irq_to_lr(vcpu, irq, lr, vlr); return true; } static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq) { if (!vgic_can_sample_irq(vcpu, irq)) return true; /* level interrupt, already queued */ if (vgic_queue_irq(vcpu, 0, irq)) { if (vgic_irq_is_edge(vcpu, irq)) { vgic_dist_irq_clear_pending(vcpu, irq); vgic_cpu_irq_clear(vcpu, irq); } else { vgic_irq_set_queued(vcpu, irq); } return true; } return false; } /* * Fill the list registers with pending interrupts before running the * guest. */ static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; unsigned long *pa_percpu, *pa_shared; int i, vcpu_id; int overflow = 0; int nr_shared = vgic_nr_shared_irqs(dist); vcpu_id = vcpu->vcpu_id; pa_percpu = vcpu->arch.vgic_cpu.pend_act_percpu; pa_shared = vcpu->arch.vgic_cpu.pend_act_shared; bitmap_or(pa_percpu, vgic_cpu->pending_percpu, vgic_cpu->active_percpu, VGIC_NR_PRIVATE_IRQS); bitmap_or(pa_shared, vgic_cpu->pending_shared, vgic_cpu->active_shared, nr_shared); /* * We may not have any pending interrupt, or the interrupts * may have been serviced from another vcpu. In all cases, * move along. */ if (!kvm_vgic_vcpu_pending_irq(vcpu) && !dist_active_irq(vcpu)) goto epilog; /* SGIs */ for_each_set_bit(i, pa_percpu, VGIC_NR_SGIS) { if (!queue_sgi(vcpu, i)) overflow = 1; } /* PPIs */ for_each_set_bit_from(i, pa_percpu, VGIC_NR_PRIVATE_IRQS) { if (!vgic_queue_hwirq(vcpu, i)) overflow = 1; } /* SPIs */ for_each_set_bit(i, pa_shared, nr_shared) { if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS)) overflow = 1; } epilog: if (overflow) { vgic_enable_underflow(vcpu); } else { vgic_disable_underflow(vcpu); /* * We're about to run this VCPU, and we've consumed * everything the distributor had in store for * us. Claim we don't have anything pending. We'll * adjust that if needed while exiting. */ clear_bit(vcpu_id, dist->irq_pending_on_cpu); } } static int process_queued_irq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr) { int pending = 0; /* * If the IRQ was EOIed (called from vgic_process_maintenance) or it * went from active to non-active (called from vgic_sync_hwirq) it was * also ACKed and we we therefore assume we can clear the soft pending * state (should it had been set) for this interrupt. * * Note: if the IRQ soft pending state was set after the IRQ was * acked, it actually shouldn't be cleared, but we have no way of * knowing that unless we start trapping ACKs when the soft-pending * state is set. */ vgic_dist_irq_clear_soft_pend(vcpu, vlr.irq); /* * Tell the gic to start sampling this interrupt again. */ vgic_irq_clear_queued(vcpu, vlr.irq); /* Any additional pending interrupt? */ if (vgic_irq_is_edge(vcpu, vlr.irq)) { BUG_ON(!(vlr.state & LR_HW)); pending = vgic_dist_irq_is_pending(vcpu, vlr.irq); } else { if (vgic_dist_irq_get_level(vcpu, vlr.irq)) { vgic_cpu_irq_set(vcpu, vlr.irq); pending = 1; } else { vgic_dist_irq_clear_pending(vcpu, vlr.irq); vgic_cpu_irq_clear(vcpu, vlr.irq); } } /* * Despite being EOIed, the LR may not have * been marked as empty. */ vlr.state = 0; vlr.hwirq = 0; vgic_set_lr(vcpu, lr, vlr); return pending; } static bool vgic_process_maintenance(struct kvm_vcpu *vcpu) { u32 status = vgic_get_interrupt_status(vcpu); struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct kvm *kvm = vcpu->kvm; int level_pending = 0; kvm_debug("STATUS = %08x\n", status); if (status & INT_STATUS_EOI) { /* * Some level interrupts have been EOIed. Clear their * active bit. */ u64 eisr = vgic_get_eisr(vcpu); unsigned long *eisr_ptr = u64_to_bitmask(&eisr); int lr; for_each_set_bit(lr, eisr_ptr, vgic->nr_lr) { struct vgic_lr vlr = vgic_get_lr(vcpu, lr); WARN_ON(vgic_irq_is_edge(vcpu, vlr.irq)); WARN_ON(vlr.state & LR_STATE_MASK); /* * kvm_notify_acked_irq calls kvm_set_irq() * to reset the IRQ level, which grabs the dist->lock * so we call this before taking the dist->lock. */ kvm_notify_acked_irq(kvm, 0, vlr.irq - VGIC_NR_PRIVATE_IRQS); spin_lock(&dist->lock); level_pending |= process_queued_irq(vcpu, lr, vlr); spin_unlock(&dist->lock); } } if (status & INT_STATUS_UNDERFLOW) vgic_disable_underflow(vcpu); /* * In the next iterations of the vcpu loop, if we sync the vgic state * after flushing it, but before entering the guest (this happens for * pending signals and vmid rollovers), then make sure we don't pick * up any old maintenance interrupts here. */ vgic_clear_eisr(vcpu); return level_pending; } /* * Save the physical active state, and reset it to inactive. * * Return true if there's a pending forwarded interrupt to queue. */ static bool vgic_sync_hwirq(struct kvm_vcpu *vcpu, int lr, struct vgic_lr vlr) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; bool level_pending; if (!(vlr.state & LR_HW)) return false; if (vlr.state & LR_STATE_ACTIVE) return false; spin_lock(&dist->lock); level_pending = process_queued_irq(vcpu, lr, vlr); spin_unlock(&dist->lock); return level_pending; } /* Sync back the VGIC state after a guest run */ static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; u64 elrsr; unsigned long *elrsr_ptr; int lr, pending; bool level_pending; level_pending = vgic_process_maintenance(vcpu); /* Deal with HW interrupts, and clear mappings for empty LRs */ for (lr = 0; lr < vgic->nr_lr; lr++) { struct vgic_lr vlr = vgic_get_lr(vcpu, lr); level_pending |= vgic_sync_hwirq(vcpu, lr, vlr); BUG_ON(vlr.irq >= dist->nr_irqs); } /* Check if we still have something up our sleeve... */ elrsr = vgic_get_elrsr(vcpu); elrsr_ptr = u64_to_bitmask(&elrsr); pending = find_first_zero_bit(elrsr_ptr, vgic->nr_lr); if (level_pending || pending < vgic->nr_lr) set_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); } void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; if (!irqchip_in_kernel(vcpu->kvm)) return; spin_lock(&dist->lock); __kvm_vgic_flush_hwstate(vcpu); spin_unlock(&dist->lock); } void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) { if (!irqchip_in_kernel(vcpu->kvm)) return; __kvm_vgic_sync_hwstate(vcpu); } int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; if (!irqchip_in_kernel(vcpu->kvm)) return 0; return test_bit(vcpu->vcpu_id, dist->irq_pending_on_cpu); } void vgic_kick_vcpus(struct kvm *kvm) { struct kvm_vcpu *vcpu; int c; /* * We've injected an interrupt, time to find out who deserves * a good kick... */ kvm_for_each_vcpu(c, vcpu, kvm) { if (kvm_vgic_vcpu_pending_irq(vcpu)) kvm_vcpu_kick(vcpu); } } static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level) { int edge_triggered = vgic_irq_is_edge(vcpu, irq); /* * Only inject an interrupt if: * - edge triggered and we have a rising edge * - level triggered and we change level */ if (edge_triggered) { int state = vgic_dist_irq_is_pending(vcpu, irq); return level > state; } else { int state = vgic_dist_irq_get_level(vcpu, irq); return level != state; } } static int vgic_update_irq_pending(struct kvm *kvm, int cpuid, struct irq_phys_map *map, unsigned int irq_num, bool level) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int edge_triggered, level_triggered; int enabled; bool ret = true, can_inject = true; trace_vgic_update_irq_pending(cpuid, irq_num, level); if (irq_num >= min(kvm->arch.vgic.nr_irqs, 1020)) return -EINVAL; spin_lock(&dist->lock); vcpu = kvm_get_vcpu(kvm, cpuid); edge_triggered = vgic_irq_is_edge(vcpu, irq_num); level_triggered = !edge_triggered; if (!vgic_validate_injection(vcpu, irq_num, level)) { ret = false; goto out; } if (irq_num >= VGIC_NR_PRIVATE_IRQS) { cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS]; if (cpuid == VCPU_NOT_ALLOCATED) { /* Pretend we use CPU0, and prevent injection */ cpuid = 0; can_inject = false; } vcpu = kvm_get_vcpu(kvm, cpuid); } kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid); if (level) { if (level_triggered) vgic_dist_irq_set_level(vcpu, irq_num); vgic_dist_irq_set_pending(vcpu, irq_num); } else { if (level_triggered) { vgic_dist_irq_clear_level(vcpu, irq_num); if (!vgic_dist_irq_soft_pend(vcpu, irq_num)) { vgic_dist_irq_clear_pending(vcpu, irq_num); vgic_cpu_irq_clear(vcpu, irq_num); if (!compute_pending_for_cpu(vcpu)) clear_bit(cpuid, dist->irq_pending_on_cpu); } } ret = false; goto out; } enabled = vgic_irq_is_enabled(vcpu, irq_num); if (!enabled || !can_inject) { ret = false; goto out; } if (!vgic_can_sample_irq(vcpu, irq_num)) { /* * Level interrupt in progress, will be picked up * when EOId. */ ret = false; goto out; } if (level) { vgic_cpu_irq_set(vcpu, irq_num); set_bit(cpuid, dist->irq_pending_on_cpu); } out: spin_unlock(&dist->lock); if (ret) { /* kick the specified vcpu */ kvm_vcpu_kick(kvm_get_vcpu(kvm, cpuid)); } return 0; } static int vgic_lazy_init(struct kvm *kvm) { int ret = 0; if (unlikely(!vgic_initialized(kvm))) { /* * We only provide the automatic initialization of the VGIC * for the legacy case of a GICv2. Any other type must * be explicitly initialized once setup with the respective * KVM device call. */ if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) return -EBUSY; mutex_lock(&kvm->lock); ret = vgic_init(kvm); mutex_unlock(&kvm->lock); } return ret; } /** * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic * @kvm: The VM structure pointer * @cpuid: The CPU for PPIs * @irq_num: The IRQ number that is assigned to the device. This IRQ * must not be mapped to a HW interrupt. * @level: Edge-triggered: true: to trigger the interrupt * false: to ignore the call * Level-sensitive true: raise the input signal * false: lower the input signal * * The GIC is not concerned with devices being active-LOW or active-HIGH for * level-sensitive interrupts. You can think of the level parameter as 1 * being HIGH and 0 being LOW and all devices being active-HIGH. */ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, bool level) { struct irq_phys_map *map; int ret; ret = vgic_lazy_init(kvm); if (ret) return ret; map = vgic_irq_map_search(kvm_get_vcpu(kvm, cpuid), irq_num); if (map) return -EINVAL; return vgic_update_irq_pending(kvm, cpuid, NULL, irq_num, level); } /** * kvm_vgic_inject_mapped_irq - Inject a physically mapped IRQ to the vgic * @kvm: The VM structure pointer * @cpuid: The CPU for PPIs * @map: Pointer to a irq_phys_map structure describing the mapping * @level: Edge-triggered: true: to trigger the interrupt * false: to ignore the call * Level-sensitive true: raise the input signal * false: lower the input signal * * The GIC is not concerned with devices being active-LOW or active-HIGH for * level-sensitive interrupts. You can think of the level parameter as 1 * being HIGH and 0 being LOW and all devices being active-HIGH. */ int kvm_vgic_inject_mapped_irq(struct kvm *kvm, int cpuid, struct irq_phys_map *map, bool level) { int ret; ret = vgic_lazy_init(kvm); if (ret) return ret; return vgic_update_irq_pending(kvm, cpuid, map, map->virt_irq, level); } static irqreturn_t vgic_maintenance_handler(int irq, void *data) { /* * We cannot rely on the vgic maintenance interrupt to be * delivered synchronously. This means we can only use it to * exit the VM, and we perform the handling of EOIed * interrupts on the exit path (see vgic_process_maintenance). */ return IRQ_HANDLED; } static struct list_head *vgic_get_irq_phys_map_list(struct kvm_vcpu *vcpu, int virt_irq) { if (virt_irq < VGIC_NR_PRIVATE_IRQS) return &vcpu->arch.vgic_cpu.irq_phys_map_list; else return &vcpu->kvm->arch.vgic.irq_phys_map_list; } /** * kvm_vgic_map_phys_irq - map a virtual IRQ to a physical IRQ * @vcpu: The VCPU pointer * @virt_irq: The virtual irq number * @irq: The Linux IRQ number * * Establish a mapping between a guest visible irq (@virt_irq) and a * Linux irq (@irq). On injection, @virt_irq will be associated with * the physical interrupt represented by @irq. This mapping can be * established multiple times as long as the parameters are the same. * * Returns a valid pointer on success, and an error pointer otherwise */ struct irq_phys_map *kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, int virt_irq, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq); struct irq_phys_map *map; struct irq_phys_map_entry *entry; struct irq_desc *desc; struct irq_data *data; int phys_irq; desc = irq_to_desc(irq); if (!desc) { kvm_err("%s: no interrupt descriptor\n", __func__); return ERR_PTR(-EINVAL); } data = irq_desc_get_irq_data(desc); while (data->parent_data) data = data->parent_data; phys_irq = data->hwirq; /* Create a new mapping */ entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return ERR_PTR(-ENOMEM); spin_lock(&dist->irq_phys_map_lock); /* Try to match an existing mapping */ map = vgic_irq_map_search(vcpu, virt_irq); if (map) { /* Make sure this mapping matches */ if (map->phys_irq != phys_irq || map->irq != irq) map = ERR_PTR(-EINVAL); /* Found an existing, valid mapping */ goto out; } map = &entry->map; map->virt_irq = virt_irq; map->phys_irq = phys_irq; map->irq = irq; list_add_tail_rcu(&entry->entry, root); out: spin_unlock(&dist->irq_phys_map_lock); /* If we've found a hit in the existing list, free the useless * entry */ if (IS_ERR(map) || map != &entry->map) kfree(entry); return map; } static struct irq_phys_map *vgic_irq_map_search(struct kvm_vcpu *vcpu, int virt_irq) { struct list_head *root = vgic_get_irq_phys_map_list(vcpu, virt_irq); struct irq_phys_map_entry *entry; struct irq_phys_map *map; rcu_read_lock(); list_for_each_entry_rcu(entry, root, entry) { map = &entry->map; if (map->virt_irq == virt_irq) { rcu_read_unlock(); return map; } } rcu_read_unlock(); return NULL; } static void vgic_free_phys_irq_map_rcu(struct rcu_head *rcu) { struct irq_phys_map_entry *entry; entry = container_of(rcu, struct irq_phys_map_entry, rcu); kfree(entry); } /** * kvm_vgic_unmap_phys_irq - Remove a virtual to physical IRQ mapping * @vcpu: The VCPU pointer * @map: The pointer to a mapping obtained through kvm_vgic_map_phys_irq * * Remove an existing mapping between virtual and physical interrupts. */ int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, struct irq_phys_map *map) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; struct irq_phys_map_entry *entry; struct list_head *root; if (!map) return -EINVAL; root = vgic_get_irq_phys_map_list(vcpu, map->virt_irq); spin_lock(&dist->irq_phys_map_lock); list_for_each_entry(entry, root, entry) { if (&entry->map == map) { list_del_rcu(&entry->entry); call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu); break; } } spin_unlock(&dist->irq_phys_map_lock); return 0; } static void vgic_destroy_irq_phys_map(struct kvm *kvm, struct list_head *root) { struct vgic_dist *dist = &kvm->arch.vgic; struct irq_phys_map_entry *entry; spin_lock(&dist->irq_phys_map_lock); list_for_each_entry(entry, root, entry) { list_del_rcu(&entry->entry); call_rcu(&entry->rcu, vgic_free_phys_irq_map_rcu); } spin_unlock(&dist->irq_phys_map_lock); } void kvm_vgic_vcpu_destroy(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; kfree(vgic_cpu->pending_shared); kfree(vgic_cpu->active_shared); kfree(vgic_cpu->pend_act_shared); vgic_destroy_irq_phys_map(vcpu->kvm, &vgic_cpu->irq_phys_map_list); vgic_cpu->pending_shared = NULL; vgic_cpu->active_shared = NULL; vgic_cpu->pend_act_shared = NULL; } static int vgic_vcpu_init_maps(struct kvm_vcpu *vcpu, int nr_irqs) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; int nr_longs = BITS_TO_LONGS(nr_irqs - VGIC_NR_PRIVATE_IRQS); int sz = nr_longs * sizeof(unsigned long); vgic_cpu->pending_shared = kzalloc(sz, GFP_KERNEL); vgic_cpu->active_shared = kzalloc(sz, GFP_KERNEL); vgic_cpu->pend_act_shared = kzalloc(sz, GFP_KERNEL); if (!vgic_cpu->pending_shared || !vgic_cpu->active_shared || !vgic_cpu->pend_act_shared) { kvm_vgic_vcpu_destroy(vcpu); return -ENOMEM; } /* * Store the number of LRs per vcpu, so we don't have to go * all the way to the distributor structure to find out. Only * assembly code should use this one. */ vgic_cpu->nr_lr = vgic->nr_lr; return 0; } /** * kvm_vgic_vcpu_early_init - Earliest possible per-vcpu vgic init stage * * No memory allocation should be performed here, only static init. */ void kvm_vgic_vcpu_early_init(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; INIT_LIST_HEAD(&vgic_cpu->irq_phys_map_list); } /** * kvm_vgic_get_max_vcpus - Get the maximum number of VCPUs allowed by HW * * The host's GIC naturally limits the maximum amount of VCPUs a guest * can use. */ int kvm_vgic_get_max_vcpus(void) { return vgic->max_gic_vcpus; } void kvm_vgic_destroy(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int i; kvm_for_each_vcpu(i, vcpu, kvm) kvm_vgic_vcpu_destroy(vcpu); vgic_free_bitmap(&dist->irq_enabled); vgic_free_bitmap(&dist->irq_level); vgic_free_bitmap(&dist->irq_pending); vgic_free_bitmap(&dist->irq_soft_pend); vgic_free_bitmap(&dist->irq_queued); vgic_free_bitmap(&dist->irq_cfg); vgic_free_bytemap(&dist->irq_priority); if (dist->irq_spi_target) { for (i = 0; i < dist->nr_cpus; i++) vgic_free_bitmap(&dist->irq_spi_target[i]); } kfree(dist->irq_sgi_sources); kfree(dist->irq_spi_cpu); kfree(dist->irq_spi_mpidr); kfree(dist->irq_spi_target); kfree(dist->irq_pending_on_cpu); kfree(dist->irq_active_on_cpu); vgic_destroy_irq_phys_map(kvm, &dist->irq_phys_map_list); dist->irq_sgi_sources = NULL; dist->irq_spi_cpu = NULL; dist->irq_spi_target = NULL; dist->irq_pending_on_cpu = NULL; dist->irq_active_on_cpu = NULL; dist->nr_cpus = 0; } /* * Allocate and initialize the various data structures. Must be called * with kvm->lock held! */ int vgic_init(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int nr_cpus, nr_irqs; int ret, i, vcpu_id; if (vgic_initialized(kvm)) return 0; nr_cpus = dist->nr_cpus = atomic_read(&kvm->online_vcpus); if (!nr_cpus) /* No vcpus? Can't be good... */ return -ENODEV; /* * If nobody configured the number of interrupts, use the * legacy one. */ if (!dist->nr_irqs) dist->nr_irqs = VGIC_NR_IRQS_LEGACY; nr_irqs = dist->nr_irqs; ret = vgic_init_bitmap(&dist->irq_enabled, nr_cpus, nr_irqs); ret |= vgic_init_bitmap(&dist->irq_level, nr_cpus, nr_irqs); ret |= vgic_init_bitmap(&dist->irq_pending, nr_cpus, nr_irqs); ret |= vgic_init_bitmap(&dist->irq_soft_pend, nr_cpus, nr_irqs); ret |= vgic_init_bitmap(&dist->irq_queued, nr_cpus, nr_irqs); ret |= vgic_init_bitmap(&dist->irq_active, nr_cpus, nr_irqs); ret |= vgic_init_bitmap(&dist->irq_cfg, nr_cpus, nr_irqs); ret |= vgic_init_bytemap(&dist->irq_priority, nr_cpus, nr_irqs); if (ret) goto out; dist->irq_sgi_sources = kzalloc(nr_cpus * VGIC_NR_SGIS, GFP_KERNEL); dist->irq_spi_cpu = kzalloc(nr_irqs - VGIC_NR_PRIVATE_IRQS, GFP_KERNEL); dist->irq_spi_target = kzalloc(sizeof(*dist->irq_spi_target) * nr_cpus, GFP_KERNEL); dist->irq_pending_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long), GFP_KERNEL); dist->irq_active_on_cpu = kzalloc(BITS_TO_LONGS(nr_cpus) * sizeof(long), GFP_KERNEL); if (!dist->irq_sgi_sources || !dist->irq_spi_cpu || !dist->irq_spi_target || !dist->irq_pending_on_cpu || !dist->irq_active_on_cpu) { ret = -ENOMEM; goto out; } for (i = 0; i < nr_cpus; i++) ret |= vgic_init_bitmap(&dist->irq_spi_target[i], nr_cpus, nr_irqs); if (ret) goto out; ret = kvm->arch.vgic.vm_ops.init_model(kvm); if (ret) goto out; kvm_for_each_vcpu(vcpu_id, vcpu, kvm) { ret = vgic_vcpu_init_maps(vcpu, nr_irqs); if (ret) { kvm_err("VGIC: Failed to allocate vcpu memory\n"); break; } /* * Enable and configure all SGIs to be edge-triggere and * configure all PPIs as level-triggered. */ for (i = 0; i < VGIC_NR_PRIVATE_IRQS; i++) { if (i < VGIC_NR_SGIS) { /* SGIs */ vgic_bitmap_set_irq_val(&dist->irq_enabled, vcpu->vcpu_id, i, 1); vgic_bitmap_set_irq_val(&dist->irq_cfg, vcpu->vcpu_id, i, VGIC_CFG_EDGE); } else if (i < VGIC_NR_PRIVATE_IRQS) { /* PPIs */ vgic_bitmap_set_irq_val(&dist->irq_cfg, vcpu->vcpu_id, i, VGIC_CFG_LEVEL); } } vgic_enable(vcpu); } out: if (ret) kvm_vgic_destroy(kvm); return ret; } static int init_vgic_model(struct kvm *kvm, int type) { switch (type) { case KVM_DEV_TYPE_ARM_VGIC_V2: vgic_v2_init_emulation(kvm); break; #ifdef CONFIG_KVM_ARM_VGIC_V3 case KVM_DEV_TYPE_ARM_VGIC_V3: vgic_v3_init_emulation(kvm); break; #endif default: return -ENODEV; } if (atomic_read(&kvm->online_vcpus) > kvm->arch.max_vcpus) return -E2BIG; return 0; } /** * kvm_vgic_early_init - Earliest possible vgic initialization stage * * No memory allocation should be performed here, only static init. */ void kvm_vgic_early_init(struct kvm *kvm) { spin_lock_init(&kvm->arch.vgic.lock); spin_lock_init(&kvm->arch.vgic.irq_phys_map_lock); INIT_LIST_HEAD(&kvm->arch.vgic.irq_phys_map_list); } int kvm_vgic_create(struct kvm *kvm, u32 type) { int i, vcpu_lock_idx = -1, ret; struct kvm_vcpu *vcpu; mutex_lock(&kvm->lock); if (irqchip_in_kernel(kvm)) { ret = -EEXIST; goto out; } /* * This function is also called by the KVM_CREATE_IRQCHIP handler, * which had no chance yet to check the availability of the GICv2 * emulation. So check this here again. KVM_CREATE_DEVICE does * the proper checks already. */ if (type == KVM_DEV_TYPE_ARM_VGIC_V2 && !vgic->can_emulate_gicv2) { ret = -ENODEV; goto out; } /* * Any time a vcpu is run, vcpu_load is called which tries to grab the * vcpu->mutex. By grabbing the vcpu->mutex of all VCPUs we ensure * that no other VCPUs are run while we create the vgic. */ ret = -EBUSY; kvm_for_each_vcpu(i, vcpu, kvm) { if (!mutex_trylock(&vcpu->mutex)) goto out_unlock; vcpu_lock_idx = i; } kvm_for_each_vcpu(i, vcpu, kvm) { if (vcpu->arch.has_run_once) goto out_unlock; } ret = 0; ret = init_vgic_model(kvm, type); if (ret) goto out_unlock; kvm->arch.vgic.in_kernel = true; kvm->arch.vgic.vgic_model = type; kvm->arch.vgic.vctrl_base = vgic->vctrl_base; kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; kvm->arch.vgic.vgic_redist_base = VGIC_ADDR_UNDEF; out_unlock: for (; vcpu_lock_idx >= 0; vcpu_lock_idx--) { vcpu = kvm_get_vcpu(kvm, vcpu_lock_idx); mutex_unlock(&vcpu->mutex); } out: mutex_unlock(&kvm->lock); return ret; } static int vgic_ioaddr_overlap(struct kvm *kvm) { phys_addr_t dist = kvm->arch.vgic.vgic_dist_base; phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base; if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu)) return 0; if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) || (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist)) return -EBUSY; return 0; } static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr, phys_addr_t addr, phys_addr_t size) { int ret; if (addr & ~KVM_PHYS_MASK) return -E2BIG; if (addr & (SZ_4K - 1)) return -EINVAL; if (!IS_VGIC_ADDR_UNDEF(*ioaddr)) return -EEXIST; if (addr + size < addr) return -EINVAL; *ioaddr = addr; ret = vgic_ioaddr_overlap(kvm); if (ret) *ioaddr = VGIC_ADDR_UNDEF; return ret; } /** * kvm_vgic_addr - set or get vgic VM base addresses * @kvm: pointer to the vm struct * @type: the VGIC addr type, one of KVM_VGIC_V[23]_ADDR_TYPE_XXX * @addr: pointer to address value * @write: if true set the address in the VM address space, if false read the * address * * Set or get the vgic base addresses for the distributor and the virtual CPU * interface in the VM physical address space. These addresses are properties * of the emulated core/SoC and therefore user space initially knows this * information. */ int kvm_vgic_addr(struct kvm *kvm, unsigned long type, u64 *addr, bool write) { int r = 0; struct vgic_dist *vgic = &kvm->arch.vgic; int type_needed; phys_addr_t *addr_ptr, block_size; phys_addr_t alignment; mutex_lock(&kvm->lock); switch (type) { case KVM_VGIC_V2_ADDR_TYPE_DIST: type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; addr_ptr = &vgic->vgic_dist_base; block_size = KVM_VGIC_V2_DIST_SIZE; alignment = SZ_4K; break; case KVM_VGIC_V2_ADDR_TYPE_CPU: type_needed = KVM_DEV_TYPE_ARM_VGIC_V2; addr_ptr = &vgic->vgic_cpu_base; block_size = KVM_VGIC_V2_CPU_SIZE; alignment = SZ_4K; break; #ifdef CONFIG_KVM_ARM_VGIC_V3 case KVM_VGIC_V3_ADDR_TYPE_DIST: type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; addr_ptr = &vgic->vgic_dist_base; block_size = KVM_VGIC_V3_DIST_SIZE; alignment = SZ_64K; break; case KVM_VGIC_V3_ADDR_TYPE_REDIST: type_needed = KVM_DEV_TYPE_ARM_VGIC_V3; addr_ptr = &vgic->vgic_redist_base; block_size = KVM_VGIC_V3_REDIST_SIZE; alignment = SZ_64K; break; #endif default: r = -ENODEV; goto out; } if (vgic->vgic_model != type_needed) { r = -ENODEV; goto out; } if (write) { if (!IS_ALIGNED(*addr, alignment)) r = -EINVAL; else r = vgic_ioaddr_assign(kvm, addr_ptr, *addr, block_size); } else { *addr = *addr_ptr; } out: mutex_unlock(&kvm->lock); return r; } int vgic_set_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r; switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_ADDR: { u64 __user *uaddr = (u64 __user *)(long)attr->addr; u64 addr; unsigned long type = (unsigned long)attr->attr; if (copy_from_user(&addr, uaddr, sizeof(addr))) return -EFAULT; r = kvm_vgic_addr(dev->kvm, type, &addr, true); return (r == -ENODEV) ? -ENXIO : r; } case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { u32 __user *uaddr = (u32 __user *)(long)attr->addr; u32 val; int ret = 0; if (get_user(val, uaddr)) return -EFAULT; /* * We require: * - at least 32 SPIs on top of the 16 SGIs and 16 PPIs * - at most 1024 interrupts * - a multiple of 32 interrupts */ if (val < (VGIC_NR_PRIVATE_IRQS + 32) || val > VGIC_MAX_IRQS || (val & 31)) return -EINVAL; mutex_lock(&dev->kvm->lock); if (vgic_ready(dev->kvm) || dev->kvm->arch.vgic.nr_irqs) ret = -EBUSY; else dev->kvm->arch.vgic.nr_irqs = val; mutex_unlock(&dev->kvm->lock); return ret; } case KVM_DEV_ARM_VGIC_GRP_CTRL: { switch (attr->attr) { case KVM_DEV_ARM_VGIC_CTRL_INIT: r = vgic_init(dev->kvm); return r; } break; } } return -ENXIO; } int vgic_get_common_attr(struct kvm_device *dev, struct kvm_device_attr *attr) { int r = -ENXIO; switch (attr->group) { case KVM_DEV_ARM_VGIC_GRP_ADDR: { u64 __user *uaddr = (u64 __user *)(long)attr->addr; u64 addr; unsigned long type = (unsigned long)attr->attr; r = kvm_vgic_addr(dev->kvm, type, &addr, false); if (r) return (r == -ENODEV) ? -ENXIO : r; if (copy_to_user(uaddr, &addr, sizeof(addr))) return -EFAULT; break; } case KVM_DEV_ARM_VGIC_GRP_NR_IRQS: { u32 __user *uaddr = (u32 __user *)(long)attr->addr; r = put_user(dev->kvm->arch.vgic.nr_irqs, uaddr); break; } } return r; } int vgic_has_attr_regs(const struct vgic_io_range *ranges, phys_addr_t offset) { if (vgic_find_range(ranges, 4, offset)) return 0; else return -ENXIO; } static void vgic_init_maintenance_interrupt(void *info) { enable_percpu_irq(vgic->maint_irq, 0); } static int vgic_cpu_notify(struct notifier_block *self, unsigned long action, void *cpu) { switch (action) { case CPU_STARTING: case CPU_STARTING_FROZEN: vgic_init_maintenance_interrupt(NULL); break; case CPU_DYING: case CPU_DYING_FROZEN: disable_percpu_irq(vgic->maint_irq); break; } return NOTIFY_OK; } static struct notifier_block vgic_cpu_nb = { .notifier_call = vgic_cpu_notify, }; static int kvm_vgic_probe(void) { const struct gic_kvm_info *gic_kvm_info; int ret; gic_kvm_info = gic_get_kvm_info(); if (!gic_kvm_info) return -ENODEV; switch (gic_kvm_info->type) { case GIC_V2: ret = vgic_v2_probe(gic_kvm_info, &vgic_ops, &vgic); break; case GIC_V3: ret = vgic_v3_probe(gic_kvm_info, &vgic_ops, &vgic); break; default: ret = -ENODEV; } return ret; } int kvm_vgic_hyp_init(void) { int ret; ret = kvm_vgic_probe(); if (ret) { kvm_err("error: KVM vGIC probing failed\n"); return ret; } ret = request_percpu_irq(vgic->maint_irq, vgic_maintenance_handler, "vgic", kvm_get_running_vcpus()); if (ret) { kvm_err("Cannot register interrupt %d\n", vgic->maint_irq); return ret; } ret = __register_cpu_notifier(&vgic_cpu_nb); if (ret) { kvm_err("Cannot register vgic CPU notifier\n"); goto out_free_irq; } on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1); return 0; out_free_irq: free_percpu_irq(vgic->maint_irq, kvm_get_running_vcpus()); return ret; } int kvm_irq_map_gsi(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *entries, int gsi) { return 0; } int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin) { return pin; } int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level, bool line_status) { unsigned int spi = irq + VGIC_NR_PRIVATE_IRQS; trace_kvm_set_irq(irq, level, irq_source_id); BUG_ON(!vgic_initialized(kvm)); return kvm_vgic_inject_irq(kvm, 0, spi, level); } /* MSI not implemented yet */ int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm, int irq_source_id, int level, bool line_status) { return 0; }