// SPDX-License-Identifier: GPL-2.0 /* * KVM demand paging test * Adapted from dirty_log_test.c * * Copyright (C) 2018, Red Hat, Inc. * Copyright (C) 2019, Google, Inc. */ #define _GNU_SOURCE /* for pipe2 */ #include #include #include #include #include #include #include #include #include "kvm_util.h" #include "test_util.h" #include "perf_test_util.h" #include "guest_modes.h" #ifdef __NR_userfaultfd #ifdef PRINT_PER_PAGE_UPDATES #define PER_PAGE_DEBUG(...) printf(__VA_ARGS__) #else #define PER_PAGE_DEBUG(...) _no_printf(__VA_ARGS__) #endif #ifdef PRINT_PER_VCPU_UPDATES #define PER_VCPU_DEBUG(...) printf(__VA_ARGS__) #else #define PER_VCPU_DEBUG(...) _no_printf(__VA_ARGS__) #endif static int nr_vcpus = 1; static uint64_t guest_percpu_mem_size = DEFAULT_PER_VCPU_MEM_SIZE; static size_t demand_paging_size; static char *guest_data_prototype; static void *vcpu_worker(void *data) { int ret; struct perf_test_vcpu_args *vcpu_args = (struct perf_test_vcpu_args *)data; int vcpu_id = vcpu_args->vcpu_id; struct kvm_vm *vm = perf_test_args.vm; struct kvm_run *run; struct timespec start; struct timespec ts_diff; vcpu_args_set(vm, vcpu_id, 1, vcpu_id); run = vcpu_state(vm, vcpu_id); clock_gettime(CLOCK_MONOTONIC, &start); /* Let the guest access its memory */ ret = _vcpu_run(vm, vcpu_id); TEST_ASSERT(ret == 0, "vcpu_run failed: %d\n", ret); if (get_ucall(vm, vcpu_id, NULL) != UCALL_SYNC) { TEST_ASSERT(false, "Invalid guest sync status: exit_reason=%s\n", exit_reason_str(run->exit_reason)); } ts_diff = timespec_elapsed(start); PER_VCPU_DEBUG("vCPU %d execution time: %ld.%.9lds\n", vcpu_id, ts_diff.tv_sec, ts_diff.tv_nsec); return NULL; } static int handle_uffd_page_request(int uffd, uint64_t addr) { pid_t tid; struct timespec start; struct timespec ts_diff; struct uffdio_copy copy; int r; tid = syscall(__NR_gettid); copy.src = (uint64_t)guest_data_prototype; copy.dst = addr; copy.len = demand_paging_size; copy.mode = 0; clock_gettime(CLOCK_MONOTONIC, &start); r = ioctl(uffd, UFFDIO_COPY, ©); if (r == -1) { pr_info("Failed Paged in 0x%lx from thread %d with errno: %d\n", addr, tid, errno); return r; } ts_diff = timespec_elapsed(start); PER_PAGE_DEBUG("UFFDIO_COPY %d \t%ld ns\n", tid, timespec_to_ns(ts_diff)); PER_PAGE_DEBUG("Paged in %ld bytes at 0x%lx from thread %d\n", demand_paging_size, addr, tid); return 0; } bool quit_uffd_thread; struct uffd_handler_args { int uffd; int pipefd; useconds_t delay; }; static void *uffd_handler_thread_fn(void *arg) { struct uffd_handler_args *uffd_args = (struct uffd_handler_args *)arg; int uffd = uffd_args->uffd; int pipefd = uffd_args->pipefd; useconds_t delay = uffd_args->delay; int64_t pages = 0; struct timespec start; struct timespec ts_diff; clock_gettime(CLOCK_MONOTONIC, &start); while (!quit_uffd_thread) { struct uffd_msg msg; struct pollfd pollfd[2]; char tmp_chr; int r; uint64_t addr; pollfd[0].fd = uffd; pollfd[0].events = POLLIN; pollfd[1].fd = pipefd; pollfd[1].events = POLLIN; r = poll(pollfd, 2, -1); switch (r) { case -1: pr_info("poll err"); continue; case 0: continue; case 1: break; default: pr_info("Polling uffd returned %d", r); return NULL; } if (pollfd[0].revents & POLLERR) { pr_info("uffd revents has POLLERR"); return NULL; } if (pollfd[1].revents & POLLIN) { r = read(pollfd[1].fd, &tmp_chr, 1); TEST_ASSERT(r == 1, "Error reading pipefd in UFFD thread\n"); return NULL; } if (!pollfd[0].revents & POLLIN) continue; r = read(uffd, &msg, sizeof(msg)); if (r == -1) { if (errno == EAGAIN) continue; pr_info("Read of uffd got errno %d\n", errno); return NULL; } if (r != sizeof(msg)) { pr_info("Read on uffd returned unexpected size: %d bytes", r); return NULL; } if (!(msg.event & UFFD_EVENT_PAGEFAULT)) continue; if (delay) usleep(delay); addr = msg.arg.pagefault.address; r = handle_uffd_page_request(uffd, addr); if (r < 0) return NULL; pages++; } ts_diff = timespec_elapsed(start); PER_VCPU_DEBUG("userfaulted %ld pages over %ld.%.9lds. (%f/sec)\n", pages, ts_diff.tv_sec, ts_diff.tv_nsec, pages / ((double)ts_diff.tv_sec + (double)ts_diff.tv_nsec / 100000000.0)); return NULL; } static void setup_demand_paging(struct kvm_vm *vm, pthread_t *uffd_handler_thread, int pipefd, useconds_t uffd_delay, struct uffd_handler_args *uffd_args, void *hva, uint64_t len) { int uffd; struct uffdio_api uffdio_api; struct uffdio_register uffdio_register; uffd = syscall(__NR_userfaultfd, O_CLOEXEC | O_NONBLOCK); TEST_ASSERT(uffd >= 0, "uffd creation failed, errno: %d", errno); uffdio_api.api = UFFD_API; uffdio_api.features = 0; TEST_ASSERT(ioctl(uffd, UFFDIO_API, &uffdio_api) != -1, "ioctl UFFDIO_API failed: %" PRIu64, (uint64_t)uffdio_api.api); uffdio_register.range.start = (uint64_t)hva; uffdio_register.range.len = len; uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING; TEST_ASSERT(ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) != -1, "ioctl UFFDIO_REGISTER failed"); TEST_ASSERT((uffdio_register.ioctls & UFFD_API_RANGE_IOCTLS) == UFFD_API_RANGE_IOCTLS, "unexpected userfaultfd ioctl set"); uffd_args->uffd = uffd; uffd_args->pipefd = pipefd; uffd_args->delay = uffd_delay; pthread_create(uffd_handler_thread, NULL, uffd_handler_thread_fn, uffd_args); PER_VCPU_DEBUG("Created uffd thread for HVA range [%p, %p)\n", hva, hva + len); } struct test_params { bool use_uffd; useconds_t uffd_delay; enum vm_mem_backing_src_type src_type; bool partition_vcpu_memory_access; }; static void run_test(enum vm_guest_mode mode, void *arg) { struct test_params *p = arg; pthread_t *vcpu_threads; pthread_t *uffd_handler_threads = NULL; struct uffd_handler_args *uffd_args = NULL; struct timespec start; struct timespec ts_diff; int *pipefds = NULL; struct kvm_vm *vm; int vcpu_id; int r; vm = perf_test_create_vm(mode, nr_vcpus, guest_percpu_mem_size, p->src_type); perf_test_args.wr_fract = 1; demand_paging_size = get_backing_src_pagesz(p->src_type); guest_data_prototype = malloc(demand_paging_size); TEST_ASSERT(guest_data_prototype, "Failed to allocate buffer for guest data pattern"); memset(guest_data_prototype, 0xAB, demand_paging_size); vcpu_threads = malloc(nr_vcpus * sizeof(*vcpu_threads)); TEST_ASSERT(vcpu_threads, "Memory allocation failed"); perf_test_setup_vcpus(vm, nr_vcpus, guest_percpu_mem_size, p->partition_vcpu_memory_access); if (p->use_uffd) { uffd_handler_threads = malloc(nr_vcpus * sizeof(*uffd_handler_threads)); TEST_ASSERT(uffd_handler_threads, "Memory allocation failed"); uffd_args = malloc(nr_vcpus * sizeof(*uffd_args)); TEST_ASSERT(uffd_args, "Memory allocation failed"); pipefds = malloc(sizeof(int) * nr_vcpus * 2); TEST_ASSERT(pipefds, "Unable to allocate memory for pipefd"); for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) { vm_paddr_t vcpu_gpa; void *vcpu_hva; uint64_t vcpu_mem_size; if (p->partition_vcpu_memory_access) { vcpu_gpa = guest_test_phys_mem + (vcpu_id * guest_percpu_mem_size); vcpu_mem_size = guest_percpu_mem_size; } else { vcpu_gpa = guest_test_phys_mem; vcpu_mem_size = guest_percpu_mem_size * nr_vcpus; } PER_VCPU_DEBUG("Added VCPU %d with test mem gpa [%lx, %lx)\n", vcpu_id, vcpu_gpa, vcpu_gpa + vcpu_mem_size); /* Cache the HVA pointer of the region */ vcpu_hva = addr_gpa2hva(vm, vcpu_gpa); /* * Set up user fault fd to handle demand paging * requests. */ r = pipe2(&pipefds[vcpu_id * 2], O_CLOEXEC | O_NONBLOCK); TEST_ASSERT(!r, "Failed to set up pipefd"); setup_demand_paging(vm, &uffd_handler_threads[vcpu_id], pipefds[vcpu_id * 2], p->uffd_delay, &uffd_args[vcpu_id], vcpu_hva, vcpu_mem_size); } } /* Export the shared variables to the guest */ sync_global_to_guest(vm, perf_test_args); pr_info("Finished creating vCPUs and starting uffd threads\n"); clock_gettime(CLOCK_MONOTONIC, &start); for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) { pthread_create(&vcpu_threads[vcpu_id], NULL, vcpu_worker, &perf_test_args.vcpu_args[vcpu_id]); } pr_info("Started all vCPUs\n"); /* Wait for the vcpu threads to quit */ for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) { pthread_join(vcpu_threads[vcpu_id], NULL); PER_VCPU_DEBUG("Joined thread for vCPU %d\n", vcpu_id); } ts_diff = timespec_elapsed(start); pr_info("All vCPU threads joined\n"); if (p->use_uffd) { char c; /* Tell the user fault fd handler threads to quit */ for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) { r = write(pipefds[vcpu_id * 2 + 1], &c, 1); TEST_ASSERT(r == 1, "Unable to write to pipefd"); pthread_join(uffd_handler_threads[vcpu_id], NULL); } } pr_info("Total guest execution time: %ld.%.9lds\n", ts_diff.tv_sec, ts_diff.tv_nsec); pr_info("Overall demand paging rate: %f pgs/sec\n", perf_test_args.vcpu_args[0].pages * nr_vcpus / ((double)ts_diff.tv_sec + (double)ts_diff.tv_nsec / 100000000.0)); perf_test_destroy_vm(vm); free(guest_data_prototype); free(vcpu_threads); if (p->use_uffd) { free(uffd_handler_threads); free(uffd_args); free(pipefds); } } static void help(char *name) { puts(""); printf("usage: %s [-h] [-m mode] [-u] [-d uffd_delay_usec]\n" " [-b memory] [-t type] [-v vcpus] [-o]\n", name); guest_modes_help(); printf(" -u: use User Fault FD to handle vCPU page\n" " faults.\n"); printf(" -d: add a delay in usec to the User Fault\n" " FD handler to simulate demand paging\n" " overheads. Ignored without -u.\n"); printf(" -b: specify the size of the memory region which should be\n" " demand paged by each vCPU. e.g. 10M or 3G.\n" " Default: 1G\n"); printf(" -t: The type of backing memory to use. Default: anonymous\n"); backing_src_help(); printf(" -v: specify the number of vCPUs to run.\n"); printf(" -o: Overlap guest memory accesses instead of partitioning\n" " them into a separate region of memory for each vCPU.\n"); puts(""); exit(0); } int main(int argc, char *argv[]) { int max_vcpus = kvm_check_cap(KVM_CAP_MAX_VCPUS); struct test_params p = { .src_type = VM_MEM_SRC_ANONYMOUS, .partition_vcpu_memory_access = true, }; int opt; guest_modes_append_default(); while ((opt = getopt(argc, argv, "hm:ud:b:t:v:o")) != -1) { switch (opt) { case 'm': guest_modes_cmdline(optarg); break; case 'u': p.use_uffd = true; break; case 'd': p.uffd_delay = strtoul(optarg, NULL, 0); TEST_ASSERT(p.uffd_delay >= 0, "A negative UFFD delay is not supported."); break; case 'b': guest_percpu_mem_size = parse_size(optarg); break; case 't': p.src_type = parse_backing_src_type(optarg); break; case 'v': nr_vcpus = atoi(optarg); TEST_ASSERT(nr_vcpus > 0 && nr_vcpus <= max_vcpus, "Invalid number of vcpus, must be between 1 and %d", max_vcpus); break; case 'o': p.partition_vcpu_memory_access = false; break; case 'h': default: help(argv[0]); break; } } for_each_guest_mode(run_test, &p); return 0; } #else /* __NR_userfaultfd */ #warning "missing __NR_userfaultfd definition" int main(void) { print_skip("__NR_userfaultfd must be present for userfaultfd test"); return KSFT_SKIP; } #endif /* __NR_userfaultfd */