// SPDX-License-Identifier: GPL-2.0-only /* * Stress userfaultfd syscall. * * Copyright (C) 2015 Red Hat, Inc. * * This test allocates two virtual areas and bounces the physical * memory across the two virtual areas (from area_src to area_dst) * using userfaultfd. * * There are three threads running per CPU: * * 1) one per-CPU thread takes a per-page pthread_mutex in a random * page of the area_dst (while the physical page may still be in * area_src), and increments a per-page counter in the same page, * and checks its value against a verification region. * * 2) another per-CPU thread handles the userfaults generated by * thread 1 above. userfaultfd blocking reads or poll() modes are * exercised interleaved. * * 3) one last per-CPU thread transfers the memory in the background * at maximum bandwidth (if not already transferred by thread * 2). Each cpu thread takes cares of transferring a portion of the * area. * * When all threads of type 3 completed the transfer, one bounce is * complete. area_src and area_dst are then swapped. All threads are * respawned and so the bounce is immediately restarted in the * opposite direction. * * per-CPU threads 1 by triggering userfaults inside * pthread_mutex_lock will also verify the atomicity of the memory * transfer (UFFDIO_COPY). */ #include "uffd-common.h" #ifdef __NR_userfaultfd #define BOUNCE_RANDOM (1<<0) #define BOUNCE_RACINGFAULTS (1<<1) #define BOUNCE_VERIFY (1<<2) #define BOUNCE_POLL (1<<3) static int bounces; /* exercise the test_uffdio_*_eexist every ALARM_INTERVAL_SECS */ #define ALARM_INTERVAL_SECS 10 static char *zeropage; pthread_attr_t attr; #define swap(a, b) \ do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0) #define factor_of_2(x) ((x) ^ ((x) & ((x) - 1))) const char *examples = "# Run anonymous memory test on 100MiB region with 99999 bounces:\n" "./userfaultfd anon 100 99999\n\n" "# Run the same anonymous memory test, but using /dev/userfaultfd:\n" "./userfaultfd anon:dev 100 99999\n\n" "# Run share memory test on 1GiB region with 99 bounces:\n" "./userfaultfd shmem 1000 99\n\n" "# Run hugetlb memory test on 256MiB region with 50 bounces:\n" "./userfaultfd hugetlb 256 50\n\n" "# Run the same hugetlb test but using shared file:\n" "./userfaultfd hugetlb_shared 256 50\n\n" "# 10MiB-~6GiB 999 bounces anonymous test, " "continue forever unless an error triggers\n" "while ./userfaultfd anon $[RANDOM % 6000 + 10] 999; do true; done\n\n"; static void usage(void) { fprintf(stderr, "\nUsage: ./userfaultfd " "[hugetlbfs_file]\n\n"); fprintf(stderr, "Supported : anon, hugetlb, " "hugetlb_shared, shmem\n\n"); fprintf(stderr, "'Test mods' can be joined to the test type string with a ':'. " "Supported mods:\n"); fprintf(stderr, "\tsyscall - Use userfaultfd(2) (default)\n"); fprintf(stderr, "\tdev - Use /dev/userfaultfd instead of userfaultfd(2)\n"); fprintf(stderr, "\tcollapse - Test MADV_COLLAPSE of UFFDIO_REGISTER_MODE_MINOR\n" "memory\n"); fprintf(stderr, "\nExample test mod usage:\n"); fprintf(stderr, "# Run anonymous memory test with /dev/userfaultfd:\n"); fprintf(stderr, "./userfaultfd anon:dev 100 99999\n\n"); fprintf(stderr, "Examples:\n\n"); fprintf(stderr, "%s", examples); exit(1); } static void uffd_stats_reset(struct uffd_args *args, unsigned long n_cpus) { int i; for (i = 0; i < n_cpus; i++) { args[i].cpu = i; args[i].apply_wp = test_uffdio_wp; args[i].missing_faults = 0; args[i].wp_faults = 0; args[i].minor_faults = 0; } } static inline uint64_t uffd_minor_feature(void) { if (test_type == TEST_HUGETLB && map_shared) return UFFD_FEATURE_MINOR_HUGETLBFS; else if (test_type == TEST_SHMEM) return UFFD_FEATURE_MINOR_SHMEM; else return 0; } static int my_bcmp(char *str1, char *str2, size_t n) { unsigned long i; for (i = 0; i < n; i++) if (str1[i] != str2[i]) return 1; return 0; } static void *locking_thread(void *arg) { unsigned long cpu = (unsigned long) arg; unsigned long page_nr; unsigned long long count; if (!(bounces & BOUNCE_RANDOM)) { page_nr = -bounces; if (!(bounces & BOUNCE_RACINGFAULTS)) page_nr += cpu * nr_pages_per_cpu; } while (!finished) { if (bounces & BOUNCE_RANDOM) { if (getrandom(&page_nr, sizeof(page_nr), 0) != sizeof(page_nr)) err("getrandom failed"); } else page_nr += 1; page_nr %= nr_pages; pthread_mutex_lock(area_mutex(area_dst, page_nr)); count = *area_count(area_dst, page_nr); if (count != count_verify[page_nr]) err("page_nr %lu memory corruption %llu %llu", page_nr, count, count_verify[page_nr]); count++; *area_count(area_dst, page_nr) = count_verify[page_nr] = count; pthread_mutex_unlock(area_mutex(area_dst, page_nr)); } return NULL; } static int copy_page_retry(int ufd, unsigned long offset) { return __copy_page(ufd, offset, true, test_uffdio_wp); } pthread_mutex_t uffd_read_mutex = PTHREAD_MUTEX_INITIALIZER; static void *uffd_read_thread(void *arg) { struct uffd_args *args = (struct uffd_args *)arg; struct uffd_msg msg; pthread_mutex_unlock(&uffd_read_mutex); /* from here cancellation is ok */ for (;;) { if (uffd_read_msg(uffd, &msg)) continue; uffd_handle_page_fault(&msg, args); } return NULL; } static void *background_thread(void *arg) { unsigned long cpu = (unsigned long) arg; unsigned long page_nr, start_nr, mid_nr, end_nr; start_nr = cpu * nr_pages_per_cpu; end_nr = (cpu+1) * nr_pages_per_cpu; mid_nr = (start_nr + end_nr) / 2; /* Copy the first half of the pages */ for (page_nr = start_nr; page_nr < mid_nr; page_nr++) copy_page_retry(uffd, page_nr * page_size); /* * If we need to test uffd-wp, set it up now. Then we'll have * at least the first half of the pages mapped already which * can be write-protected for testing */ if (test_uffdio_wp) wp_range(uffd, (unsigned long)area_dst + start_nr * page_size, nr_pages_per_cpu * page_size, true); /* * Continue the 2nd half of the page copying, handling write * protection faults if any */ for (page_nr = mid_nr; page_nr < end_nr; page_nr++) copy_page_retry(uffd, page_nr * page_size); return NULL; } static int stress(struct uffd_args *args) { unsigned long cpu; pthread_t locking_threads[nr_cpus]; pthread_t uffd_threads[nr_cpus]; pthread_t background_threads[nr_cpus]; finished = 0; for (cpu = 0; cpu < nr_cpus; cpu++) { if (pthread_create(&locking_threads[cpu], &attr, locking_thread, (void *)cpu)) return 1; if (bounces & BOUNCE_POLL) { if (pthread_create(&uffd_threads[cpu], &attr, uffd_poll_thread, (void *)&args[cpu])) return 1; } else { if (pthread_create(&uffd_threads[cpu], &attr, uffd_read_thread, (void *)&args[cpu])) return 1; pthread_mutex_lock(&uffd_read_mutex); } if (pthread_create(&background_threads[cpu], &attr, background_thread, (void *)cpu)) return 1; } for (cpu = 0; cpu < nr_cpus; cpu++) if (pthread_join(background_threads[cpu], NULL)) return 1; /* * Be strict and immediately zap area_src, the whole area has * been transferred already by the background treads. The * area_src could then be faulted in a racy way by still * running uffdio_threads reading zeropages after we zapped * area_src (but they're guaranteed to get -EEXIST from * UFFDIO_COPY without writing zero pages into area_dst * because the background threads already completed). */ uffd_test_ops->release_pages(area_src); finished = 1; for (cpu = 0; cpu < nr_cpus; cpu++) if (pthread_join(locking_threads[cpu], NULL)) return 1; for (cpu = 0; cpu < nr_cpus; cpu++) { char c; if (bounces & BOUNCE_POLL) { if (write(pipefd[cpu*2+1], &c, 1) != 1) err("pipefd write error"); if (pthread_join(uffd_threads[cpu], (void *)&args[cpu])) return 1; } else { if (pthread_cancel(uffd_threads[cpu])) return 1; if (pthread_join(uffd_threads[cpu], NULL)) return 1; } } return 0; } sigjmp_buf jbuf, *sigbuf; static void sighndl(int sig, siginfo_t *siginfo, void *ptr) { if (sig == SIGBUS) { if (sigbuf) siglongjmp(*sigbuf, 1); abort(); } } /* * For non-cooperative userfaultfd test we fork() a process that will * generate pagefaults, will mremap the area monitored by the * userfaultfd and at last this process will release the monitored * area. * For the anonymous and shared memory the area is divided into two * parts, the first part is accessed before mremap, and the second * part is accessed after mremap. Since hugetlbfs does not support * mremap, the entire monitored area is accessed in a single pass for * HUGETLB_TEST. * The release of the pages currently generates event for shmem and * anonymous memory (UFFD_EVENT_REMOVE), hence it is not checked * for hugetlb. * For signal test(UFFD_FEATURE_SIGBUS), signal_test = 1, we register * monitored area, generate pagefaults and test that signal is delivered. * Use UFFDIO_COPY to allocate missing page and retry. For signal_test = 2 * test robustness use case - we release monitored area, fork a process * that will generate pagefaults and verify signal is generated. * This also tests UFFD_FEATURE_EVENT_FORK event along with the signal * feature. Using monitor thread, verify no userfault events are generated. */ static int faulting_process(int signal_test, bool wp) { unsigned long nr; unsigned long long count; unsigned long split_nr_pages; unsigned long lastnr; struct sigaction act; volatile unsigned long signalled = 0; split_nr_pages = (nr_pages + 1) / 2; if (signal_test) { sigbuf = &jbuf; memset(&act, 0, sizeof(act)); act.sa_sigaction = sighndl; act.sa_flags = SA_SIGINFO; if (sigaction(SIGBUS, &act, 0)) err("sigaction"); lastnr = (unsigned long)-1; } for (nr = 0; nr < split_nr_pages; nr++) { volatile int steps = 1; unsigned long offset = nr * page_size; if (signal_test) { if (sigsetjmp(*sigbuf, 1) != 0) { if (steps == 1 && nr == lastnr) err("Signal repeated"); lastnr = nr; if (signal_test == 1) { if (steps == 1) { /* This is a MISSING request */ steps++; if (copy_page(uffd, offset, wp)) signalled++; } else { /* This is a WP request */ assert(steps == 2); wp_range(uffd, (__u64)area_dst + offset, page_size, false); } } else { signalled++; continue; } } } count = *area_count(area_dst, nr); if (count != count_verify[nr]) err("nr %lu memory corruption %llu %llu\n", nr, count, count_verify[nr]); /* * Trigger write protection if there is by writing * the same value back. */ *area_count(area_dst, nr) = count; } if (signal_test) return signalled != split_nr_pages; area_dst = mremap(area_dst, nr_pages * page_size, nr_pages * page_size, MREMAP_MAYMOVE | MREMAP_FIXED, area_src); if (area_dst == MAP_FAILED) err("mremap"); /* Reset area_src since we just clobbered it */ area_src = NULL; for (; nr < nr_pages; nr++) { count = *area_count(area_dst, nr); if (count != count_verify[nr]) { err("nr %lu memory corruption %llu %llu\n", nr, count, count_verify[nr]); } /* * Trigger write protection if there is by writing * the same value back. */ *area_count(area_dst, nr) = count; } uffd_test_ops->release_pages(area_dst); for (nr = 0; nr < nr_pages; nr++) if (my_bcmp(area_dst + nr * page_size, zeropage, page_size)) err("nr %lu is not zero", nr); return 0; } static void retry_uffdio_zeropage(int ufd, struct uffdio_zeropage *uffdio_zeropage, unsigned long offset) { uffd_test_ops->alias_mapping(&uffdio_zeropage->range.start, uffdio_zeropage->range.len, offset); if (ioctl(ufd, UFFDIO_ZEROPAGE, uffdio_zeropage)) { if (uffdio_zeropage->zeropage != -EEXIST) err("UFFDIO_ZEROPAGE error: %"PRId64, (int64_t)uffdio_zeropage->zeropage); } else { err("UFFDIO_ZEROPAGE error: %"PRId64, (int64_t)uffdio_zeropage->zeropage); } } static int __uffdio_zeropage(int ufd, unsigned long offset) { struct uffdio_zeropage uffdio_zeropage; int ret; bool has_zeropage = !(test_type == TEST_HUGETLB); __s64 res; if (offset >= nr_pages * page_size) err("unexpected offset %lu", offset); uffdio_zeropage.range.start = (unsigned long) area_dst + offset; uffdio_zeropage.range.len = page_size; uffdio_zeropage.mode = 0; ret = ioctl(ufd, UFFDIO_ZEROPAGE, &uffdio_zeropage); res = uffdio_zeropage.zeropage; if (ret) { /* real retval in ufdio_zeropage.zeropage */ if (has_zeropage) err("UFFDIO_ZEROPAGE error: %"PRId64, (int64_t)res); else if (res != -EINVAL) err("UFFDIO_ZEROPAGE not -EINVAL"); } else if (has_zeropage) { if (res != page_size) { err("UFFDIO_ZEROPAGE unexpected size"); } else { retry_uffdio_zeropage(ufd, &uffdio_zeropage, offset); return 1; } } else err("UFFDIO_ZEROPAGE succeeded"); return 0; } static int uffdio_zeropage(int ufd, unsigned long offset) { return __uffdio_zeropage(ufd, offset); } /* exercise UFFDIO_ZEROPAGE */ static int userfaultfd_zeropage_test(void) { printf("testing UFFDIO_ZEROPAGE: "); fflush(stdout); uffd_test_ctx_init(0); if (uffd_register(uffd, area_dst, nr_pages * page_size, true, test_uffdio_wp, false)) err("register failure"); if (area_dst_alias) { /* Needed this to test zeropage-retry on shared memory */ if (uffd_register(uffd, area_dst_alias, nr_pages * page_size, true, test_uffdio_wp, false)) err("register failure"); } if (uffdio_zeropage(uffd, 0)) if (my_bcmp(area_dst, zeropage, page_size)) err("zeropage is not zero"); printf("done.\n"); return 0; } static int userfaultfd_events_test(void) { pthread_t uffd_mon; int err, features; pid_t pid; char c; struct uffd_args args = { 0 }; printf("testing events (fork, remap, remove): "); fflush(stdout); features = UFFD_FEATURE_EVENT_FORK | UFFD_FEATURE_EVENT_REMAP | UFFD_FEATURE_EVENT_REMOVE; uffd_test_ctx_init(features); fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); if (uffd_register(uffd, area_dst, nr_pages * page_size, true, test_uffdio_wp, false)) err("register failure"); args.apply_wp = test_uffdio_wp; if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, &args)) err("uffd_poll_thread create"); pid = fork(); if (pid < 0) err("fork"); if (!pid) exit(faulting_process(0, test_uffdio_wp)); waitpid(pid, &err, 0); if (err) err("faulting process failed"); if (write(pipefd[1], &c, sizeof(c)) != sizeof(c)) err("pipe write"); if (pthread_join(uffd_mon, NULL)) return 1; uffd_stats_report(&args, 1); return args.missing_faults != nr_pages; } static int userfaultfd_sig_test(void) { unsigned long userfaults; pthread_t uffd_mon; int err, features; pid_t pid; char c; struct uffd_args args = { 0 }; printf("testing signal delivery: "); fflush(stdout); features = UFFD_FEATURE_EVENT_FORK|UFFD_FEATURE_SIGBUS; uffd_test_ctx_init(features); fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); if (uffd_register(uffd, area_dst, nr_pages * page_size, true, test_uffdio_wp, false)) err("register failure"); if (faulting_process(1, test_uffdio_wp)) err("faulting process failed"); uffd_test_ops->release_pages(area_dst); args.apply_wp = test_uffdio_wp; if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, &args)) err("uffd_poll_thread create"); pid = fork(); if (pid < 0) err("fork"); if (!pid) exit(faulting_process(2, test_uffdio_wp)); waitpid(pid, &err, 0); if (err) err("faulting process failed"); if (write(pipefd[1], &c, sizeof(c)) != sizeof(c)) err("pipe write"); if (pthread_join(uffd_mon, (void **)&userfaults)) return 1; printf("done.\n"); if (userfaults) err("Signal test failed, userfaults: %ld", userfaults); return userfaults != 0; } void check_memory_contents(char *p) { unsigned long i; uint8_t expected_byte; void *expected_page; if (posix_memalign(&expected_page, page_size, page_size)) err("out of memory"); for (i = 0; i < nr_pages; ++i) { expected_byte = ~((uint8_t)(i % ((uint8_t)-1))); memset(expected_page, expected_byte, page_size); if (my_bcmp(expected_page, p + (i * page_size), page_size)) err("unexpected page contents after minor fault"); } free(expected_page); } static int userfaultfd_minor_test(void) { unsigned long p; pthread_t uffd_mon; char c; struct uffd_args args = { 0 }; if (!test_uffdio_minor) return 0; printf("testing minor faults: "); fflush(stdout); uffd_test_ctx_init(uffd_minor_feature()); if (uffd_register(uffd, area_dst_alias, nr_pages * page_size, false, test_uffdio_wp, true)) err("register failure"); /* * After registering with UFFD, populate the non-UFFD-registered side of * the shared mapping. This should *not* trigger any UFFD minor faults. */ for (p = 0; p < nr_pages; ++p) { memset(area_dst + (p * page_size), p % ((uint8_t)-1), page_size); } args.apply_wp = test_uffdio_wp; if (pthread_create(&uffd_mon, &attr, uffd_poll_thread, &args)) err("uffd_poll_thread create"); /* * Read each of the pages back using the UFFD-registered mapping. We * expect that the first time we touch a page, it will result in a minor * fault. uffd_poll_thread will resolve the fault by bit-flipping the * page's contents, and then issuing a CONTINUE ioctl. */ check_memory_contents(area_dst_alias); if (write(pipefd[1], &c, sizeof(c)) != sizeof(c)) err("pipe write"); if (pthread_join(uffd_mon, NULL)) return 1; uffd_stats_report(&args, 1); if (test_collapse) { printf("testing collapse of uffd memory into PMD-mapped THPs:"); if (madvise(area_dst_alias, nr_pages * page_size, MADV_COLLAPSE)) err("madvise(MADV_COLLAPSE)"); uffd_test_ops->check_pmd_mapping(area_dst, nr_pages * page_size / read_pmd_pagesize()); /* * This won't cause uffd-fault - it purely just makes sure there * was no corruption. */ check_memory_contents(area_dst_alias); printf(" done.\n"); } return args.missing_faults != 0 || args.minor_faults != nr_pages; } static int pagemap_open(void) { int fd = open("/proc/self/pagemap", O_RDONLY); if (fd < 0) err("open pagemap"); return fd; } /* This macro let __LINE__ works in err() */ #define pagemap_check_wp(value, wp) do { \ if (!!(value & PM_UFFD_WP) != wp) \ err("pagemap uffd-wp bit error: 0x%"PRIx64, value); \ } while (0) static int pagemap_test_fork(bool present) { pid_t child = fork(); uint64_t value; int fd, result; if (!child) { /* Open the pagemap fd of the child itself */ fd = pagemap_open(); value = pagemap_get_entry(fd, area_dst); /* * After fork() uffd-wp bit should be gone as long as we're * without UFFD_FEATURE_EVENT_FORK */ pagemap_check_wp(value, false); /* Succeed */ exit(0); } waitpid(child, &result, 0); return result; } static void userfaultfd_wp_unpopulated_test(int pagemap_fd) { uint64_t value; /* Test applying pte marker to anon unpopulated */ wp_range(uffd, (uint64_t)area_dst, page_size, true); value = pagemap_get_entry(pagemap_fd, area_dst); pagemap_check_wp(value, true); /* Test unprotect on anon pte marker */ wp_range(uffd, (uint64_t)area_dst, page_size, false); value = pagemap_get_entry(pagemap_fd, area_dst); pagemap_check_wp(value, false); /* Test zap on anon marker */ wp_range(uffd, (uint64_t)area_dst, page_size, true); if (madvise(area_dst, page_size, MADV_DONTNEED)) err("madvise(MADV_DONTNEED) failed"); value = pagemap_get_entry(pagemap_fd, area_dst); pagemap_check_wp(value, false); /* Test fault in after marker removed */ *area_dst = 1; value = pagemap_get_entry(pagemap_fd, area_dst); pagemap_check_wp(value, false); /* Drop it to make pte none again */ if (madvise(area_dst, page_size, MADV_DONTNEED)) err("madvise(MADV_DONTNEED) failed"); /* Test read-zero-page upon pte marker */ wp_range(uffd, (uint64_t)area_dst, page_size, true); *(volatile char *)area_dst; /* Drop it to make pte none again */ if (madvise(area_dst, page_size, MADV_DONTNEED)) err("madvise(MADV_DONTNEED) failed"); } static void userfaultfd_pagemap_test(unsigned int test_pgsize) { int pagemap_fd; uint64_t value; /* Pagemap tests uffd-wp only */ if (!test_uffdio_wp) return; /* Not enough memory to test this page size */ if (test_pgsize > nr_pages * page_size) return; printf("testing uffd-wp with pagemap (pgsize=%u): ", test_pgsize); /* Flush so it doesn't flush twice in parent/child later */ fflush(stdout); uffd_test_ctx_init(UFFD_FEATURE_WP_UNPOPULATED); if (test_pgsize > page_size) { /* This is a thp test */ if (madvise(area_dst, nr_pages * page_size, MADV_HUGEPAGE)) err("madvise(MADV_HUGEPAGE) failed"); } else if (test_pgsize == page_size) { /* This is normal page test; force no thp */ if (madvise(area_dst, nr_pages * page_size, MADV_NOHUGEPAGE)) err("madvise(MADV_NOHUGEPAGE) failed"); } if (uffd_register(uffd, area_dst, nr_pages * page_size, false, true, false)) err("register failed"); pagemap_fd = pagemap_open(); /* Smoke test WP_UNPOPULATED first when it's still empty */ if (test_pgsize == page_size) userfaultfd_wp_unpopulated_test(pagemap_fd); /* Touch the page */ *area_dst = 1; wp_range(uffd, (uint64_t)area_dst, test_pgsize, true); value = pagemap_get_entry(pagemap_fd, area_dst); pagemap_check_wp(value, true); /* Make sure uffd-wp bit dropped when fork */ if (pagemap_test_fork(true)) err("Detected stall uffd-wp bit in child"); /* Exclusive required or PAGEOUT won't work */ if (!(value & PM_MMAP_EXCLUSIVE)) err("multiple mapping detected: 0x%"PRIx64, value); if (madvise(area_dst, test_pgsize, MADV_PAGEOUT)) err("madvise(MADV_PAGEOUT) failed"); /* Uffd-wp should persist even swapped out */ value = pagemap_get_entry(pagemap_fd, area_dst); pagemap_check_wp(value, true); /* Make sure uffd-wp bit dropped when fork */ if (pagemap_test_fork(false)) err("Detected stall uffd-wp bit in child"); /* Unprotect; this tests swap pte modifications */ wp_range(uffd, (uint64_t)area_dst, page_size, false); value = pagemap_get_entry(pagemap_fd, area_dst); pagemap_check_wp(value, false); /* Fault in the page from disk */ *area_dst = 2; value = pagemap_get_entry(pagemap_fd, area_dst); pagemap_check_wp(value, false); close(pagemap_fd); printf("done\n"); } static int userfaultfd_stress(void) { void *area; unsigned long nr; struct uffd_args args[nr_cpus]; uint64_t mem_size = nr_pages * page_size; uffd_test_ctx_init(UFFD_FEATURE_WP_UNPOPULATED); if (posix_memalign(&area, page_size, page_size)) err("out of memory"); zeropage = area; bzero(zeropage, page_size); pthread_mutex_lock(&uffd_read_mutex); pthread_attr_init(&attr); pthread_attr_setstacksize(&attr, 16*1024*1024); while (bounces--) { printf("bounces: %d, mode:", bounces); if (bounces & BOUNCE_RANDOM) printf(" rnd"); if (bounces & BOUNCE_RACINGFAULTS) printf(" racing"); if (bounces & BOUNCE_VERIFY) printf(" ver"); if (bounces & BOUNCE_POLL) printf(" poll"); else printf(" read"); printf(", "); fflush(stdout); if (bounces & BOUNCE_POLL) fcntl(uffd, F_SETFL, uffd_flags | O_NONBLOCK); else fcntl(uffd, F_SETFL, uffd_flags & ~O_NONBLOCK); /* register */ if (uffd_register(uffd, area_dst, mem_size, true, test_uffdio_wp, false)) err("register failure"); if (area_dst_alias) { if (uffd_register(uffd, area_dst_alias, mem_size, true, test_uffdio_wp, false)) err("register failure alias"); } /* * The madvise done previously isn't enough: some * uffd_thread could have read userfaults (one of * those already resolved by the background thread) * and it may be in the process of calling * UFFDIO_COPY. UFFDIO_COPY will read the zapped * area_src and it would map a zero page in it (of * course such a UFFDIO_COPY is perfectly safe as it'd * return -EEXIST). The problem comes at the next * bounce though: that racing UFFDIO_COPY would * generate zeropages in the area_src, so invalidating * the previous MADV_DONTNEED. Without this additional * MADV_DONTNEED those zeropages leftovers in the * area_src would lead to -EEXIST failure during the * next bounce, effectively leaving a zeropage in the * area_dst. * * Try to comment this out madvise to see the memory * corruption being caught pretty quick. * * khugepaged is also inhibited to collapse THP after * MADV_DONTNEED only after the UFFDIO_REGISTER, so it's * required to MADV_DONTNEED here. */ uffd_test_ops->release_pages(area_dst); uffd_stats_reset(args, nr_cpus); /* bounce pass */ if (stress(args)) return 1; /* Clear all the write protections if there is any */ if (test_uffdio_wp) wp_range(uffd, (unsigned long)area_dst, nr_pages * page_size, false); /* unregister */ if (uffd_unregister(uffd, area_dst, mem_size)) err("unregister failure"); if (area_dst_alias) { if (uffd_unregister(uffd, area_dst_alias, mem_size)) err("unregister failure alias"); } /* verification */ if (bounces & BOUNCE_VERIFY) for (nr = 0; nr < nr_pages; nr++) if (*area_count(area_dst, nr) != count_verify[nr]) err("error area_count %llu %llu %lu\n", *area_count(area_src, nr), count_verify[nr], nr); /* prepare next bounce */ swap(area_src, area_dst); swap(area_src_alias, area_dst_alias); uffd_stats_report(args, nr_cpus); } if (test_type == TEST_ANON) { /* * shmem/hugetlb won't be able to run since they have different * behavior on fork() (file-backed memory normally drops ptes * directly when fork), meanwhile the pagemap test will verify * pgtable entry of fork()ed child. */ userfaultfd_pagemap_test(page_size); /* * Hard-code for x86_64 for now for 2M THP, as x86_64 is * currently the only one that supports uffd-wp */ userfaultfd_pagemap_test(page_size * 512); } return userfaultfd_zeropage_test() || userfaultfd_sig_test() || userfaultfd_events_test() || userfaultfd_minor_test(); } static void set_test_type(const char *type) { if (!strcmp(type, "anon")) { test_type = TEST_ANON; uffd_test_ops = &anon_uffd_test_ops; } else if (!strcmp(type, "hugetlb")) { test_type = TEST_HUGETLB; uffd_test_ops = &hugetlb_uffd_test_ops; } else if (!strcmp(type, "hugetlb_shared")) { map_shared = true; test_type = TEST_HUGETLB; uffd_test_ops = &hugetlb_uffd_test_ops; /* Minor faults require shared hugetlb; only enable here. */ test_uffdio_minor = true; } else if (!strcmp(type, "shmem")) { map_shared = true; test_type = TEST_SHMEM; uffd_test_ops = &shmem_uffd_test_ops; test_uffdio_minor = true; } } static void parse_test_type_arg(const char *raw_type) { char *buf = strdup(raw_type); uint64_t features = UFFD_API_FEATURES; while (buf) { const char *token = strsep(&buf, ":"); if (!test_type) set_test_type(token); else if (!strcmp(token, "dev")) test_dev_userfaultfd = true; else if (!strcmp(token, "syscall")) test_dev_userfaultfd = false; else if (!strcmp(token, "collapse")) test_collapse = true; else err("unrecognized test mod '%s'", token); } if (!test_type) err("failed to parse test type argument: '%s'", raw_type); if (test_collapse && test_type != TEST_SHMEM) err("Unsupported test: %s", raw_type); if (test_type == TEST_HUGETLB) page_size = default_huge_page_size(); else page_size = sysconf(_SC_PAGE_SIZE); if (!page_size) err("Unable to determine page size"); if ((unsigned long) area_count(NULL, 0) + sizeof(unsigned long long) * 2 > page_size) err("Impossible to run this test"); /* * Whether we can test certain features depends not just on test type, * but also on whether or not this particular kernel supports the * feature. */ userfaultfd_open(&features); test_uffdio_wp = test_uffdio_wp && (features & UFFD_FEATURE_PAGEFAULT_FLAG_WP); test_uffdio_minor = test_uffdio_minor && (features & uffd_minor_feature()); close(uffd); uffd = -1; } static void sigalrm(int sig) { if (sig != SIGALRM) abort(); test_uffdio_copy_eexist = true; alarm(ALARM_INTERVAL_SECS); } int main(int argc, char **argv) { size_t bytes; size_t hpage_size = read_pmd_pagesize(); if (argc < 4) usage(); if (signal(SIGALRM, sigalrm) == SIG_ERR) err("failed to arm SIGALRM"); alarm(ALARM_INTERVAL_SECS); parse_test_type_arg(argv[1]); bytes = atol(argv[2]) * 1024 * 1024; if (test_collapse && bytes & (hpage_size - 1)) err("MiB must be multiple of %lu if :collapse mod set", hpage_size >> 20); nr_cpus = sysconf(_SC_NPROCESSORS_ONLN); if (test_collapse) { /* nr_cpus must divide (bytes / page_size), otherwise, * area allocations of (nr_pages * paze_size) won't be a * multiple of hpage_size, even if bytes is a multiple of * hpage_size. * * This means that nr_cpus must divide (N * (2 << (H-P)) * where: * bytes = hpage_size * N * hpage_size = 2 << H * page_size = 2 << P * * And we want to chose nr_cpus to be the largest value * satisfying this constraint, not larger than the number * of online CPUs. Unfortunately, prime factorization of * N and nr_cpus may be arbitrary, so have to search for it. * Instead, just use the highest power of 2 dividing both * nr_cpus and (bytes / page_size). */ int x = factor_of_2(nr_cpus); int y = factor_of_2(bytes / page_size); nr_cpus = x < y ? x : y; } nr_pages_per_cpu = bytes / page_size / nr_cpus; if (!nr_pages_per_cpu) { _err("invalid MiB"); usage(); } bounces = atoi(argv[3]); if (bounces <= 0) { _err("invalid bounces"); usage(); } nr_pages = nr_pages_per_cpu * nr_cpus; printf("nr_pages: %lu, nr_pages_per_cpu: %lu\n", nr_pages, nr_pages_per_cpu); return userfaultfd_stress(); } #else /* __NR_userfaultfd */ #warning "missing __NR_userfaultfd definition" int main(void) { printf("skip: Skipping userfaultfd test (missing __NR_userfaultfd)\n"); return KSFT_SKIP; } #endif /* __NR_userfaultfd */