/* * intel_pt.c: Intel Processor Trace support * Copyright (c) 2013-2015, Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * */ #include <stdio.h> #include <stdbool.h> #include <errno.h> #include <linux/kernel.h> #include <linux/types.h> #include "../perf.h" #include "session.h" #include "machine.h" #include "sort.h" #include "tool.h" #include "event.h" #include "evlist.h" #include "evsel.h" #include "map.h" #include "color.h" #include "util.h" #include "thread.h" #include "thread-stack.h" #include "symbol.h" #include "callchain.h" #include "dso.h" #include "debug.h" #include "auxtrace.h" #include "tsc.h" #include "intel-pt.h" #include "intel-pt-decoder/intel-pt-log.h" #include "intel-pt-decoder/intel-pt-decoder.h" #include "intel-pt-decoder/intel-pt-insn-decoder.h" #include "intel-pt-decoder/intel-pt-pkt-decoder.h" #define MAX_TIMESTAMP (~0ULL) struct intel_pt { struct auxtrace auxtrace; struct auxtrace_queues queues; struct auxtrace_heap heap; u32 auxtrace_type; struct perf_session *session; struct machine *machine; struct perf_evsel *switch_evsel; struct thread *unknown_thread; bool timeless_decoding; bool sampling_mode; bool snapshot_mode; bool per_cpu_mmaps; bool have_tsc; bool data_queued; bool est_tsc; bool sync_switch; bool mispred_all; int have_sched_switch; u32 pmu_type; u64 kernel_start; u64 switch_ip; u64 ptss_ip; struct perf_tsc_conversion tc; bool cap_user_time_zero; struct itrace_synth_opts synth_opts; bool sample_instructions; u64 instructions_sample_type; u64 instructions_sample_period; u64 instructions_id; bool sample_branches; u32 branches_filter; u64 branches_sample_type; u64 branches_id; bool sample_transactions; u64 transactions_sample_type; u64 transactions_id; bool synth_needs_swap; u64 tsc_bit; u64 mtc_bit; u64 mtc_freq_bits; u32 tsc_ctc_ratio_n; u32 tsc_ctc_ratio_d; u64 cyc_bit; u64 noretcomp_bit; unsigned max_non_turbo_ratio; unsigned long num_events; }; enum switch_state { INTEL_PT_SS_NOT_TRACING, INTEL_PT_SS_UNKNOWN, INTEL_PT_SS_TRACING, INTEL_PT_SS_EXPECTING_SWITCH_EVENT, INTEL_PT_SS_EXPECTING_SWITCH_IP, }; struct intel_pt_queue { struct intel_pt *pt; unsigned int queue_nr; struct auxtrace_buffer *buffer; void *decoder; const struct intel_pt_state *state; struct ip_callchain *chain; struct branch_stack *last_branch; struct branch_stack *last_branch_rb; size_t last_branch_pos; union perf_event *event_buf; bool on_heap; bool stop; bool step_through_buffers; bool use_buffer_pid_tid; pid_t pid, tid; int cpu; int switch_state; pid_t next_tid; struct thread *thread; bool exclude_kernel; bool have_sample; u64 time; u64 timestamp; u32 flags; u16 insn_len; u64 last_insn_cnt; }; static void intel_pt_dump(struct intel_pt *pt __maybe_unused, unsigned char *buf, size_t len) { struct intel_pt_pkt packet; size_t pos = 0; int ret, pkt_len, i; char desc[INTEL_PT_PKT_DESC_MAX]; const char *color = PERF_COLOR_BLUE; color_fprintf(stdout, color, ". ... Intel Processor Trace data: size %zu bytes\n", len); while (len) { ret = intel_pt_get_packet(buf, len, &packet); if (ret > 0) pkt_len = ret; else pkt_len = 1; printf("."); color_fprintf(stdout, color, " %08x: ", pos); for (i = 0; i < pkt_len; i++) color_fprintf(stdout, color, " %02x", buf[i]); for (; i < 16; i++) color_fprintf(stdout, color, " "); if (ret > 0) { ret = intel_pt_pkt_desc(&packet, desc, INTEL_PT_PKT_DESC_MAX); if (ret > 0) color_fprintf(stdout, color, " %s\n", desc); } else { color_fprintf(stdout, color, " Bad packet!\n"); } pos += pkt_len; buf += pkt_len; len -= pkt_len; } } static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf, size_t len) { printf(".\n"); intel_pt_dump(pt, buf, len); } static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a, struct auxtrace_buffer *b) { void *start; start = intel_pt_find_overlap(a->data, a->size, b->data, b->size, pt->have_tsc); if (!start) return -EINVAL; b->use_size = b->data + b->size - start; b->use_data = start; return 0; } static void intel_pt_use_buffer_pid_tid(struct intel_pt_queue *ptq, struct auxtrace_queue *queue, struct auxtrace_buffer *buffer) { if (queue->cpu == -1 && buffer->cpu != -1) ptq->cpu = buffer->cpu; ptq->pid = buffer->pid; ptq->tid = buffer->tid; intel_pt_log("queue %u cpu %d pid %d tid %d\n", ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); thread__zput(ptq->thread); if (ptq->tid != -1) { if (ptq->pid != -1) ptq->thread = machine__findnew_thread(ptq->pt->machine, ptq->pid, ptq->tid); else ptq->thread = machine__find_thread(ptq->pt->machine, -1, ptq->tid); } } /* This function assumes data is processed sequentially only */ static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data) { struct intel_pt_queue *ptq = data; struct auxtrace_buffer *buffer = ptq->buffer, *old_buffer = buffer; struct auxtrace_queue *queue; if (ptq->stop) { b->len = 0; return 0; } queue = &ptq->pt->queues.queue_array[ptq->queue_nr]; buffer = auxtrace_buffer__next(queue, buffer); if (!buffer) { if (old_buffer) auxtrace_buffer__drop_data(old_buffer); b->len = 0; return 0; } ptq->buffer = buffer; if (!buffer->data) { int fd = perf_data_file__fd(ptq->pt->session->file); buffer->data = auxtrace_buffer__get_data(buffer, fd); if (!buffer->data) return -ENOMEM; } if (ptq->pt->snapshot_mode && !buffer->consecutive && old_buffer && intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer)) return -ENOMEM; if (old_buffer) auxtrace_buffer__drop_data(old_buffer); if (buffer->use_data) { b->len = buffer->use_size; b->buf = buffer->use_data; } else { b->len = buffer->size; b->buf = buffer->data; } b->ref_timestamp = buffer->reference; if (!old_buffer || ptq->pt->sampling_mode || (ptq->pt->snapshot_mode && !buffer->consecutive)) { b->consecutive = false; b->trace_nr = buffer->buffer_nr + 1; } else { b->consecutive = true; } if (ptq->use_buffer_pid_tid && (ptq->pid != buffer->pid || ptq->tid != buffer->tid)) intel_pt_use_buffer_pid_tid(ptq, queue, buffer); if (ptq->step_through_buffers) ptq->stop = true; if (!b->len) return intel_pt_get_trace(b, data); return 0; } struct intel_pt_cache_entry { struct auxtrace_cache_entry entry; u64 insn_cnt; u64 byte_cnt; enum intel_pt_insn_op op; enum intel_pt_insn_branch branch; int length; int32_t rel; }; static int intel_pt_config_div(const char *var, const char *value, void *data) { int *d = data; long val; if (!strcmp(var, "intel-pt.cache-divisor")) { val = strtol(value, NULL, 0); if (val > 0 && val <= INT_MAX) *d = val; } return 0; } static int intel_pt_cache_divisor(void) { static int d; if (d) return d; perf_config(intel_pt_config_div, &d); if (!d) d = 64; return d; } static unsigned int intel_pt_cache_size(struct dso *dso, struct machine *machine) { off_t size; size = dso__data_size(dso, machine); size /= intel_pt_cache_divisor(); if (size < 1000) return 10; if (size > (1 << 21)) return 21; return 32 - __builtin_clz(size); } static struct auxtrace_cache *intel_pt_cache(struct dso *dso, struct machine *machine) { struct auxtrace_cache *c; unsigned int bits; if (dso->auxtrace_cache) return dso->auxtrace_cache; bits = intel_pt_cache_size(dso, machine); /* Ignoring cache creation failure */ c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200); dso->auxtrace_cache = c; return c; } static int intel_pt_cache_add(struct dso *dso, struct machine *machine, u64 offset, u64 insn_cnt, u64 byte_cnt, struct intel_pt_insn *intel_pt_insn) { struct auxtrace_cache *c = intel_pt_cache(dso, machine); struct intel_pt_cache_entry *e; int err; if (!c) return -ENOMEM; e = auxtrace_cache__alloc_entry(c); if (!e) return -ENOMEM; e->insn_cnt = insn_cnt; e->byte_cnt = byte_cnt; e->op = intel_pt_insn->op; e->branch = intel_pt_insn->branch; e->length = intel_pt_insn->length; e->rel = intel_pt_insn->rel; err = auxtrace_cache__add(c, offset, &e->entry); if (err) auxtrace_cache__free_entry(c, e); return err; } static struct intel_pt_cache_entry * intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset) { struct auxtrace_cache *c = intel_pt_cache(dso, machine); if (!c) return NULL; return auxtrace_cache__lookup(dso->auxtrace_cache, offset); } static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn, uint64_t *insn_cnt_ptr, uint64_t *ip, uint64_t to_ip, uint64_t max_insn_cnt, void *data) { struct intel_pt_queue *ptq = data; struct machine *machine = ptq->pt->machine; struct thread *thread; struct addr_location al; unsigned char buf[1024]; size_t bufsz; ssize_t len; int x86_64; u8 cpumode; u64 offset, start_offset, start_ip; u64 insn_cnt = 0; bool one_map = true; if (to_ip && *ip == to_ip) goto out_no_cache; bufsz = intel_pt_insn_max_size(); if (*ip >= ptq->pt->kernel_start) cpumode = PERF_RECORD_MISC_KERNEL; else cpumode = PERF_RECORD_MISC_USER; thread = ptq->thread; if (!thread) { if (cpumode != PERF_RECORD_MISC_KERNEL) return -EINVAL; thread = ptq->pt->unknown_thread; } while (1) { thread__find_addr_map(thread, cpumode, MAP__FUNCTION, *ip, &al); if (!al.map || !al.map->dso) return -EINVAL; if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR && dso__data_status_seen(al.map->dso, DSO_DATA_STATUS_SEEN_ITRACE)) return -ENOENT; offset = al.map->map_ip(al.map, *ip); if (!to_ip && one_map) { struct intel_pt_cache_entry *e; e = intel_pt_cache_lookup(al.map->dso, machine, offset); if (e && (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) { *insn_cnt_ptr = e->insn_cnt; *ip += e->byte_cnt; intel_pt_insn->op = e->op; intel_pt_insn->branch = e->branch; intel_pt_insn->length = e->length; intel_pt_insn->rel = e->rel; intel_pt_log_insn_no_data(intel_pt_insn, *ip); return 0; } } start_offset = offset; start_ip = *ip; /* Load maps to ensure dso->is_64_bit has been updated */ map__load(al.map, machine->symbol_filter); x86_64 = al.map->dso->is_64_bit; while (1) { len = dso__data_read_offset(al.map->dso, machine, offset, buf, bufsz); if (len <= 0) return -EINVAL; if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn)) return -EINVAL; intel_pt_log_insn(intel_pt_insn, *ip); insn_cnt += 1; if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) goto out; if (max_insn_cnt && insn_cnt >= max_insn_cnt) goto out_no_cache; *ip += intel_pt_insn->length; if (to_ip && *ip == to_ip) goto out_no_cache; if (*ip >= al.map->end) break; offset += intel_pt_insn->length; } one_map = false; } out: *insn_cnt_ptr = insn_cnt; if (!one_map) goto out_no_cache; /* * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate * entries. */ if (to_ip) { struct intel_pt_cache_entry *e; e = intel_pt_cache_lookup(al.map->dso, machine, start_offset); if (e) return 0; } /* Ignore cache errors */ intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt, *ip - start_ip, intel_pt_insn); return 0; out_no_cache: *insn_cnt_ptr = insn_cnt; return 0; } static bool intel_pt_get_config(struct intel_pt *pt, struct perf_event_attr *attr, u64 *config) { if (attr->type == pt->pmu_type) { if (config) *config = attr->config; return true; } return false; } static bool intel_pt_exclude_kernel(struct intel_pt *pt) { struct perf_evsel *evsel; evlist__for_each(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->attr, NULL) && !evsel->attr.exclude_kernel) return false; } return true; } static bool intel_pt_return_compression(struct intel_pt *pt) { struct perf_evsel *evsel; u64 config; if (!pt->noretcomp_bit) return true; evlist__for_each(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->attr, &config) && (config & pt->noretcomp_bit)) return false; } return true; } static unsigned int intel_pt_mtc_period(struct intel_pt *pt) { struct perf_evsel *evsel; unsigned int shift; u64 config; if (!pt->mtc_freq_bits) return 0; for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++) config >>= 1; evlist__for_each(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->attr, &config)) return (config & pt->mtc_freq_bits) >> shift; } return 0; } static bool intel_pt_timeless_decoding(struct intel_pt *pt) { struct perf_evsel *evsel; bool timeless_decoding = true; u64 config; if (!pt->tsc_bit || !pt->cap_user_time_zero) return true; evlist__for_each(pt->session->evlist, evsel) { if (!(evsel->attr.sample_type & PERF_SAMPLE_TIME)) return true; if (intel_pt_get_config(pt, &evsel->attr, &config)) { if (config & pt->tsc_bit) timeless_decoding = false; else return true; } } return timeless_decoding; } static bool intel_pt_tracing_kernel(struct intel_pt *pt) { struct perf_evsel *evsel; evlist__for_each(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->attr, NULL) && !evsel->attr.exclude_kernel) return true; } return false; } static bool intel_pt_have_tsc(struct intel_pt *pt) { struct perf_evsel *evsel; bool have_tsc = false; u64 config; if (!pt->tsc_bit) return false; evlist__for_each(pt->session->evlist, evsel) { if (intel_pt_get_config(pt, &evsel->attr, &config)) { if (config & pt->tsc_bit) have_tsc = true; else return false; } } return have_tsc; } static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns) { u64 quot, rem; quot = ns / pt->tc.time_mult; rem = ns % pt->tc.time_mult; return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) / pt->tc.time_mult; } static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt, unsigned int queue_nr) { struct intel_pt_params params = { .get_trace = 0, }; struct intel_pt_queue *ptq; ptq = zalloc(sizeof(struct intel_pt_queue)); if (!ptq) return NULL; if (pt->synth_opts.callchain) { size_t sz = sizeof(struct ip_callchain); sz += pt->synth_opts.callchain_sz * sizeof(u64); ptq->chain = zalloc(sz); if (!ptq->chain) goto out_free; } if (pt->synth_opts.last_branch) { size_t sz = sizeof(struct branch_stack); sz += pt->synth_opts.last_branch_sz * sizeof(struct branch_entry); ptq->last_branch = zalloc(sz); if (!ptq->last_branch) goto out_free; ptq->last_branch_rb = zalloc(sz); if (!ptq->last_branch_rb) goto out_free; } ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE); if (!ptq->event_buf) goto out_free; ptq->pt = pt; ptq->queue_nr = queue_nr; ptq->exclude_kernel = intel_pt_exclude_kernel(pt); ptq->pid = -1; ptq->tid = -1; ptq->cpu = -1; ptq->next_tid = -1; params.get_trace = intel_pt_get_trace; params.walk_insn = intel_pt_walk_next_insn; params.data = ptq; params.return_compression = intel_pt_return_compression(pt); params.max_non_turbo_ratio = pt->max_non_turbo_ratio; params.mtc_period = intel_pt_mtc_period(pt); params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n; params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d; if (pt->synth_opts.instructions) { if (pt->synth_opts.period) { switch (pt->synth_opts.period_type) { case PERF_ITRACE_PERIOD_INSTRUCTIONS: params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; params.period = pt->synth_opts.period; break; case PERF_ITRACE_PERIOD_TICKS: params.period_type = INTEL_PT_PERIOD_TICKS; params.period = pt->synth_opts.period; break; case PERF_ITRACE_PERIOD_NANOSECS: params.period_type = INTEL_PT_PERIOD_TICKS; params.period = intel_pt_ns_to_ticks(pt, pt->synth_opts.period); break; default: break; } } if (!params.period) { params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS; params.period = 1; } } ptq->decoder = intel_pt_decoder_new(¶ms); if (!ptq->decoder) goto out_free; return ptq; out_free: zfree(&ptq->event_buf); zfree(&ptq->last_branch); zfree(&ptq->last_branch_rb); zfree(&ptq->chain); free(ptq); return NULL; } static void intel_pt_free_queue(void *priv) { struct intel_pt_queue *ptq = priv; if (!ptq) return; thread__zput(ptq->thread); intel_pt_decoder_free(ptq->decoder); zfree(&ptq->event_buf); zfree(&ptq->last_branch); zfree(&ptq->last_branch_rb); zfree(&ptq->chain); free(ptq); } static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt, struct auxtrace_queue *queue) { struct intel_pt_queue *ptq = queue->priv; if (queue->tid == -1 || pt->have_sched_switch) { ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu); thread__zput(ptq->thread); } if (!ptq->thread && ptq->tid != -1) ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid); if (ptq->thread) { ptq->pid = ptq->thread->pid_; if (queue->cpu == -1) ptq->cpu = ptq->thread->cpu; } } static void intel_pt_sample_flags(struct intel_pt_queue *ptq) { if (ptq->state->flags & INTEL_PT_ABORT_TX) { ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT; } else if (ptq->state->flags & INTEL_PT_ASYNC) { if (ptq->state->to_ip) ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | PERF_IP_FLAG_INTERRUPT; else ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TRACE_END; ptq->insn_len = 0; } else { if (ptq->state->from_ip) ptq->flags = intel_pt_insn_type(ptq->state->insn_op); else ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TRACE_BEGIN; if (ptq->state->flags & INTEL_PT_IN_TX) ptq->flags |= PERF_IP_FLAG_IN_TX; ptq->insn_len = ptq->state->insn_len; } } static int intel_pt_setup_queue(struct intel_pt *pt, struct auxtrace_queue *queue, unsigned int queue_nr) { struct intel_pt_queue *ptq = queue->priv; if (list_empty(&queue->head)) return 0; if (!ptq) { ptq = intel_pt_alloc_queue(pt, queue_nr); if (!ptq) return -ENOMEM; queue->priv = ptq; if (queue->cpu != -1) ptq->cpu = queue->cpu; ptq->tid = queue->tid; if (pt->sampling_mode) { if (pt->timeless_decoding) ptq->step_through_buffers = true; if (pt->timeless_decoding || !pt->have_sched_switch) ptq->use_buffer_pid_tid = true; } } if (!ptq->on_heap && (!pt->sync_switch || ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) { const struct intel_pt_state *state; int ret; if (pt->timeless_decoding) return 0; intel_pt_log("queue %u getting timestamp\n", queue_nr); intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", queue_nr, ptq->cpu, ptq->pid, ptq->tid); while (1) { state = intel_pt_decode(ptq->decoder); if (state->err) { if (state->err == INTEL_PT_ERR_NODATA) { intel_pt_log("queue %u has no timestamp\n", queue_nr); return 0; } continue; } if (state->timestamp) break; } ptq->timestamp = state->timestamp; intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n", queue_nr, ptq->timestamp); ptq->state = state; ptq->have_sample = true; intel_pt_sample_flags(ptq); ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp); if (ret) return ret; ptq->on_heap = true; } return 0; } static int intel_pt_setup_queues(struct intel_pt *pt) { unsigned int i; int ret; for (i = 0; i < pt->queues.nr_queues; i++) { ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i); if (ret) return ret; } return 0; } static inline void intel_pt_copy_last_branch_rb(struct intel_pt_queue *ptq) { struct branch_stack *bs_src = ptq->last_branch_rb; struct branch_stack *bs_dst = ptq->last_branch; size_t nr = 0; bs_dst->nr = bs_src->nr; if (!bs_src->nr) return; nr = ptq->pt->synth_opts.last_branch_sz - ptq->last_branch_pos; memcpy(&bs_dst->entries[0], &bs_src->entries[ptq->last_branch_pos], sizeof(struct branch_entry) * nr); if (bs_src->nr >= ptq->pt->synth_opts.last_branch_sz) { memcpy(&bs_dst->entries[nr], &bs_src->entries[0], sizeof(struct branch_entry) * ptq->last_branch_pos); } } static inline void intel_pt_reset_last_branch_rb(struct intel_pt_queue *ptq) { ptq->last_branch_pos = 0; ptq->last_branch_rb->nr = 0; } static void intel_pt_update_last_branch_rb(struct intel_pt_queue *ptq) { const struct intel_pt_state *state = ptq->state; struct branch_stack *bs = ptq->last_branch_rb; struct branch_entry *be; if (!ptq->last_branch_pos) ptq->last_branch_pos = ptq->pt->synth_opts.last_branch_sz; ptq->last_branch_pos -= 1; be = &bs->entries[ptq->last_branch_pos]; be->from = state->from_ip; be->to = state->to_ip; be->flags.abort = !!(state->flags & INTEL_PT_ABORT_TX); be->flags.in_tx = !!(state->flags & INTEL_PT_IN_TX); /* No support for mispredict */ be->flags.mispred = ptq->pt->mispred_all; if (bs->nr < ptq->pt->synth_opts.last_branch_sz) bs->nr += 1; } static int intel_pt_inject_event(union perf_event *event, struct perf_sample *sample, u64 type, bool swapped) { event->header.size = perf_event__sample_event_size(sample, type, 0); return perf_event__synthesize_sample(event, type, 0, sample, swapped); } static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq) { int ret; struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; struct dummy_branch_stack { u64 nr; struct branch_entry entries; } dummy_bs; if (pt->branches_filter && !(pt->branches_filter & ptq->flags)) return 0; if (pt->synth_opts.initial_skip && pt->num_events++ < pt->synth_opts.initial_skip) return 0; event->sample.header.type = PERF_RECORD_SAMPLE; event->sample.header.misc = PERF_RECORD_MISC_USER; event->sample.header.size = sizeof(struct perf_event_header); if (!pt->timeless_decoding) sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc); sample.cpumode = PERF_RECORD_MISC_USER; sample.ip = ptq->state->from_ip; sample.pid = ptq->pid; sample.tid = ptq->tid; sample.addr = ptq->state->to_ip; sample.id = ptq->pt->branches_id; sample.stream_id = ptq->pt->branches_id; sample.period = 1; sample.cpu = ptq->cpu; sample.flags = ptq->flags; sample.insn_len = ptq->insn_len; /* * perf report cannot handle events without a branch stack when using * SORT_MODE__BRANCH so make a dummy one. */ if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) { dummy_bs = (struct dummy_branch_stack){ .nr = 1, .entries = { .from = sample.ip, .to = sample.addr, }, }; sample.branch_stack = (struct branch_stack *)&dummy_bs; } if (pt->synth_opts.inject) { ret = intel_pt_inject_event(event, &sample, pt->branches_sample_type, pt->synth_needs_swap); if (ret) return ret; } ret = perf_session__deliver_synth_event(pt->session, event, &sample); if (ret) pr_err("Intel Processor Trace: failed to deliver branch event, error %d\n", ret); return ret; } static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq) { int ret; struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; if (pt->synth_opts.initial_skip && pt->num_events++ < pt->synth_opts.initial_skip) return 0; event->sample.header.type = PERF_RECORD_SAMPLE; event->sample.header.misc = PERF_RECORD_MISC_USER; event->sample.header.size = sizeof(struct perf_event_header); if (!pt->timeless_decoding) sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc); sample.cpumode = PERF_RECORD_MISC_USER; sample.ip = ptq->state->from_ip; sample.pid = ptq->pid; sample.tid = ptq->tid; sample.addr = ptq->state->to_ip; sample.id = ptq->pt->instructions_id; sample.stream_id = ptq->pt->instructions_id; sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt; sample.cpu = ptq->cpu; sample.flags = ptq->flags; sample.insn_len = ptq->insn_len; ptq->last_insn_cnt = ptq->state->tot_insn_cnt; if (pt->synth_opts.callchain) { thread_stack__sample(ptq->thread, ptq->chain, pt->synth_opts.callchain_sz, sample.ip); sample.callchain = ptq->chain; } if (pt->synth_opts.last_branch) { intel_pt_copy_last_branch_rb(ptq); sample.branch_stack = ptq->last_branch; } if (pt->synth_opts.inject) { ret = intel_pt_inject_event(event, &sample, pt->instructions_sample_type, pt->synth_needs_swap); if (ret) return ret; } ret = perf_session__deliver_synth_event(pt->session, event, &sample); if (ret) pr_err("Intel Processor Trace: failed to deliver instruction event, error %d\n", ret); if (pt->synth_opts.last_branch) intel_pt_reset_last_branch_rb(ptq); return ret; } static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq) { int ret; struct intel_pt *pt = ptq->pt; union perf_event *event = ptq->event_buf; struct perf_sample sample = { .ip = 0, }; if (pt->synth_opts.initial_skip && pt->num_events++ < pt->synth_opts.initial_skip) return 0; event->sample.header.type = PERF_RECORD_SAMPLE; event->sample.header.misc = PERF_RECORD_MISC_USER; event->sample.header.size = sizeof(struct perf_event_header); if (!pt->timeless_decoding) sample.time = tsc_to_perf_time(ptq->timestamp, &pt->tc); sample.cpumode = PERF_RECORD_MISC_USER; sample.ip = ptq->state->from_ip; sample.pid = ptq->pid; sample.tid = ptq->tid; sample.addr = ptq->state->to_ip; sample.id = ptq->pt->transactions_id; sample.stream_id = ptq->pt->transactions_id; sample.period = 1; sample.cpu = ptq->cpu; sample.flags = ptq->flags; sample.insn_len = ptq->insn_len; if (pt->synth_opts.callchain) { thread_stack__sample(ptq->thread, ptq->chain, pt->synth_opts.callchain_sz, sample.ip); sample.callchain = ptq->chain; } if (pt->synth_opts.last_branch) { intel_pt_copy_last_branch_rb(ptq); sample.branch_stack = ptq->last_branch; } if (pt->synth_opts.inject) { ret = intel_pt_inject_event(event, &sample, pt->transactions_sample_type, pt->synth_needs_swap); if (ret) return ret; } ret = perf_session__deliver_synth_event(pt->session, event, &sample); if (ret) pr_err("Intel Processor Trace: failed to deliver transaction event, error %d\n", ret); if (pt->synth_opts.last_branch) intel_pt_reset_last_branch_rb(ptq); return ret; } static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu, pid_t pid, pid_t tid, u64 ip) { union perf_event event; char msg[MAX_AUXTRACE_ERROR_MSG]; int err; intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG); auxtrace_synth_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE, code, cpu, pid, tid, ip, msg); err = perf_session__deliver_synth_event(pt->session, &event, NULL); if (err) pr_err("Intel Processor Trace: failed to deliver error event, error %d\n", err); return err; } static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq) { struct auxtrace_queue *queue; pid_t tid = ptq->next_tid; int err; if (tid == -1) return 0; intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid); err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid); queue = &pt->queues.queue_array[ptq->queue_nr]; intel_pt_set_pid_tid_cpu(pt, queue); ptq->next_tid = -1; return err; } static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip) { struct intel_pt *pt = ptq->pt; return ip == pt->switch_ip && (ptq->flags & PERF_IP_FLAG_BRANCH) && !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC | PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT)); } static int intel_pt_sample(struct intel_pt_queue *ptq) { const struct intel_pt_state *state = ptq->state; struct intel_pt *pt = ptq->pt; int err; if (!ptq->have_sample) return 0; ptq->have_sample = false; if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION) && (!pt->synth_opts.initial_skip || pt->num_events++ >= pt->synth_opts.initial_skip)) { err = intel_pt_synth_instruction_sample(ptq); if (err) return err; } if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION) && (!pt->synth_opts.initial_skip || pt->num_events++ >= pt->synth_opts.initial_skip)) { err = intel_pt_synth_transaction_sample(ptq); if (err) return err; } if (!(state->type & INTEL_PT_BRANCH)) return 0; if (pt->synth_opts.callchain) thread_stack__event(ptq->thread, ptq->flags, state->from_ip, state->to_ip, ptq->insn_len, state->trace_nr); else thread_stack__set_trace_nr(ptq->thread, state->trace_nr); if (pt->sample_branches) { err = intel_pt_synth_branch_sample(ptq); if (err) return err; } if (pt->synth_opts.last_branch) intel_pt_update_last_branch_rb(ptq); if (!pt->sync_switch) return 0; if (intel_pt_is_switch_ip(ptq, state->to_ip)) { switch (ptq->switch_state) { case INTEL_PT_SS_UNKNOWN: case INTEL_PT_SS_EXPECTING_SWITCH_IP: err = intel_pt_next_tid(pt, ptq); if (err) return err; ptq->switch_state = INTEL_PT_SS_TRACING; break; default: ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT; return 1; } } else if (!state->to_ip) { ptq->switch_state = INTEL_PT_SS_NOT_TRACING; } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) { ptq->switch_state = INTEL_PT_SS_UNKNOWN; } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN && state->to_ip == pt->ptss_ip && (ptq->flags & PERF_IP_FLAG_CALL)) { ptq->switch_state = INTEL_PT_SS_TRACING; } return 0; } static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip) { struct machine *machine = pt->machine; struct map *map; struct symbol *sym, *start; u64 ip, switch_ip = 0; const char *ptss; if (ptss_ip) *ptss_ip = 0; map = machine__kernel_map(machine); if (!map) return 0; if (map__load(map, machine->symbol_filter)) return 0; start = dso__first_symbol(map->dso, MAP__FUNCTION); for (sym = start; sym; sym = dso__next_symbol(sym)) { if (sym->binding == STB_GLOBAL && !strcmp(sym->name, "__switch_to")) { ip = map->unmap_ip(map, sym->start); if (ip >= map->start && ip < map->end) { switch_ip = ip; break; } } } if (!switch_ip || !ptss_ip) return 0; if (pt->have_sched_switch == 1) ptss = "perf_trace_sched_switch"; else ptss = "__perf_event_task_sched_out"; for (sym = start; sym; sym = dso__next_symbol(sym)) { if (!strcmp(sym->name, ptss)) { ip = map->unmap_ip(map, sym->start); if (ip >= map->start && ip < map->end) { *ptss_ip = ip; break; } } } return switch_ip; } static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp) { const struct intel_pt_state *state = ptq->state; struct intel_pt *pt = ptq->pt; int err; if (!pt->kernel_start) { pt->kernel_start = machine__kernel_start(pt->machine); if (pt->per_cpu_mmaps && (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) && !pt->timeless_decoding && intel_pt_tracing_kernel(pt) && !pt->sampling_mode) { pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip); if (pt->switch_ip) { intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n", pt->switch_ip, pt->ptss_ip); pt->sync_switch = true; } } } intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n", ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid); while (1) { err = intel_pt_sample(ptq); if (err) return err; state = intel_pt_decode(ptq->decoder); if (state->err) { if (state->err == INTEL_PT_ERR_NODATA) return 1; if (pt->sync_switch && state->from_ip >= pt->kernel_start) { pt->sync_switch = false; intel_pt_next_tid(pt, ptq); } if (pt->synth_opts.errors) { err = intel_pt_synth_error(pt, state->err, ptq->cpu, ptq->pid, ptq->tid, state->from_ip); if (err) return err; } continue; } ptq->state = state; ptq->have_sample = true; intel_pt_sample_flags(ptq); /* Use estimated TSC upon return to user space */ if (pt->est_tsc && (state->from_ip >= pt->kernel_start || !state->from_ip) && state->to_ip && state->to_ip < pt->kernel_start) { intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", state->timestamp, state->est_timestamp); ptq->timestamp = state->est_timestamp; /* Use estimated TSC in unknown switch state */ } else if (pt->sync_switch && ptq->switch_state == INTEL_PT_SS_UNKNOWN && intel_pt_is_switch_ip(ptq, state->to_ip) && ptq->next_tid == -1) { intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n", state->timestamp, state->est_timestamp); ptq->timestamp = state->est_timestamp; } else if (state->timestamp > ptq->timestamp) { ptq->timestamp = state->timestamp; } if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) { *timestamp = ptq->timestamp; return 0; } } return 0; } static inline int intel_pt_update_queues(struct intel_pt *pt) { if (pt->queues.new_data) { pt->queues.new_data = false; return intel_pt_setup_queues(pt); } return 0; } static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp) { unsigned int queue_nr; u64 ts; int ret; while (1) { struct auxtrace_queue *queue; struct intel_pt_queue *ptq; if (!pt->heap.heap_cnt) return 0; if (pt->heap.heap_array[0].ordinal >= timestamp) return 0; queue_nr = pt->heap.heap_array[0].queue_nr; queue = &pt->queues.queue_array[queue_nr]; ptq = queue->priv; intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n", queue_nr, pt->heap.heap_array[0].ordinal, timestamp); auxtrace_heap__pop(&pt->heap); if (pt->heap.heap_cnt) { ts = pt->heap.heap_array[0].ordinal + 1; if (ts > timestamp) ts = timestamp; } else { ts = timestamp; } intel_pt_set_pid_tid_cpu(pt, queue); ret = intel_pt_run_decoder(ptq, &ts); if (ret < 0) { auxtrace_heap__add(&pt->heap, queue_nr, ts); return ret; } if (!ret) { ret = auxtrace_heap__add(&pt->heap, queue_nr, ts); if (ret < 0) return ret; } else { ptq->on_heap = false; } } return 0; } static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid, u64 time_) { struct auxtrace_queues *queues = &pt->queues; unsigned int i; u64 ts = 0; for (i = 0; i < queues->nr_queues; i++) { struct auxtrace_queue *queue = &pt->queues.queue_array[i]; struct intel_pt_queue *ptq = queue->priv; if (ptq && (tid == -1 || ptq->tid == tid)) { ptq->time = time_; intel_pt_set_pid_tid_cpu(pt, queue); intel_pt_run_decoder(ptq, &ts); } } return 0; } static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample) { return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu, sample->pid, sample->tid, 0); } static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu) { unsigned i, j; if (cpu < 0 || !pt->queues.nr_queues) return NULL; if ((unsigned)cpu >= pt->queues.nr_queues) i = pt->queues.nr_queues - 1; else i = cpu; if (pt->queues.queue_array[i].cpu == cpu) return pt->queues.queue_array[i].priv; for (j = 0; i > 0; j++) { if (pt->queues.queue_array[--i].cpu == cpu) return pt->queues.queue_array[i].priv; } for (; j < pt->queues.nr_queues; j++) { if (pt->queues.queue_array[j].cpu == cpu) return pt->queues.queue_array[j].priv; } return NULL; } static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid, u64 timestamp) { struct intel_pt_queue *ptq; int err; if (!pt->sync_switch) return 1; ptq = intel_pt_cpu_to_ptq(pt, cpu); if (!ptq) return 1; switch (ptq->switch_state) { case INTEL_PT_SS_NOT_TRACING: ptq->next_tid = -1; break; case INTEL_PT_SS_UNKNOWN: case INTEL_PT_SS_TRACING: ptq->next_tid = tid; ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP; return 0; case INTEL_PT_SS_EXPECTING_SWITCH_EVENT: if (!ptq->on_heap) { ptq->timestamp = perf_time_to_tsc(timestamp, &pt->tc); err = auxtrace_heap__add(&pt->heap, ptq->queue_nr, ptq->timestamp); if (err) return err; ptq->on_heap = true; } ptq->switch_state = INTEL_PT_SS_TRACING; break; case INTEL_PT_SS_EXPECTING_SWITCH_IP: ptq->next_tid = tid; intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu); break; default: break; } return 1; } static int intel_pt_process_switch(struct intel_pt *pt, struct perf_sample *sample) { struct perf_evsel *evsel; pid_t tid; int cpu, ret; evsel = perf_evlist__id2evsel(pt->session->evlist, sample->id); if (evsel != pt->switch_evsel) return 0; tid = perf_evsel__intval(evsel, sample, "next_pid"); cpu = sample->cpu; intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", cpu, tid, sample->time, perf_time_to_tsc(sample->time, &pt->tc)); ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); if (ret <= 0) return ret; return machine__set_current_tid(pt->machine, cpu, -1, tid); } static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event, struct perf_sample *sample) { bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT; pid_t pid, tid; int cpu, ret; cpu = sample->cpu; if (pt->have_sched_switch == 3) { if (!out) return 0; if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) { pr_err("Expecting CPU-wide context switch event\n"); return -EINVAL; } pid = event->context_switch.next_prev_pid; tid = event->context_switch.next_prev_tid; } else { if (out) return 0; pid = sample->pid; tid = sample->tid; } if (tid == -1) { pr_err("context_switch event has no tid\n"); return -EINVAL; } intel_pt_log("context_switch: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", cpu, pid, tid, sample->time, perf_time_to_tsc(sample->time, &pt->tc)); ret = intel_pt_sync_switch(pt, cpu, tid, sample->time); if (ret <= 0) return ret; return machine__set_current_tid(pt->machine, cpu, pid, tid); } static int intel_pt_process_itrace_start(struct intel_pt *pt, union perf_event *event, struct perf_sample *sample) { if (!pt->per_cpu_mmaps) return 0; intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n", sample->cpu, event->itrace_start.pid, event->itrace_start.tid, sample->time, perf_time_to_tsc(sample->time, &pt->tc)); return machine__set_current_tid(pt->machine, sample->cpu, event->itrace_start.pid, event->itrace_start.tid); } static int intel_pt_process_event(struct perf_session *session, union perf_event *event, struct perf_sample *sample, struct perf_tool *tool) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); u64 timestamp; int err = 0; if (dump_trace) return 0; if (!tool->ordered_events) { pr_err("Intel Processor Trace requires ordered events\n"); return -EINVAL; } if (sample->time && sample->time != (u64)-1) timestamp = perf_time_to_tsc(sample->time, &pt->tc); else timestamp = 0; if (timestamp || pt->timeless_decoding) { err = intel_pt_update_queues(pt); if (err) return err; } if (pt->timeless_decoding) { if (event->header.type == PERF_RECORD_EXIT) { err = intel_pt_process_timeless_queues(pt, event->fork.tid, sample->time); } } else if (timestamp) { err = intel_pt_process_queues(pt, timestamp); } if (err) return err; if (event->header.type == PERF_RECORD_AUX && (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) && pt->synth_opts.errors) { err = intel_pt_lost(pt, sample); if (err) return err; } if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE) err = intel_pt_process_switch(pt, sample); else if (event->header.type == PERF_RECORD_ITRACE_START) err = intel_pt_process_itrace_start(pt, event, sample); else if (event->header.type == PERF_RECORD_SWITCH || event->header.type == PERF_RECORD_SWITCH_CPU_WIDE) err = intel_pt_context_switch(pt, event, sample); intel_pt_log("event %s (%u): cpu %d time %"PRIu64" tsc %#"PRIx64"\n", perf_event__name(event->header.type), event->header.type, sample->cpu, sample->time, timestamp); return err; } static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); int ret; if (dump_trace) return 0; if (!tool->ordered_events) return -EINVAL; ret = intel_pt_update_queues(pt); if (ret < 0) return ret; if (pt->timeless_decoding) return intel_pt_process_timeless_queues(pt, -1, MAX_TIMESTAMP - 1); return intel_pt_process_queues(pt, MAX_TIMESTAMP); } static void intel_pt_free_events(struct perf_session *session) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); struct auxtrace_queues *queues = &pt->queues; unsigned int i; for (i = 0; i < queues->nr_queues; i++) { intel_pt_free_queue(queues->queue_array[i].priv); queues->queue_array[i].priv = NULL; } intel_pt_log_disable(); auxtrace_queues__free(queues); } static void intel_pt_free(struct perf_session *session) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); auxtrace_heap__free(&pt->heap); intel_pt_free_events(session); session->auxtrace = NULL; thread__put(pt->unknown_thread); free(pt); } static int intel_pt_process_auxtrace_event(struct perf_session *session, union perf_event *event, struct perf_tool *tool __maybe_unused) { struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt, auxtrace); if (pt->sampling_mode) return 0; if (!pt->data_queued) { struct auxtrace_buffer *buffer; off_t data_offset; int fd = perf_data_file__fd(session->file); int err; if (perf_data_file__is_pipe(session->file)) { data_offset = 0; } else { data_offset = lseek(fd, 0, SEEK_CUR); if (data_offset == -1) return -errno; } err = auxtrace_queues__add_event(&pt->queues, session, event, data_offset, &buffer); if (err) return err; /* Dump here now we have copied a piped trace out of the pipe */ if (dump_trace) { if (auxtrace_buffer__get_data(buffer, fd)) { intel_pt_dump_event(pt, buffer->data, buffer->size); auxtrace_buffer__put_data(buffer); } } } return 0; } struct intel_pt_synth { struct perf_tool dummy_tool; struct perf_session *session; }; static int intel_pt_event_synth(struct perf_tool *tool, union perf_event *event, struct perf_sample *sample __maybe_unused, struct machine *machine __maybe_unused) { struct intel_pt_synth *intel_pt_synth = container_of(tool, struct intel_pt_synth, dummy_tool); return perf_session__deliver_synth_event(intel_pt_synth->session, event, NULL); } static int intel_pt_synth_event(struct perf_session *session, struct perf_event_attr *attr, u64 id) { struct intel_pt_synth intel_pt_synth; memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth)); intel_pt_synth.session = session; return perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1, &id, intel_pt_event_synth); } static int intel_pt_synth_events(struct intel_pt *pt, struct perf_session *session) { struct perf_evlist *evlist = session->evlist; struct perf_evsel *evsel; struct perf_event_attr attr; bool found = false; u64 id; int err; evlist__for_each(evlist, evsel) { if (evsel->attr.type == pt->pmu_type && evsel->ids) { found = true; break; } } if (!found) { pr_debug("There are no selected events with Intel Processor Trace data\n"); return 0; } memset(&attr, 0, sizeof(struct perf_event_attr)); attr.size = sizeof(struct perf_event_attr); attr.type = PERF_TYPE_HARDWARE; attr.sample_type = evsel->attr.sample_type & PERF_SAMPLE_MASK; attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_PERIOD; if (pt->timeless_decoding) attr.sample_type &= ~(u64)PERF_SAMPLE_TIME; else attr.sample_type |= PERF_SAMPLE_TIME; if (!pt->per_cpu_mmaps) attr.sample_type &= ~(u64)PERF_SAMPLE_CPU; attr.exclude_user = evsel->attr.exclude_user; attr.exclude_kernel = evsel->attr.exclude_kernel; attr.exclude_hv = evsel->attr.exclude_hv; attr.exclude_host = evsel->attr.exclude_host; attr.exclude_guest = evsel->attr.exclude_guest; attr.sample_id_all = evsel->attr.sample_id_all; attr.read_format = evsel->attr.read_format; id = evsel->id[0] + 1000000000; if (!id) id = 1; if (pt->synth_opts.instructions) { attr.config = PERF_COUNT_HW_INSTRUCTIONS; if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS) attr.sample_period = intel_pt_ns_to_ticks(pt, pt->synth_opts.period); else attr.sample_period = pt->synth_opts.period; pt->instructions_sample_period = attr.sample_period; if (pt->synth_opts.callchain) attr.sample_type |= PERF_SAMPLE_CALLCHAIN; if (pt->synth_opts.last_branch) attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; pr_debug("Synthesizing 'instructions' event with id %" PRIu64 " sample type %#" PRIx64 "\n", id, (u64)attr.sample_type); err = intel_pt_synth_event(session, &attr, id); if (err) { pr_err("%s: failed to synthesize 'instructions' event type\n", __func__); return err; } pt->sample_instructions = true; pt->instructions_sample_type = attr.sample_type; pt->instructions_id = id; id += 1; } if (pt->synth_opts.transactions) { attr.config = PERF_COUNT_HW_INSTRUCTIONS; attr.sample_period = 1; if (pt->synth_opts.callchain) attr.sample_type |= PERF_SAMPLE_CALLCHAIN; if (pt->synth_opts.last_branch) attr.sample_type |= PERF_SAMPLE_BRANCH_STACK; pr_debug("Synthesizing 'transactions' event with id %" PRIu64 " sample type %#" PRIx64 "\n", id, (u64)attr.sample_type); err = intel_pt_synth_event(session, &attr, id); if (err) { pr_err("%s: failed to synthesize 'transactions' event type\n", __func__); return err; } pt->sample_transactions = true; pt->transactions_id = id; id += 1; evlist__for_each(evlist, evsel) { if (evsel->id && evsel->id[0] == pt->transactions_id) { if (evsel->name) zfree(&evsel->name); evsel->name = strdup("transactions"); break; } } } if (pt->synth_opts.branches) { attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS; attr.sample_period = 1; attr.sample_type |= PERF_SAMPLE_ADDR; attr.sample_type &= ~(u64)PERF_SAMPLE_CALLCHAIN; attr.sample_type &= ~(u64)PERF_SAMPLE_BRANCH_STACK; pr_debug("Synthesizing 'branches' event with id %" PRIu64 " sample type %#" PRIx64 "\n", id, (u64)attr.sample_type); err = intel_pt_synth_event(session, &attr, id); if (err) { pr_err("%s: failed to synthesize 'branches' event type\n", __func__); return err; } pt->sample_branches = true; pt->branches_sample_type = attr.sample_type; pt->branches_id = id; } pt->synth_needs_swap = evsel->needs_swap; return 0; } static struct perf_evsel *intel_pt_find_sched_switch(struct perf_evlist *evlist) { struct perf_evsel *evsel; evlist__for_each_reverse(evlist, evsel) { const char *name = perf_evsel__name(evsel); if (!strcmp(name, "sched:sched_switch")) return evsel; } return NULL; } static bool intel_pt_find_switch(struct perf_evlist *evlist) { struct perf_evsel *evsel; evlist__for_each(evlist, evsel) { if (evsel->attr.context_switch) return true; } return false; } static int intel_pt_perf_config(const char *var, const char *value, void *data) { struct intel_pt *pt = data; if (!strcmp(var, "intel-pt.mispred-all")) pt->mispred_all = perf_config_bool(var, value); return 0; } static const char * const intel_pt_info_fmts[] = { [INTEL_PT_PMU_TYPE] = " PMU Type %"PRId64"\n", [INTEL_PT_TIME_SHIFT] = " Time Shift %"PRIu64"\n", [INTEL_PT_TIME_MULT] = " Time Muliplier %"PRIu64"\n", [INTEL_PT_TIME_ZERO] = " Time Zero %"PRIu64"\n", [INTEL_PT_CAP_USER_TIME_ZERO] = " Cap Time Zero %"PRId64"\n", [INTEL_PT_TSC_BIT] = " TSC bit %#"PRIx64"\n", [INTEL_PT_NORETCOMP_BIT] = " NoRETComp bit %#"PRIx64"\n", [INTEL_PT_HAVE_SCHED_SWITCH] = " Have sched_switch %"PRId64"\n", [INTEL_PT_SNAPSHOT_MODE] = " Snapshot mode %"PRId64"\n", [INTEL_PT_PER_CPU_MMAPS] = " Per-cpu maps %"PRId64"\n", [INTEL_PT_MTC_BIT] = " MTC bit %#"PRIx64"\n", [INTEL_PT_TSC_CTC_N] = " TSC:CTC numerator %"PRIu64"\n", [INTEL_PT_TSC_CTC_D] = " TSC:CTC denominator %"PRIu64"\n", [INTEL_PT_CYC_BIT] = " CYC bit %#"PRIx64"\n", }; static void intel_pt_print_info(u64 *arr, int start, int finish) { int i; if (!dump_trace) return; for (i = start; i <= finish; i++) fprintf(stdout, intel_pt_info_fmts[i], arr[i]); } int intel_pt_process_auxtrace_info(union perf_event *event, struct perf_session *session) { struct auxtrace_info_event *auxtrace_info = &event->auxtrace_info; size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS; struct intel_pt *pt; int err; if (auxtrace_info->header.size < sizeof(struct auxtrace_info_event) + min_sz) return -EINVAL; pt = zalloc(sizeof(struct intel_pt)); if (!pt) return -ENOMEM; perf_config(intel_pt_perf_config, pt); err = auxtrace_queues__init(&pt->queues); if (err) goto err_free; intel_pt_log_set_name(INTEL_PT_PMU_NAME); pt->session = session; pt->machine = &session->machines.host; /* No kvm support */ pt->auxtrace_type = auxtrace_info->type; pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE]; pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT]; pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT]; pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO]; pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO]; pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT]; pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT]; pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH]; pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE]; pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS]; intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE, INTEL_PT_PER_CPU_MMAPS); if (auxtrace_info->header.size >= sizeof(struct auxtrace_info_event) + (sizeof(u64) * INTEL_PT_CYC_BIT)) { pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT]; pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS]; pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N]; pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D]; pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT]; intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT, INTEL_PT_CYC_BIT); } pt->timeless_decoding = intel_pt_timeless_decoding(pt); pt->have_tsc = intel_pt_have_tsc(pt); pt->sampling_mode = false; pt->est_tsc = !pt->timeless_decoding; pt->unknown_thread = thread__new(999999999, 999999999); if (!pt->unknown_thread) { err = -ENOMEM; goto err_free_queues; } /* * Since this thread will not be kept in any rbtree not in a * list, initialize its list node so that at thread__put() the * current thread lifetime assuption is kept and we don't segfault * at list_del_init(). */ INIT_LIST_HEAD(&pt->unknown_thread->node); err = thread__set_comm(pt->unknown_thread, "unknown", 0); if (err) goto err_delete_thread; if (thread__init_map_groups(pt->unknown_thread, pt->machine)) { err = -ENOMEM; goto err_delete_thread; } pt->auxtrace.process_event = intel_pt_process_event; pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event; pt->auxtrace.flush_events = intel_pt_flush; pt->auxtrace.free_events = intel_pt_free_events; pt->auxtrace.free = intel_pt_free; session->auxtrace = &pt->auxtrace; if (dump_trace) return 0; if (pt->have_sched_switch == 1) { pt->switch_evsel = intel_pt_find_sched_switch(session->evlist); if (!pt->switch_evsel) { pr_err("%s: missing sched_switch event\n", __func__); goto err_delete_thread; } } else if (pt->have_sched_switch == 2 && !intel_pt_find_switch(session->evlist)) { pr_err("%s: missing context_switch attribute flag\n", __func__); goto err_delete_thread; } if (session->itrace_synth_opts && session->itrace_synth_opts->set) { pt->synth_opts = *session->itrace_synth_opts; } else { itrace_synth_opts__set_default(&pt->synth_opts); if (use_browser != -1) { pt->synth_opts.branches = false; pt->synth_opts.callchain = true; } } if (pt->synth_opts.log) intel_pt_log_enable(); /* Maximum non-turbo ratio is TSC freq / 100 MHz */ if (pt->tc.time_mult) { u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000); pt->max_non_turbo_ratio = (tsc_freq + 50000000) / 100000000; intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq); intel_pt_log("Maximum non-turbo ratio %u\n", pt->max_non_turbo_ratio); } if (pt->synth_opts.calls) pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC | PERF_IP_FLAG_TRACE_END; if (pt->synth_opts.returns) pt->branches_filter |= PERF_IP_FLAG_RETURN | PERF_IP_FLAG_TRACE_BEGIN; if (pt->synth_opts.callchain && !symbol_conf.use_callchain) { symbol_conf.use_callchain = true; if (callchain_register_param(&callchain_param) < 0) { symbol_conf.use_callchain = false; pt->synth_opts.callchain = false; } } err = intel_pt_synth_events(pt, session); if (err) goto err_delete_thread; err = auxtrace_queues__process_index(&pt->queues, session); if (err) goto err_delete_thread; if (pt->queues.populated) pt->data_queued = true; if (pt->timeless_decoding) pr_debug2("Intel PT decoding without timestamps\n"); return 0; err_delete_thread: thread__zput(pt->unknown_thread); err_free_queues: intel_pt_log_disable(); auxtrace_queues__free(&pt->queues); session->auxtrace = NULL; err_free: free(pt); return err; }