/* * builtin-annotate.c * * Builtin annotate command: Analyze the perf.data input file, * look up and read DSOs and symbol information and display * a histogram of results, along various sorting keys. */ #include "builtin.h" #include "util/util.h" #include "util/color.h" #include "util/list.h" #include "util/cache.h" #include "util/rbtree.h" #include "util/symbol.h" #include "util/string.h" #include "perf.h" #include "util/parse-options.h" #include "util/parse-events.h" #define SHOW_KERNEL 1 #define SHOW_USER 2 #define SHOW_HV 4 static char const *input_name = "perf.data"; static char *vmlinux = "vmlinux"; static char default_sort_order[] = "comm,symbol"; static char *sort_order = default_sort_order; static int input; static int show_mask = SHOW_KERNEL | SHOW_USER | SHOW_HV; static int dump_trace = 0; #define dprintf(x...) do { if (dump_trace) printf(x); } while (0) static int verbose; static unsigned long page_size; static unsigned long mmap_window = 32; struct ip_event { struct perf_event_header header; __u64 ip; __u32 pid, tid; }; struct mmap_event { struct perf_event_header header; __u32 pid, tid; __u64 start; __u64 len; __u64 pgoff; char filename[PATH_MAX]; }; struct comm_event { struct perf_event_header header; __u32 pid, tid; char comm[16]; }; struct fork_event { struct perf_event_header header; __u32 pid, ppid; }; struct period_event { struct perf_event_header header; __u64 time; __u64 id; __u64 sample_period; }; typedef union event_union { struct perf_event_header header; struct ip_event ip; struct mmap_event mmap; struct comm_event comm; struct fork_event fork; struct period_event period; } event_t; static LIST_HEAD(dsos); static struct dso *kernel_dso; static struct dso *vdso; static void dsos__add(struct dso *dso) { list_add_tail(&dso->node, &dsos); } static struct dso *dsos__find(const char *name) { struct dso *pos; list_for_each_entry(pos, &dsos, node) if (strcmp(pos->name, name) == 0) return pos; return NULL; } static struct dso *dsos__findnew(const char *name) { struct dso *dso = dsos__find(name); int nr; if (dso) return dso; dso = dso__new(name, 0); if (!dso) goto out_delete_dso; nr = dso__load(dso, NULL, verbose); if (nr < 0) { if (verbose) fprintf(stderr, "Failed to open: %s\n", name); goto out_delete_dso; } if (!nr && verbose) { fprintf(stderr, "No symbols found in: %s, maybe install a debug package?\n", name); } dsos__add(dso); return dso; out_delete_dso: dso__delete(dso); return NULL; } static void dsos__fprintf(FILE *fp) { struct dso *pos; list_for_each_entry(pos, &dsos, node) dso__fprintf(pos, fp); } static struct symbol *vdso__find_symbol(struct dso *dso, uint64_t ip) { return dso__find_symbol(kernel_dso, ip); } static int load_kernel(void) { int err; kernel_dso = dso__new("[kernel]", 0); if (!kernel_dso) return -1; err = dso__load_kernel(kernel_dso, vmlinux, NULL, verbose); if (err) { dso__delete(kernel_dso); kernel_dso = NULL; } else dsos__add(kernel_dso); vdso = dso__new("[vdso]", 0); if (!vdso) return -1; vdso->find_symbol = vdso__find_symbol; dsos__add(vdso); return err; } struct map { struct list_head node; uint64_t start; uint64_t end; uint64_t pgoff; uint64_t (*map_ip)(struct map *, uint64_t); struct dso *dso; }; static uint64_t map__map_ip(struct map *map, uint64_t ip) { return ip - map->start + map->pgoff; } static uint64_t vdso__map_ip(struct map *map, uint64_t ip) { return ip; } static struct map *map__new(struct mmap_event *event) { struct map *self = malloc(sizeof(*self)); if (self != NULL) { const char *filename = event->filename; self->start = event->start; self->end = event->start + event->len; self->pgoff = event->pgoff; self->dso = dsos__findnew(filename); if (self->dso == NULL) goto out_delete; if (self->dso == vdso) self->map_ip = vdso__map_ip; else self->map_ip = map__map_ip; } return self; out_delete: free(self); return NULL; } static struct map *map__clone(struct map *self) { struct map *map = malloc(sizeof(*self)); if (!map) return NULL; memcpy(map, self, sizeof(*self)); return map; } static int map__overlap(struct map *l, struct map *r) { if (l->start > r->start) { struct map *t = l; l = r; r = t; } if (l->end > r->start) return 1; return 0; } static size_t map__fprintf(struct map *self, FILE *fp) { return fprintf(fp, " %"PRIx64"-%"PRIx64" %"PRIx64" %s\n", self->start, self->end, self->pgoff, self->dso->name); } struct thread { struct rb_node rb_node; struct list_head maps; pid_t pid; char *comm; }; static struct thread *thread__new(pid_t pid) { struct thread *self = malloc(sizeof(*self)); if (self != NULL) { self->pid = pid; self->comm = malloc(32); if (self->comm) snprintf(self->comm, 32, ":%d", self->pid); INIT_LIST_HEAD(&self->maps); } return self; } static int thread__set_comm(struct thread *self, const char *comm) { if (self->comm) free(self->comm); self->comm = strdup(comm); return self->comm ? 0 : -ENOMEM; } static size_t thread__fprintf(struct thread *self, FILE *fp) { struct map *pos; size_t ret = fprintf(fp, "Thread %d %s\n", self->pid, self->comm); list_for_each_entry(pos, &self->maps, node) ret += map__fprintf(pos, fp); return ret; } static struct rb_root threads; static struct thread *last_match; static struct thread *threads__findnew(pid_t pid) { struct rb_node **p = &threads.rb_node; struct rb_node *parent = NULL; struct thread *th; /* * Font-end cache - PID lookups come in blocks, * so most of the time we dont have to look up * the full rbtree: */ if (last_match && last_match->pid == pid) return last_match; while (*p != NULL) { parent = *p; th = rb_entry(parent, struct thread, rb_node); if (th->pid == pid) { last_match = th; return th; } if (pid < th->pid) p = &(*p)->rb_left; else p = &(*p)->rb_right; } th = thread__new(pid); if (th != NULL) { rb_link_node(&th->rb_node, parent, p); rb_insert_color(&th->rb_node, &threads); last_match = th; } return th; } static void thread__insert_map(struct thread *self, struct map *map) { struct map *pos, *tmp; list_for_each_entry_safe(pos, tmp, &self->maps, node) { if (map__overlap(pos, map)) { list_del_init(&pos->node); /* XXX leaks dsos */ free(pos); } } list_add_tail(&map->node, &self->maps); } static int thread__fork(struct thread *self, struct thread *parent) { struct map *map; if (self->comm) free(self->comm); self->comm = strdup(parent->comm); if (!self->comm) return -ENOMEM; list_for_each_entry(map, &parent->maps, node) { struct map *new = map__clone(map); if (!new) return -ENOMEM; thread__insert_map(self, new); } return 0; } static struct map *thread__find_map(struct thread *self, uint64_t ip) { struct map *pos; if (self == NULL) return NULL; list_for_each_entry(pos, &self->maps, node) if (ip >= pos->start && ip <= pos->end) return pos; return NULL; } static size_t threads__fprintf(FILE *fp) { size_t ret = 0; struct rb_node *nd; for (nd = rb_first(&threads); nd; nd = rb_next(nd)) { struct thread *pos = rb_entry(nd, struct thread, rb_node); ret += thread__fprintf(pos, fp); } return ret; } /* * histogram, sorted on item, collects counts */ static struct rb_root hist; struct hist_entry { struct rb_node rb_node; struct thread *thread; struct map *map; struct dso *dso; struct symbol *sym; uint64_t ip; char level; uint32_t count; }; /* * configurable sorting bits */ struct sort_entry { struct list_head list; char *header; int64_t (*cmp)(struct hist_entry *, struct hist_entry *); int64_t (*collapse)(struct hist_entry *, struct hist_entry *); size_t (*print)(FILE *fp, struct hist_entry *); }; /* --sort pid */ static int64_t sort__thread_cmp(struct hist_entry *left, struct hist_entry *right) { return right->thread->pid - left->thread->pid; } static size_t sort__thread_print(FILE *fp, struct hist_entry *self) { return fprintf(fp, "%16s:%5d", self->thread->comm ?: "", self->thread->pid); } static struct sort_entry sort_thread = { .header = " Command: Pid", .cmp = sort__thread_cmp, .print = sort__thread_print, }; /* --sort comm */ static int64_t sort__comm_cmp(struct hist_entry *left, struct hist_entry *right) { return right->thread->pid - left->thread->pid; } static int64_t sort__comm_collapse(struct hist_entry *left, struct hist_entry *right) { char *comm_l = left->thread->comm; char *comm_r = right->thread->comm; if (!comm_l || !comm_r) { if (!comm_l && !comm_r) return 0; else if (!comm_l) return -1; else return 1; } return strcmp(comm_l, comm_r); } static size_t sort__comm_print(FILE *fp, struct hist_entry *self) { return fprintf(fp, "%16s", self->thread->comm); } static struct sort_entry sort_comm = { .header = " Command", .cmp = sort__comm_cmp, .collapse = sort__comm_collapse, .print = sort__comm_print, }; /* --sort dso */ static int64_t sort__dso_cmp(struct hist_entry *left, struct hist_entry *right) { struct dso *dso_l = left->dso; struct dso *dso_r = right->dso; if (!dso_l || !dso_r) { if (!dso_l && !dso_r) return 0; else if (!dso_l) return -1; else return 1; } return strcmp(dso_l->name, dso_r->name); } static size_t sort__dso_print(FILE *fp, struct hist_entry *self) { if (self->dso) return fprintf(fp, "%-25s", self->dso->name); return fprintf(fp, "%016llx ", (__u64)self->ip); } static struct sort_entry sort_dso = { .header = "Shared Object ", .cmp = sort__dso_cmp, .print = sort__dso_print, }; /* --sort symbol */ static int64_t sort__sym_cmp(struct hist_entry *left, struct hist_entry *right) { uint64_t ip_l, ip_r; if (left->sym == right->sym) return 0; ip_l = left->sym ? left->sym->start : left->ip; ip_r = right->sym ? right->sym->start : right->ip; return (int64_t)(ip_r - ip_l); } static size_t sort__sym_print(FILE *fp, struct hist_entry *self) { size_t ret = 0; if (verbose) ret += fprintf(fp, "%#018llx ", (__u64)self->ip); if (self->sym) { ret += fprintf(fp, "[%c] %s", self->dso == kernel_dso ? 'k' : '.', self->sym->name); } else { ret += fprintf(fp, "%#016llx", (__u64)self->ip); } return ret; } static struct sort_entry sort_sym = { .header = "Symbol", .cmp = sort__sym_cmp, .print = sort__sym_print, }; static int sort__need_collapse = 0; struct sort_dimension { char *name; struct sort_entry *entry; int taken; }; static struct sort_dimension sort_dimensions[] = { { .name = "pid", .entry = &sort_thread, }, { .name = "comm", .entry = &sort_comm, }, { .name = "dso", .entry = &sort_dso, }, { .name = "symbol", .entry = &sort_sym, }, }; static LIST_HEAD(hist_entry__sort_list); static int sort_dimension__add(char *tok) { int i; for (i = 0; i < ARRAY_SIZE(sort_dimensions); i++) { struct sort_dimension *sd = &sort_dimensions[i]; if (sd->taken) continue; if (strncasecmp(tok, sd->name, strlen(tok))) continue; if (sd->entry->collapse) sort__need_collapse = 1; list_add_tail(&sd->entry->list, &hist_entry__sort_list); sd->taken = 1; return 0; } return -ESRCH; } static int64_t hist_entry__cmp(struct hist_entry *left, struct hist_entry *right) { struct sort_entry *se; int64_t cmp = 0; list_for_each_entry(se, &hist_entry__sort_list, list) { cmp = se->cmp(left, right); if (cmp) break; } return cmp; } static int64_t hist_entry__collapse(struct hist_entry *left, struct hist_entry *right) { struct sort_entry *se; int64_t cmp = 0; list_for_each_entry(se, &hist_entry__sort_list, list) { int64_t (*f)(struct hist_entry *, struct hist_entry *); f = se->collapse ?: se->cmp; cmp = f(left, right); if (cmp) break; } return cmp; } /* * collect histogram counts */ static void hist_hit(struct hist_entry *he, uint64_t ip) { unsigned int sym_size, offset; struct symbol *sym = he->sym; he->count++; if (!sym || !sym->hist) return; sym_size = sym->end - sym->start; offset = ip - sym->start; if (offset >= sym_size) return; sym->hist_sum++; sym->hist[offset]++; if (verbose >= 3) printf("%p %s: count++ [ip: %p, %08Lx] => %Ld\n", (void *)(unsigned long)he->sym->start, he->sym->name, (void *)(unsigned long)ip, ip - he->sym->start, sym->hist[offset]); } static int hist_entry__add(struct thread *thread, struct map *map, struct dso *dso, struct symbol *sym, uint64_t ip, char level) { struct rb_node **p = &hist.rb_node; struct rb_node *parent = NULL; struct hist_entry *he; struct hist_entry entry = { .thread = thread, .map = map, .dso = dso, .sym = sym, .ip = ip, .level = level, .count = 1, }; int cmp; while (*p != NULL) { parent = *p; he = rb_entry(parent, struct hist_entry, rb_node); cmp = hist_entry__cmp(&entry, he); if (!cmp) { hist_hit(he, ip); return 0; } if (cmp < 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } he = malloc(sizeof(*he)); if (!he) return -ENOMEM; *he = entry; rb_link_node(&he->rb_node, parent, p); rb_insert_color(&he->rb_node, &hist); return 0; } static void hist_entry__free(struct hist_entry *he) { free(he); } /* * collapse the histogram */ static struct rb_root collapse_hists; static void collapse__insert_entry(struct hist_entry *he) { struct rb_node **p = &collapse_hists.rb_node; struct rb_node *parent = NULL; struct hist_entry *iter; int64_t cmp; while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct hist_entry, rb_node); cmp = hist_entry__collapse(iter, he); if (!cmp) { iter->count += he->count; hist_entry__free(he); return; } if (cmp < 0) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&he->rb_node, parent, p); rb_insert_color(&he->rb_node, &collapse_hists); } static void collapse__resort(void) { struct rb_node *next; struct hist_entry *n; if (!sort__need_collapse) return; next = rb_first(&hist); while (next) { n = rb_entry(next, struct hist_entry, rb_node); next = rb_next(&n->rb_node); rb_erase(&n->rb_node, &hist); collapse__insert_entry(n); } } /* * reverse the map, sort on count. */ static struct rb_root output_hists; static void output__insert_entry(struct hist_entry *he) { struct rb_node **p = &output_hists.rb_node; struct rb_node *parent = NULL; struct hist_entry *iter; while (*p != NULL) { parent = *p; iter = rb_entry(parent, struct hist_entry, rb_node); if (he->count > iter->count) p = &(*p)->rb_left; else p = &(*p)->rb_right; } rb_link_node(&he->rb_node, parent, p); rb_insert_color(&he->rb_node, &output_hists); } static void output__resort(void) { struct rb_node *next; struct hist_entry *n; struct rb_root *tree = &hist; if (sort__need_collapse) tree = &collapse_hists; next = rb_first(tree); while (next) { n = rb_entry(next, struct hist_entry, rb_node); next = rb_next(&n->rb_node); rb_erase(&n->rb_node, tree); output__insert_entry(n); } } static void register_idle_thread(void) { struct thread *thread = threads__findnew(0); if (thread == NULL || thread__set_comm(thread, "[idle]")) { fprintf(stderr, "problem inserting idle task.\n"); exit(-1); } } static unsigned long total = 0, total_mmap = 0, total_comm = 0, total_fork = 0, total_unknown = 0; static int process_overflow_event(event_t *event, unsigned long offset, unsigned long head) { char level; int show = 0; struct dso *dso = NULL; struct thread *thread = threads__findnew(event->ip.pid); uint64_t ip = event->ip.ip; struct map *map = NULL; dprintf("%p [%p]: PERF_EVENT (IP, %d): %d: %p\n", (void *)(offset + head), (void *)(long)(event->header.size), event->header.misc, event->ip.pid, (void *)(long)ip); dprintf(" ... thread: %s:%d\n", thread->comm, thread->pid); if (thread == NULL) { fprintf(stderr, "problem processing %d event, skipping it.\n", event->header.type); return -1; } if (event->header.misc & PERF_EVENT_MISC_KERNEL) { show = SHOW_KERNEL; level = 'k'; dso = kernel_dso; dprintf(" ...... dso: %s\n", dso->name); } else if (event->header.misc & PERF_EVENT_MISC_USER) { show = SHOW_USER; level = '.'; map = thread__find_map(thread, ip); if (map != NULL) { ip = map->map_ip(map, ip); dso = map->dso; } else { /* * If this is outside of all known maps, * and is a negative address, try to look it * up in the kernel dso, as it might be a * vsyscall (which executes in user-mode): */ if ((long long)ip < 0) dso = kernel_dso; } dprintf(" ...... dso: %s\n", dso ? dso->name : ""); } else { show = SHOW_HV; level = 'H'; dprintf(" ...... dso: [hypervisor]\n"); } if (show & show_mask) { struct symbol *sym = NULL; if (dso) sym = dso->find_symbol(dso, ip); if (hist_entry__add(thread, map, dso, sym, ip, level)) { fprintf(stderr, "problem incrementing symbol count, skipping event\n"); return -1; } } total++; return 0; } static int process_mmap_event(event_t *event, unsigned long offset, unsigned long head) { struct thread *thread = threads__findnew(event->mmap.pid); struct map *map = map__new(&event->mmap); dprintf("%p [%p]: PERF_EVENT_MMAP %d: [%p(%p) @ %p]: %s\n", (void *)(offset + head), (void *)(long)(event->header.size), event->mmap.pid, (void *)(long)event->mmap.start, (void *)(long)event->mmap.len, (void *)(long)event->mmap.pgoff, event->mmap.filename); if (thread == NULL || map == NULL) { dprintf("problem processing PERF_EVENT_MMAP, skipping event.\n"); return 0; } thread__insert_map(thread, map); total_mmap++; return 0; } static int process_comm_event(event_t *event, unsigned long offset, unsigned long head) { struct thread *thread = threads__findnew(event->comm.pid); dprintf("%p [%p]: PERF_EVENT_COMM: %s:%d\n", (void *)(offset + head), (void *)(long)(event->header.size), event->comm.comm, event->comm.pid); if (thread == NULL || thread__set_comm(thread, event->comm.comm)) { dprintf("problem processing PERF_EVENT_COMM, skipping event.\n"); return -1; } total_comm++; return 0; } static int process_fork_event(event_t *event, unsigned long offset, unsigned long head) { struct thread *thread = threads__findnew(event->fork.pid); struct thread *parent = threads__findnew(event->fork.ppid); dprintf("%p [%p]: PERF_EVENT_FORK: %d:%d\n", (void *)(offset + head), (void *)(long)(event->header.size), event->fork.pid, event->fork.ppid); if (!thread || !parent || thread__fork(thread, parent)) { dprintf("problem processing PERF_EVENT_FORK, skipping event.\n"); return -1; } total_fork++; return 0; } static int process_period_event(event_t *event, unsigned long offset, unsigned long head) { dprintf("%p [%p]: PERF_EVENT_PERIOD: time:%Ld, id:%Ld: period:%Ld\n", (void *)(offset + head), (void *)(long)(event->header.size), event->period.time, event->period.id, event->period.sample_period); return 0; } static int process_event(event_t *event, unsigned long offset, unsigned long head) { if (event->header.misc & PERF_EVENT_MISC_OVERFLOW) return process_overflow_event(event, offset, head); switch (event->header.type) { case PERF_EVENT_MMAP: return process_mmap_event(event, offset, head); case PERF_EVENT_COMM: return process_comm_event(event, offset, head); case PERF_EVENT_FORK: return process_fork_event(event, offset, head); case PERF_EVENT_PERIOD: return process_period_event(event, offset, head); /* * We dont process them right now but they are fine: */ case PERF_EVENT_THROTTLE: case PERF_EVENT_UNTHROTTLE: return 0; default: return -1; } return 0; } static int parse_line(FILE *file, struct symbol *sym, uint64_t start, uint64_t len) { char *line = NULL, *tmp, *tmp2; unsigned int offset; size_t line_len; __u64 line_ip; int ret; char *c; if (getline(&line, &line_len, file) < 0) return -1; if (!line) return -1; c = strchr(line, '\n'); if (c) *c = 0; line_ip = -1; offset = 0; ret = -2; /* * Strip leading spaces: */ tmp = line; while (*tmp) { if (*tmp != ' ') break; tmp++; } if (*tmp) { /* * Parse hexa addresses followed by ':' */ line_ip = strtoull(tmp, &tmp2, 16); if (*tmp2 != ':') line_ip = -1; } if (line_ip != -1) { unsigned int hits = 0; double percent = 0.0; char *color = PERF_COLOR_NORMAL; offset = line_ip - start; if (offset < len) hits = sym->hist[offset]; if (sym->hist_sum) percent = 100.0 * hits / sym->hist_sum; /* * We color high-overhead entries in red, low-overhead * entries in green - and keep the middle ground normal: */ if (percent >= 5.0) color = PERF_COLOR_RED; else { if (percent > 0.5) color = PERF_COLOR_GREEN; } color_fprintf(stdout, color, " %7.2f", percent); printf(" : "); color_fprintf(stdout, PERF_COLOR_BLUE, "%s\n", line); } else { if (!*line) printf(" :\n"); else printf(" : %s\n", line); } return 0; } static void annotate_sym(struct dso *dso, struct symbol *sym) { char *filename = dso->name; uint64_t start, end, len; char command[PATH_MAX*2]; FILE *file; if (!filename) return; if (dso == kernel_dso) filename = vmlinux; printf("\n------------------------------------------------\n"); printf(" Percent | Source code & Disassembly of %s\n", filename); printf("------------------------------------------------\n"); if (verbose >= 2) printf("annotating [%p] %30s : [%p] %30s\n", dso, dso->name, sym, sym->name); start = sym->obj_start; if (!start) start = sym->start; end = start + sym->end - sym->start + 1; len = sym->end - sym->start; sprintf(command, "objdump --start-address=0x%016Lx --stop-address=0x%016Lx -dS %s", (__u64)start, (__u64)end, filename); if (verbose >= 3) printf("doing: %s\n", command); file = popen(command, "r"); if (!file) return; while (!feof(file)) { if (parse_line(file, sym, start, len) < 0) break; } pclose(file); } static void find_annotations(void) { struct rb_node *nd; struct dso *dso; int count = 0; list_for_each_entry(dso, &dsos, node) { for (nd = rb_first(&dso->syms); nd; nd = rb_next(nd)) { struct symbol *sym = rb_entry(nd, struct symbol, rb_node); if (sym->hist) { annotate_sym(dso, sym); count++; } } } if (!count) printf(" Error: symbol '%s' not present amongst the samples.\n", sym_hist_filter); } static int __cmd_annotate(void) { int ret, rc = EXIT_FAILURE; unsigned long offset = 0; unsigned long head = 0; struct stat stat; event_t *event; uint32_t size; char *buf; register_idle_thread(); input = open(input_name, O_RDONLY); if (input < 0) { perror("failed to open file"); exit(-1); } ret = fstat(input, &stat); if (ret < 0) { perror("failed to stat file"); exit(-1); } if (!stat.st_size) { fprintf(stderr, "zero-sized file, nothing to do!\n"); exit(0); } if (load_kernel() < 0) { perror("failed to load kernel symbols"); return EXIT_FAILURE; } remap: buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ, MAP_SHARED, input, offset); if (buf == MAP_FAILED) { perror("failed to mmap file"); exit(-1); } more: event = (event_t *)(buf + head); size = event->header.size; if (!size) size = 8; if (head + event->header.size >= page_size * mmap_window) { unsigned long shift = page_size * (head / page_size); int ret; ret = munmap(buf, page_size * mmap_window); assert(ret == 0); offset += shift; head -= shift; goto remap; } size = event->header.size; dprintf("%p [%p]: event: %d\n", (void *)(offset + head), (void *)(long)event->header.size, event->header.type); if (!size || process_event(event, offset, head) < 0) { dprintf("%p [%p]: skipping unknown header type: %d\n", (void *)(offset + head), (void *)(long)(event->header.size), event->header.type); total_unknown++; /* * assume we lost track of the stream, check alignment, and * increment a single u64 in the hope to catch on again 'soon'. */ if (unlikely(head & 7)) head &= ~7ULL; size = 8; } head += size; if (offset + head < stat.st_size) goto more; rc = EXIT_SUCCESS; close(input); dprintf(" IP events: %10ld\n", total); dprintf(" mmap events: %10ld\n", total_mmap); dprintf(" comm events: %10ld\n", total_comm); dprintf(" fork events: %10ld\n", total_fork); dprintf(" unknown events: %10ld\n", total_unknown); if (dump_trace) return 0; if (verbose >= 3) threads__fprintf(stdout); if (verbose >= 2) dsos__fprintf(stdout); collapse__resort(); output__resort(); find_annotations(); return rc; } static const char * const annotate_usage[] = { "perf annotate [] ", NULL }; static const struct option options[] = { OPT_STRING('i', "input", &input_name, "file", "input file name"), OPT_STRING('s', "symbol", &sym_hist_filter, "file", "symbol to annotate"), OPT_BOOLEAN('v', "verbose", &verbose, "be more verbose (show symbol address, etc)"), OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, "dump raw trace in ASCII"), OPT_STRING('k', "vmlinux", &vmlinux, "file", "vmlinux pathname"), OPT_END() }; static void setup_sorting(void) { char *tmp, *tok, *str = strdup(sort_order); for (tok = strtok_r(str, ", ", &tmp); tok; tok = strtok_r(NULL, ", ", &tmp)) { if (sort_dimension__add(tok) < 0) { error("Unknown --sort key: `%s'", tok); usage_with_options(annotate_usage, options); } } free(str); } int cmd_annotate(int argc, const char **argv, const char *prefix) { symbol__init(); page_size = getpagesize(); argc = parse_options(argc, argv, options, annotate_usage, 0); setup_sorting(); if (argc) { /* * Special case: if there's an argument left then assume tha * it's a symbol filter: */ if (argc > 1) usage_with_options(annotate_usage, options); sym_hist_filter = argv[0]; } if (!sym_hist_filter) usage_with_options(annotate_usage, options); setup_pager(); return __cmd_annotate(); }