// SPDX-License-Identifier: GPL-2.0-only /* * intel_hdmi_audio.c - Intel HDMI audio driver * * Copyright (C) 2016 Intel Corp * Authors: Sailaja Bandarupalli <sailaja.bandarupalli@intel.com> * Ramesh Babu K V <ramesh.babu@intel.com> * Vaibhav Agarwal <vaibhav.agarwal@intel.com> * Jerome Anand <jerome.anand@intel.com> * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ * ALSA driver for Intel HDMI audio */ #include <linux/types.h> #include <linux/platform_device.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/pm_runtime.h> #include <linux/dma-mapping.h> #include <linux/delay.h> #include <sound/core.h> #include <sound/asoundef.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/initval.h> #include <sound/control.h> #include <sound/jack.h> #include <drm/drm_edid.h> #include <drm/intel_lpe_audio.h> #include "intel_hdmi_audio.h" #define INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS 5000 #define for_each_pipe(card_ctx, pipe) \ for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++) #define for_each_port(card_ctx, port) \ for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++) /*standard module options for ALSA. This module supports only one card*/ static int hdmi_card_index = SNDRV_DEFAULT_IDX1; static char *hdmi_card_id = SNDRV_DEFAULT_STR1; static bool single_port; module_param_named(index, hdmi_card_index, int, 0444); MODULE_PARM_DESC(index, "Index value for INTEL Intel HDMI Audio controller."); module_param_named(id, hdmi_card_id, charp, 0444); MODULE_PARM_DESC(id, "ID string for INTEL Intel HDMI Audio controller."); module_param(single_port, bool, 0444); MODULE_PARM_DESC(single_port, "Single-port mode (for compatibility)"); /* * ELD SA bits in the CEA Speaker Allocation data block */ static const int eld_speaker_allocation_bits[] = { [0] = FL | FR, [1] = LFE, [2] = FC, [3] = RL | RR, [4] = RC, [5] = FLC | FRC, [6] = RLC | RRC, /* the following are not defined in ELD yet */ [7] = 0, }; /* * This is an ordered list! * * The preceding ones have better chances to be selected by * hdmi_channel_allocation(). */ static struct cea_channel_speaker_allocation channel_allocations[] = { /* channel: 7 6 5 4 3 2 1 0 */ { .ca_index = 0x00, .speakers = { 0, 0, 0, 0, 0, 0, FR, FL } }, /* 2.1 */ { .ca_index = 0x01, .speakers = { 0, 0, 0, 0, 0, LFE, FR, FL } }, /* Dolby Surround */ { .ca_index = 0x02, .speakers = { 0, 0, 0, 0, FC, 0, FR, FL } }, /* surround40 */ { .ca_index = 0x08, .speakers = { 0, 0, RR, RL, 0, 0, FR, FL } }, /* surround41 */ { .ca_index = 0x09, .speakers = { 0, 0, RR, RL, 0, LFE, FR, FL } }, /* surround50 */ { .ca_index = 0x0a, .speakers = { 0, 0, RR, RL, FC, 0, FR, FL } }, /* surround51 */ { .ca_index = 0x0b, .speakers = { 0, 0, RR, RL, FC, LFE, FR, FL } }, /* 6.1 */ { .ca_index = 0x0f, .speakers = { 0, RC, RR, RL, FC, LFE, FR, FL } }, /* surround71 */ { .ca_index = 0x13, .speakers = { RRC, RLC, RR, RL, FC, LFE, FR, FL } }, { .ca_index = 0x03, .speakers = { 0, 0, 0, 0, FC, LFE, FR, FL } }, { .ca_index = 0x04, .speakers = { 0, 0, 0, RC, 0, 0, FR, FL } }, { .ca_index = 0x05, .speakers = { 0, 0, 0, RC, 0, LFE, FR, FL } }, { .ca_index = 0x06, .speakers = { 0, 0, 0, RC, FC, 0, FR, FL } }, { .ca_index = 0x07, .speakers = { 0, 0, 0, RC, FC, LFE, FR, FL } }, { .ca_index = 0x0c, .speakers = { 0, RC, RR, RL, 0, 0, FR, FL } }, { .ca_index = 0x0d, .speakers = { 0, RC, RR, RL, 0, LFE, FR, FL } }, { .ca_index = 0x0e, .speakers = { 0, RC, RR, RL, FC, 0, FR, FL } }, { .ca_index = 0x10, .speakers = { RRC, RLC, RR, RL, 0, 0, FR, FL } }, { .ca_index = 0x11, .speakers = { RRC, RLC, RR, RL, 0, LFE, FR, FL } }, { .ca_index = 0x12, .speakers = { RRC, RLC, RR, RL, FC, 0, FR, FL } }, { .ca_index = 0x14, .speakers = { FRC, FLC, 0, 0, 0, 0, FR, FL } }, { .ca_index = 0x15, .speakers = { FRC, FLC, 0, 0, 0, LFE, FR, FL } }, { .ca_index = 0x16, .speakers = { FRC, FLC, 0, 0, FC, 0, FR, FL } }, { .ca_index = 0x17, .speakers = { FRC, FLC, 0, 0, FC, LFE, FR, FL } }, { .ca_index = 0x18, .speakers = { FRC, FLC, 0, RC, 0, 0, FR, FL } }, { .ca_index = 0x19, .speakers = { FRC, FLC, 0, RC, 0, LFE, FR, FL } }, { .ca_index = 0x1a, .speakers = { FRC, FLC, 0, RC, FC, 0, FR, FL } }, { .ca_index = 0x1b, .speakers = { FRC, FLC, 0, RC, FC, LFE, FR, FL } }, { .ca_index = 0x1c, .speakers = { FRC, FLC, RR, RL, 0, 0, FR, FL } }, { .ca_index = 0x1d, .speakers = { FRC, FLC, RR, RL, 0, LFE, FR, FL } }, { .ca_index = 0x1e, .speakers = { FRC, FLC, RR, RL, FC, 0, FR, FL } }, { .ca_index = 0x1f, .speakers = { FRC, FLC, RR, RL, FC, LFE, FR, FL } }, }; static const struct channel_map_table map_tables[] = { { SNDRV_CHMAP_FL, 0x00, FL }, { SNDRV_CHMAP_FR, 0x01, FR }, { SNDRV_CHMAP_RL, 0x04, RL }, { SNDRV_CHMAP_RR, 0x05, RR }, { SNDRV_CHMAP_LFE, 0x02, LFE }, { SNDRV_CHMAP_FC, 0x03, FC }, { SNDRV_CHMAP_RLC, 0x06, RLC }, { SNDRV_CHMAP_RRC, 0x07, RRC }, {} /* terminator */ }; /* hardware capability structure */ static const struct snd_pcm_hardware had_pcm_hardware = { .info = (SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_NO_PERIOD_WAKEUP), .formats = (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE), .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000 | SNDRV_PCM_RATE_176400 | SNDRV_PCM_RATE_192000, .rate_min = HAD_MIN_RATE, .rate_max = HAD_MAX_RATE, .channels_min = HAD_MIN_CHANNEL, .channels_max = HAD_MAX_CHANNEL, .buffer_bytes_max = HAD_MAX_BUFFER, .period_bytes_min = HAD_MIN_PERIOD_BYTES, .period_bytes_max = HAD_MAX_PERIOD_BYTES, .periods_min = HAD_MIN_PERIODS, .periods_max = HAD_MAX_PERIODS, .fifo_size = HAD_FIFO_SIZE, }; /* Get the active PCM substream; * Call had_substream_put() for unreferecing. * Don't call this inside had_spinlock, as it takes by itself */ static struct snd_pcm_substream * had_substream_get(struct snd_intelhad *intelhaddata) { struct snd_pcm_substream *substream; unsigned long flags; spin_lock_irqsave(&intelhaddata->had_spinlock, flags); substream = intelhaddata->stream_info.substream; if (substream) intelhaddata->stream_info.substream_refcount++; spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); return substream; } /* Unref the active PCM substream; * Don't call this inside had_spinlock, as it takes by itself */ static void had_substream_put(struct snd_intelhad *intelhaddata) { unsigned long flags; spin_lock_irqsave(&intelhaddata->had_spinlock, flags); intelhaddata->stream_info.substream_refcount--; spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); } static u32 had_config_offset(int pipe) { switch (pipe) { default: case 0: return AUDIO_HDMI_CONFIG_A; case 1: return AUDIO_HDMI_CONFIG_B; case 2: return AUDIO_HDMI_CONFIG_C; } } /* Register access functions */ static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx, int pipe, u32 reg) { return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg); } static void had_write_register_raw(struct snd_intelhad_card *card_ctx, int pipe, u32 reg, u32 val) { iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg); } static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val) { if (!ctx->connected) *val = 0; else *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg); } static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val) { if (ctx->connected) had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val); } /* * enable / disable audio configuration * * The normal read/modify should not directly be used on VLV2 for * updating AUD_CONFIG register. * This is because: * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2 * HDMI IP. As a result a read-modify of AUD_CONFIG register will always * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the * register. This field should be 1xy binary for configuration with 6 or * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio) * causes the "channels" field to be updated as 0xy binary resulting in * bad audio. The fix is to always write the AUD_CONFIG[6:4] with * appropriate value when doing read-modify of AUD_CONFIG register. */ static void had_enable_audio(struct snd_intelhad *intelhaddata, bool enable) { /* update the cached value */ intelhaddata->aud_config.regx.aud_en = enable; had_write_register(intelhaddata, AUD_CONFIG, intelhaddata->aud_config.regval); } /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */ static void had_ack_irqs(struct snd_intelhad *ctx) { u32 status_reg; if (!ctx->connected) return; had_read_register(ctx, AUD_HDMI_STATUS, &status_reg); status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN; had_write_register(ctx, AUD_HDMI_STATUS, status_reg); had_read_register(ctx, AUD_HDMI_STATUS, &status_reg); } /* Reset buffer pointers */ static void had_reset_audio(struct snd_intelhad *intelhaddata) { had_write_register(intelhaddata, AUD_HDMI_STATUS, AUD_HDMI_STATUSG_MASK_FUNCRST); had_write_register(intelhaddata, AUD_HDMI_STATUS, 0); } /* * initialize audio channel status registers * This function is called in the prepare callback */ static int had_prog_status_reg(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { union aud_ch_status_0 ch_stat0 = {.regval = 0}; union aud_ch_status_1 ch_stat1 = {.regval = 0}; ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits & IEC958_AES0_NONAUDIO) >> 1; ch_stat0.regx.clk_acc = (intelhaddata->aes_bits & IEC958_AES3_CON_CLOCK) >> 4; switch (substream->runtime->rate) { case AUD_SAMPLE_RATE_32: ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ; break; case AUD_SAMPLE_RATE_44_1: ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ; break; case AUD_SAMPLE_RATE_48: ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ; break; case AUD_SAMPLE_RATE_88_2: ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ; break; case AUD_SAMPLE_RATE_96: ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ; break; case AUD_SAMPLE_RATE_176_4: ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ; break; case AUD_SAMPLE_RATE_192: ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ; break; default: /* control should never come here */ return -EINVAL; } had_write_register(intelhaddata, AUD_CH_STATUS_0, ch_stat0.regval); switch (substream->runtime->format) { case SNDRV_PCM_FORMAT_S16_LE: ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20; ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS; break; case SNDRV_PCM_FORMAT_S24_LE: case SNDRV_PCM_FORMAT_S32_LE: ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24; ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS; break; default: return -EINVAL; } had_write_register(intelhaddata, AUD_CH_STATUS_1, ch_stat1.regval); return 0; } /* * function to initialize audio * registers and buffer configuration registers * This function is called in the prepare callback */ static int had_init_audio_ctrl(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { union aud_cfg cfg_val = {.regval = 0}; union aud_buf_config buf_cfg = {.regval = 0}; u8 channels; had_prog_status_reg(substream, intelhaddata); buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD; buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD; buf_cfg.regx.aud_delay = 0; had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval); channels = substream->runtime->channels; cfg_val.regx.num_ch = channels - 2; if (channels <= 2) cfg_val.regx.layout = LAYOUT0; else cfg_val.regx.layout = LAYOUT1; if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE) cfg_val.regx.packet_mode = 1; if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE) cfg_val.regx.left_align = 1; cfg_val.regx.val_bit = 1; /* fix up the DP bits */ if (intelhaddata->dp_output) { cfg_val.regx.dp_modei = 1; cfg_val.regx.set = 1; } had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval); intelhaddata->aud_config = cfg_val; return 0; } /* * Compute derived values in channel_allocations[]. */ static void init_channel_allocations(void) { int i, j; struct cea_channel_speaker_allocation *p; for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { p = channel_allocations + i; p->channels = 0; p->spk_mask = 0; for (j = 0; j < ARRAY_SIZE(p->speakers); j++) if (p->speakers[j]) { p->channels++; p->spk_mask |= p->speakers[j]; } } } /* * The transformation takes two steps: * * eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask * spk_mask => (channel_allocations[]) => ai->CA * * TODO: it could select the wrong CA from multiple candidates. */ static int had_channel_allocation(struct snd_intelhad *intelhaddata, int channels) { int i; int ca = 0; int spk_mask = 0; /* * CA defaults to 0 for basic stereo audio */ if (channels <= 2) return 0; /* * expand ELD's speaker allocation mask * * ELD tells the speaker mask in a compact(paired) form, * expand ELD's notions to match the ones used by Audio InfoFrame. */ for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i)) spk_mask |= eld_speaker_allocation_bits[i]; } /* search for the first working match in the CA table */ for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { if (channels == channel_allocations[i].channels && (spk_mask & channel_allocations[i].spk_mask) == channel_allocations[i].spk_mask) { ca = channel_allocations[i].ca_index; break; } } dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels); return ca; } /* from speaker bit mask to ALSA API channel position */ static int spk_to_chmap(int spk) { const struct channel_map_table *t = map_tables; for (; t->map; t++) { if (t->spk_mask == spk) return t->map; } return 0; } static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata) { int i, c; int spk_mask = 0; struct snd_pcm_chmap_elem *chmap; u8 eld_high, eld_high_mask = 0xF0; u8 high_msb; kfree(intelhaddata->chmap->chmap); intelhaddata->chmap->chmap = NULL; chmap = kzalloc(sizeof(*chmap), GFP_KERNEL); if (!chmap) return; dev_dbg(intelhaddata->dev, "eld speaker = %x\n", intelhaddata->eld[DRM_ELD_SPEAKER]); /* WA: Fix the max channel supported to 8 */ /* * Sink may support more than 8 channels, if eld_high has more than * one bit set. SOC supports max 8 channels. * Refer eld_speaker_allocation_bits, for sink speaker allocation */ /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */ eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask; if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) { /* eld_high & (eld_high-1): if more than 1 bit set */ /* 0x1F: 7 channels */ for (i = 1; i < 4; i++) { high_msb = eld_high & (0x80 >> i); if (high_msb) { intelhaddata->eld[DRM_ELD_SPEAKER] &= high_msb | 0xF; break; } } } for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) { if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i)) spk_mask |= eld_speaker_allocation_bits[i]; } for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) { if (spk_mask == channel_allocations[i].spk_mask) { for (c = 0; c < channel_allocations[i].channels; c++) { chmap->map[c] = spk_to_chmap( channel_allocations[i].speakers[ (MAX_SPEAKERS - 1) - c]); } chmap->channels = channel_allocations[i].channels; intelhaddata->chmap->chmap = chmap; break; } } if (i >= ARRAY_SIZE(channel_allocations)) kfree(chmap); } /* * ALSA API channel-map control callbacks */ static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = HAD_MAX_CHANNEL; uinfo->value.integer.min = 0; uinfo->value.integer.max = SNDRV_CHMAP_LAST; return 0; } static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol); struct snd_intelhad *intelhaddata = info->private_data; int i; const struct snd_pcm_chmap_elem *chmap; memset(ucontrol->value.integer.value, 0, sizeof(long) * HAD_MAX_CHANNEL); mutex_lock(&intelhaddata->mutex); if (!intelhaddata->chmap->chmap) { mutex_unlock(&intelhaddata->mutex); return 0; } chmap = intelhaddata->chmap->chmap; for (i = 0; i < chmap->channels; i++) ucontrol->value.integer.value[i] = chmap->map[i]; mutex_unlock(&intelhaddata->mutex); return 0; } static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata, struct snd_pcm *pcm) { int err; err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK, NULL, 0, (unsigned long)intelhaddata, &intelhaddata->chmap); if (err < 0) return err; intelhaddata->chmap->private_data = intelhaddata; intelhaddata->chmap->kctl->info = had_chmap_ctl_info; intelhaddata->chmap->kctl->get = had_chmap_ctl_get; intelhaddata->chmap->chmap = NULL; return 0; } /* * Initialize Data Island Packets registers * This function is called in the prepare callback */ static void had_prog_dip(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { int i; union aud_ctrl_st ctrl_state = {.regval = 0}; union aud_info_frame2 frame2 = {.regval = 0}; union aud_info_frame3 frame3 = {.regval = 0}; u8 checksum = 0; u32 info_frame; int channels; int ca; channels = substream->runtime->channels; had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval); ca = had_channel_allocation(intelhaddata, channels); if (intelhaddata->dp_output) { info_frame = DP_INFO_FRAME_WORD1; frame2.regval = (substream->runtime->channels - 1) | (ca << 24); } else { info_frame = HDMI_INFO_FRAME_WORD1; frame2.regx.chnl_cnt = substream->runtime->channels - 1; frame3.regx.chnl_alloc = ca; /* Calculte the byte wide checksum for all valid DIP words */ for (i = 0; i < BYTES_PER_WORD; i++) checksum += (info_frame >> (i * 8)) & 0xff; for (i = 0; i < BYTES_PER_WORD; i++) checksum += (frame2.regval >> (i * 8)) & 0xff; for (i = 0; i < BYTES_PER_WORD; i++) checksum += (frame3.regval >> (i * 8)) & 0xff; frame2.regx.chksum = -(checksum); } had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame); had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval); had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval); /* program remaining DIP words with zero */ for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++) had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0); ctrl_state.regx.dip_freq = 1; ctrl_state.regx.dip_en_sta = 1; had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval); } static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate) { u32 maud_val; /* Select maud according to DP 1.2 spec */ if (link_rate == DP_2_7_GHZ) { switch (aud_samp_freq) { case AUD_SAMPLE_RATE_32: maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_44_1: maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_48: maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_88_2: maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_96: maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL; break; case AUD_SAMPLE_RATE_176_4: maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL; break; case HAD_MAX_RATE: maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL; break; default: maud_val = -EINVAL; break; } } else if (link_rate == DP_1_62_GHZ) { switch (aud_samp_freq) { case AUD_SAMPLE_RATE_32: maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_44_1: maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_48: maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_88_2: maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_96: maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL; break; case AUD_SAMPLE_RATE_176_4: maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL; break; case HAD_MAX_RATE: maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL; break; default: maud_val = -EINVAL; break; } } else maud_val = -EINVAL; return maud_val; } /* * Program HDMI audio CTS value * * @aud_samp_freq: sampling frequency of audio data * @tmds: sampling frequency of the display data * @link_rate: DP link rate * @n_param: N value, depends on aud_samp_freq * @intelhaddata: substream private data * * Program CTS register based on the audio and display sampling frequency */ static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate, u32 n_param, struct snd_intelhad *intelhaddata) { u32 cts_val; u64 dividend, divisor; if (intelhaddata->dp_output) { /* Substitute cts_val with Maud according to DP 1.2 spec*/ cts_val = had_calculate_maud_value(aud_samp_freq, link_rate); } else { /* Calculate CTS according to HDMI 1.3a spec*/ dividend = (u64)tmds * n_param*1000; divisor = 128 * aud_samp_freq; cts_val = div64_u64(dividend, divisor); } dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n", tmds, n_param, cts_val); had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val)); } static int had_calculate_n_value(u32 aud_samp_freq) { int n_val; /* Select N according to HDMI 1.3a spec*/ switch (aud_samp_freq) { case AUD_SAMPLE_RATE_32: n_val = 4096; break; case AUD_SAMPLE_RATE_44_1: n_val = 6272; break; case AUD_SAMPLE_RATE_48: n_val = 6144; break; case AUD_SAMPLE_RATE_88_2: n_val = 12544; break; case AUD_SAMPLE_RATE_96: n_val = 12288; break; case AUD_SAMPLE_RATE_176_4: n_val = 25088; break; case HAD_MAX_RATE: n_val = 24576; break; default: n_val = -EINVAL; break; } return n_val; } /* * Program HDMI audio N value * * @aud_samp_freq: sampling frequency of audio data * @n_param: N value, depends on aud_samp_freq * @intelhaddata: substream private data * * This function is called in the prepare callback. * It programs based on the audio and display sampling frequency */ static int had_prog_n(u32 aud_samp_freq, u32 *n_param, struct snd_intelhad *intelhaddata) { int n_val; if (intelhaddata->dp_output) { /* * According to DP specs, Maud and Naud values hold * a relationship, which is stated as: * Maud/Naud = 512 * fs / f_LS_Clk * where, fs is the sampling frequency of the audio stream * and Naud is 32768 for Async clock. */ n_val = DP_NAUD_VAL; } else n_val = had_calculate_n_value(aud_samp_freq); if (n_val < 0) return n_val; had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val)); *n_param = n_val; return 0; } /* * PCM ring buffer handling * * The hardware provides a ring buffer with the fixed 4 buffer descriptors * (BDs). The driver maps these 4 BDs onto the PCM ring buffer. The mapping * moves at each period elapsed. The below illustrates how it works: * * At time=0 * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| * BD | 0 | 1 | 2 | 3 | * * At time=1 (period elapsed) * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| * BD | 1 | 2 | 3 | 0 | * * At time=2 (second period elapsed) * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| * BD | 2 | 3 | 0 | 1 | * * The bd_head field points to the index of the BD to be read. It's also the * position to be filled at next. The pcm_head and the pcm_filled fields * point to the indices of the current position and of the next position to * be filled, respectively. For PCM buffer there are both _head and _filled * because they may be difference when nperiods > 4. For example, in the * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5: * * pcm_head (=1) --v v-- pcm_filled (=5) * PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1| * BD | 1 | 2 | 3 | 0 | * bd_head (=1) --^ ^-- next to fill (= bd_head) * * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that * the hardware skips those BDs in the loop. * * An exceptional setup is the case with nperiods=1. Since we have to update * BDs after finishing one BD processing, we'd need at least two BDs, where * both BDs point to the same content, the same address, the same size of the * whole PCM buffer. */ #define AUD_BUF_ADDR(x) (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH) #define AUD_BUF_LEN(x) (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH) /* Set up a buffer descriptor at the "filled" position */ static void had_prog_bd(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { int idx = intelhaddata->bd_head; int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes; u32 addr = substream->runtime->dma_addr + ofs; addr |= AUD_BUF_VALID; if (!substream->runtime->no_period_wakeup) addr |= AUD_BUF_INTR_EN; had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr); had_write_register(intelhaddata, AUD_BUF_LEN(idx), intelhaddata->period_bytes); /* advance the indices to the next */ intelhaddata->bd_head++; intelhaddata->bd_head %= intelhaddata->num_bds; intelhaddata->pcmbuf_filled++; intelhaddata->pcmbuf_filled %= substream->runtime->periods; } /* invalidate a buffer descriptor with the given index */ static void had_invalidate_bd(struct snd_intelhad *intelhaddata, int idx) { had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0); had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0); } /* Initial programming of ring buffer */ static void had_init_ringbuf(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { struct snd_pcm_runtime *runtime = substream->runtime; int i, num_periods; num_periods = runtime->periods; intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS); /* set the minimum 2 BDs for num_periods=1 */ intelhaddata->num_bds = max(intelhaddata->num_bds, 2U); intelhaddata->period_bytes = frames_to_bytes(runtime, runtime->period_size); WARN_ON(intelhaddata->period_bytes & 0x3f); intelhaddata->bd_head = 0; intelhaddata->pcmbuf_head = 0; intelhaddata->pcmbuf_filled = 0; for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) { if (i < intelhaddata->num_bds) had_prog_bd(substream, intelhaddata); else /* invalidate the rest */ had_invalidate_bd(intelhaddata, i); } intelhaddata->bd_head = 0; /* reset at head again before starting */ } /* process a bd, advance to the next */ static void had_advance_ringbuf(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { int num_periods = substream->runtime->periods; /* reprogram the next buffer */ had_prog_bd(substream, intelhaddata); /* proceed to next */ intelhaddata->pcmbuf_head++; intelhaddata->pcmbuf_head %= num_periods; } /* process the current BD(s); * returns the current PCM buffer byte position, or -EPIPE for underrun. */ static int had_process_ringbuf(struct snd_pcm_substream *substream, struct snd_intelhad *intelhaddata) { int len, processed; unsigned long flags; processed = 0; spin_lock_irqsave(&intelhaddata->had_spinlock, flags); for (;;) { /* get the remaining bytes on the buffer */ had_read_register(intelhaddata, AUD_BUF_LEN(intelhaddata->bd_head), &len); if (len < 0 || len > intelhaddata->period_bytes) { dev_dbg(intelhaddata->dev, "Invalid buf length %d\n", len); len = -EPIPE; goto out; } if (len > 0) /* OK, this is the current buffer */ break; /* len=0 => already empty, check the next buffer */ if (++processed >= intelhaddata->num_bds) { len = -EPIPE; /* all empty? - report underrun */ goto out; } had_advance_ringbuf(substream, intelhaddata); } len = intelhaddata->period_bytes - len; len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head; out: spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags); return len; } /* called from irq handler */ static void had_process_buffer_done(struct snd_intelhad *intelhaddata) { struct snd_pcm_substream *substream; substream = had_substream_get(intelhaddata); if (!substream) return; /* no stream? - bail out */ if (!intelhaddata->connected) { snd_pcm_stop_xrun(substream); goto out; /* disconnected? - bail out */ } /* process or stop the stream */ if (had_process_ringbuf(substream, intelhaddata) < 0) snd_pcm_stop_xrun(substream); else snd_pcm_period_elapsed(substream); out: had_substream_put(intelhaddata); } /* * The interrupt status 'sticky' bits might not be cleared by * setting '1' to that bit once... */ static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata) { int i; u32 val; for (i = 0; i < 100; i++) { /* clear bit30, 31 AUD_HDMI_STATUS */ had_read_register(intelhaddata, AUD_HDMI_STATUS, &val); if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN)) return; udelay(100); cond_resched(); had_write_register(intelhaddata, AUD_HDMI_STATUS, val); } dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n"); } /* Perform some reset procedure after stopping the stream; * this is called from prepare or hw_free callbacks once after trigger STOP * or underrun has been processed in order to settle down the h/w state. */ static int had_pcm_sync_stop(struct snd_pcm_substream *substream) { struct snd_intelhad *intelhaddata = snd_pcm_substream_chip(substream); if (!intelhaddata->connected) return 0; /* Reset buffer pointers */ had_reset_audio(intelhaddata); wait_clear_underrun_bit(intelhaddata); return 0; } /* called from irq handler */ static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata) { struct snd_pcm_substream *substream; /* Report UNDERRUN error to above layers */ substream = had_substream_get(intelhaddata); if (substream) { snd_pcm_stop_xrun(substream); had_substream_put(intelhaddata); } } /* * ALSA PCM open callback */ static int had_pcm_open(struct snd_pcm_substream *substream) { struct snd_intelhad *intelhaddata; struct snd_pcm_runtime *runtime; int retval; intelhaddata = snd_pcm_substream_chip(substream); runtime = substream->runtime; retval = pm_runtime_resume_and_get(intelhaddata->dev); if (retval < 0) return retval; /* set the runtime hw parameter with local snd_pcm_hardware struct */ runtime->hw = had_pcm_hardware; retval = snd_pcm_hw_constraint_integer(runtime, SNDRV_PCM_HW_PARAM_PERIODS); if (retval < 0) goto error; /* Make sure, that the period size is always aligned * 64byte boundary */ retval = snd_pcm_hw_constraint_step(substream->runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64); if (retval < 0) goto error; retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24); if (retval < 0) goto error; /* expose PCM substream */ spin_lock_irq(&intelhaddata->had_spinlock); intelhaddata->stream_info.substream = substream; intelhaddata->stream_info.substream_refcount++; spin_unlock_irq(&intelhaddata->had_spinlock); return retval; error: pm_runtime_mark_last_busy(intelhaddata->dev); pm_runtime_put_autosuspend(intelhaddata->dev); return retval; } /* * ALSA PCM close callback */ static int had_pcm_close(struct snd_pcm_substream *substream) { struct snd_intelhad *intelhaddata; intelhaddata = snd_pcm_substream_chip(substream); /* unreference and sync with the pending PCM accesses */ spin_lock_irq(&intelhaddata->had_spinlock); intelhaddata->stream_info.substream = NULL; intelhaddata->stream_info.substream_refcount--; while (intelhaddata->stream_info.substream_refcount > 0) { spin_unlock_irq(&intelhaddata->had_spinlock); cpu_relax(); spin_lock_irq(&intelhaddata->had_spinlock); } spin_unlock_irq(&intelhaddata->had_spinlock); pm_runtime_mark_last_busy(intelhaddata->dev); pm_runtime_put_autosuspend(intelhaddata->dev); return 0; } /* * ALSA PCM hw_params callback */ static int had_pcm_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *hw_params) { struct snd_intelhad *intelhaddata; int buf_size; intelhaddata = snd_pcm_substream_chip(substream); buf_size = params_buffer_bytes(hw_params); dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n", __func__, buf_size); return 0; } /* * ALSA PCM trigger callback */ static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd) { int retval = 0; struct snd_intelhad *intelhaddata; intelhaddata = snd_pcm_substream_chip(substream); spin_lock(&intelhaddata->had_spinlock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: case SNDRV_PCM_TRIGGER_RESUME: /* Enable Audio */ had_ack_irqs(intelhaddata); /* FIXME: do we need this? */ had_enable_audio(intelhaddata, true); break; case SNDRV_PCM_TRIGGER_STOP: case SNDRV_PCM_TRIGGER_PAUSE_PUSH: /* Disable Audio */ had_enable_audio(intelhaddata, false); break; default: retval = -EINVAL; } spin_unlock(&intelhaddata->had_spinlock); return retval; } /* * ALSA PCM prepare callback */ static int had_pcm_prepare(struct snd_pcm_substream *substream) { int retval; u32 disp_samp_freq, n_param; u32 link_rate = 0; struct snd_intelhad *intelhaddata; struct snd_pcm_runtime *runtime; intelhaddata = snd_pcm_substream_chip(substream); runtime = substream->runtime; dev_dbg(intelhaddata->dev, "period_size=%d\n", (int)frames_to_bytes(runtime, runtime->period_size)); dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods); dev_dbg(intelhaddata->dev, "buffer_size=%d\n", (int)snd_pcm_lib_buffer_bytes(substream)); dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate); dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels); /* Get N value in KHz */ disp_samp_freq = intelhaddata->tmds_clock_speed; retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata); if (retval) { dev_err(intelhaddata->dev, "programming N value failed %#x\n", retval); goto prep_end; } if (intelhaddata->dp_output) link_rate = intelhaddata->link_rate; had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, n_param, intelhaddata); had_prog_dip(substream, intelhaddata); retval = had_init_audio_ctrl(substream, intelhaddata); /* Prog buffer address */ had_init_ringbuf(substream, intelhaddata); /* * Program channel mapping in following order: * FL, FR, C, LFE, RL, RR */ had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER); prep_end: return retval; } /* * ALSA PCM pointer callback */ static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream) { struct snd_intelhad *intelhaddata; int len; intelhaddata = snd_pcm_substream_chip(substream); if (!intelhaddata->connected) return SNDRV_PCM_POS_XRUN; len = had_process_ringbuf(substream, intelhaddata); if (len < 0) return SNDRV_PCM_POS_XRUN; len = bytes_to_frames(substream->runtime, len); /* wrapping may happen when periods=1 */ len %= substream->runtime->buffer_size; return len; } /* * ALSA PCM ops */ static const struct snd_pcm_ops had_pcm_ops = { .open = had_pcm_open, .close = had_pcm_close, .hw_params = had_pcm_hw_params, .prepare = had_pcm_prepare, .trigger = had_pcm_trigger, .sync_stop = had_pcm_sync_stop, .pointer = had_pcm_pointer, }; /* process mode change of the running stream; called in mutex */ static int had_process_mode_change(struct snd_intelhad *intelhaddata) { struct snd_pcm_substream *substream; int retval = 0; u32 disp_samp_freq, n_param; u32 link_rate = 0; substream = had_substream_get(intelhaddata); if (!substream) return 0; /* Disable Audio */ had_enable_audio(intelhaddata, false); /* Update CTS value */ disp_samp_freq = intelhaddata->tmds_clock_speed; retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata); if (retval) { dev_err(intelhaddata->dev, "programming N value failed %#x\n", retval); goto out; } if (intelhaddata->dp_output) link_rate = intelhaddata->link_rate; had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate, n_param, intelhaddata); /* Enable Audio */ had_enable_audio(intelhaddata, true); out: had_substream_put(intelhaddata); return retval; } /* process hot plug, called from wq with mutex locked */ static void had_process_hot_plug(struct snd_intelhad *intelhaddata) { struct snd_pcm_substream *substream; spin_lock_irq(&intelhaddata->had_spinlock); if (intelhaddata->connected) { dev_dbg(intelhaddata->dev, "Device already connected\n"); spin_unlock_irq(&intelhaddata->had_spinlock); return; } /* Disable Audio */ had_enable_audio(intelhaddata, false); intelhaddata->connected = true; dev_dbg(intelhaddata->dev, "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n", __func__, __LINE__); spin_unlock_irq(&intelhaddata->had_spinlock); had_build_channel_allocation_map(intelhaddata); /* Report to above ALSA layer */ substream = had_substream_get(intelhaddata); if (substream) { snd_pcm_stop_xrun(substream); had_substream_put(intelhaddata); } snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT); } /* process hot unplug, called from wq with mutex locked */ static void had_process_hot_unplug(struct snd_intelhad *intelhaddata) { struct snd_pcm_substream *substream; spin_lock_irq(&intelhaddata->had_spinlock); if (!intelhaddata->connected) { dev_dbg(intelhaddata->dev, "Device already disconnected\n"); spin_unlock_irq(&intelhaddata->had_spinlock); return; } /* Disable Audio */ had_enable_audio(intelhaddata, false); intelhaddata->connected = false; dev_dbg(intelhaddata->dev, "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n", __func__, __LINE__); spin_unlock_irq(&intelhaddata->had_spinlock); kfree(intelhaddata->chmap->chmap); intelhaddata->chmap->chmap = NULL; /* Report to above ALSA layer */ substream = had_substream_get(intelhaddata); if (substream) { snd_pcm_stop_xrun(substream); had_substream_put(intelhaddata); } snd_jack_report(intelhaddata->jack, 0); } /* * ALSA iec958 and ELD controls */ static int had_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int had_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); mutex_lock(&intelhaddata->mutex); ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff; ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff; ucontrol->value.iec958.status[2] = (intelhaddata->aes_bits >> 16) & 0xff; ucontrol->value.iec958.status[3] = (intelhaddata->aes_bits >> 24) & 0xff; mutex_unlock(&intelhaddata->mutex); return 0; } static int had_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = 0xff; ucontrol->value.iec958.status[1] = 0xff; ucontrol->value.iec958.status[2] = 0xff; ucontrol->value.iec958.status[3] = 0xff; return 0; } static int had_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { unsigned int val; struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); int changed = 0; val = (ucontrol->value.iec958.status[0] << 0) | (ucontrol->value.iec958.status[1] << 8) | (ucontrol->value.iec958.status[2] << 16) | (ucontrol->value.iec958.status[3] << 24); mutex_lock(&intelhaddata->mutex); if (intelhaddata->aes_bits != val) { intelhaddata->aes_bits = val; changed = 1; } mutex_unlock(&intelhaddata->mutex); return changed; } static int had_ctl_eld_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES; uinfo->count = HDMI_MAX_ELD_BYTES; return 0; } static int had_ctl_eld_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol); mutex_lock(&intelhaddata->mutex); memcpy(ucontrol->value.bytes.data, intelhaddata->eld, HDMI_MAX_ELD_BYTES); mutex_unlock(&intelhaddata->mutex); return 0; } static const struct snd_kcontrol_new had_controls[] = { { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK), .info = had_iec958_info, /* shared */ .get = had_iec958_mask_get, }, { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT), .info = had_iec958_info, .get = had_iec958_get, .put = had_iec958_put, }, { .access = (SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE), .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = "ELD", .info = had_ctl_eld_info, .get = had_ctl_eld_get, }, }; /* * audio interrupt handler */ static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id) { struct snd_intelhad_card *card_ctx = dev_id; u32 audio_stat[3] = {}; int pipe, port; for_each_pipe(card_ctx, pipe) { /* use raw register access to ack IRQs even while disconnected */ audio_stat[pipe] = had_read_register_raw(card_ctx, pipe, AUD_HDMI_STATUS) & (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE); if (audio_stat[pipe]) had_write_register_raw(card_ctx, pipe, AUD_HDMI_STATUS, audio_stat[pipe]); } for_each_port(card_ctx, port) { struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; int pipe = ctx->pipe; if (pipe < 0) continue; if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE) had_process_buffer_done(ctx); if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN) had_process_buffer_underrun(ctx); } return IRQ_HANDLED; } /* * monitor plug/unplug notification from i915; just kick off the work */ static void notify_audio_lpe(struct platform_device *pdev, int port) { struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev); struct snd_intelhad *ctx; ctx = &card_ctx->pcm_ctx[single_port ? 0 : port]; if (single_port) ctx->port = port; schedule_work(&ctx->hdmi_audio_wq); } /* the work to handle monitor hot plug/unplug */ static void had_audio_wq(struct work_struct *work) { struct snd_intelhad *ctx = container_of(work, struct snd_intelhad, hdmi_audio_wq); struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data; struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port]; int ret; ret = pm_runtime_resume_and_get(ctx->dev); if (ret < 0) return; mutex_lock(&ctx->mutex); if (ppdata->pipe < 0) { dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n", __func__, ctx->port); memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */ ctx->dp_output = false; ctx->tmds_clock_speed = 0; ctx->link_rate = 0; /* Shut down the stream */ had_process_hot_unplug(ctx); ctx->pipe = -1; } else { dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n", __func__, ctx->port, ppdata->ls_clock); memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld)); ctx->dp_output = ppdata->dp_output; if (ctx->dp_output) { ctx->tmds_clock_speed = 0; ctx->link_rate = ppdata->ls_clock; } else { ctx->tmds_clock_speed = ppdata->ls_clock; ctx->link_rate = 0; } /* * Shut down the stream before we change * the pipe assignment for this pcm device */ had_process_hot_plug(ctx); ctx->pipe = ppdata->pipe; /* Restart the stream if necessary */ had_process_mode_change(ctx); } mutex_unlock(&ctx->mutex); pm_runtime_mark_last_busy(ctx->dev); pm_runtime_put_autosuspend(ctx->dev); } /* * Jack interface */ static int had_create_jack(struct snd_intelhad *ctx, struct snd_pcm *pcm) { char hdmi_str[32]; int err; snprintf(hdmi_str, sizeof(hdmi_str), "HDMI/DP,pcm=%d", pcm->device); err = snd_jack_new(ctx->card_ctx->card, hdmi_str, SND_JACK_AVOUT, &ctx->jack, true, false); if (err < 0) return err; ctx->jack->private_data = ctx; return 0; } /* * PM callbacks */ static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev) { struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev); snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot); return 0; } static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev) { struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev); pm_runtime_mark_last_busy(dev); snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0); return 0; } /* release resources */ static void hdmi_lpe_audio_free(struct snd_card *card) { struct snd_intelhad_card *card_ctx = card->private_data; struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data; int port; spin_lock_irq(&pdata->lpe_audio_slock); pdata->notify_audio_lpe = NULL; spin_unlock_irq(&pdata->lpe_audio_slock); for_each_port(card_ctx, port) { struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; cancel_work_sync(&ctx->hdmi_audio_wq); } } /* * hdmi_lpe_audio_probe - start bridge with i915 * * This function is called when the i915 driver creates the * hdmi-lpe-audio platform device. */ static int __hdmi_lpe_audio_probe(struct platform_device *pdev) { struct snd_card *card; struct snd_intelhad_card *card_ctx; struct snd_intelhad *ctx; struct snd_pcm *pcm; struct intel_hdmi_lpe_audio_pdata *pdata; int irq; struct resource *res_mmio; int port, ret; pdata = pdev->dev.platform_data; if (!pdata) { dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__); return -EINVAL; } /* get resources */ irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res_mmio) { dev_err(&pdev->dev, "Could not get IO_MEM resources\n"); return -ENXIO; } /* create a card instance with ALSA framework */ ret = snd_devm_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id, THIS_MODULE, sizeof(*card_ctx), &card); if (ret) return ret; card_ctx = card->private_data; card_ctx->dev = &pdev->dev; card_ctx->card = card; strcpy(card->driver, INTEL_HAD); strcpy(card->shortname, "Intel HDMI/DP LPE Audio"); strcpy(card->longname, "Intel HDMI/DP LPE Audio"); card_ctx->irq = -1; card->private_free = hdmi_lpe_audio_free; platform_set_drvdata(pdev, card_ctx); card_ctx->num_pipes = pdata->num_pipes; card_ctx->num_ports = single_port ? 1 : pdata->num_ports; for_each_port(card_ctx, port) { ctx = &card_ctx->pcm_ctx[port]; ctx->card_ctx = card_ctx; ctx->dev = card_ctx->dev; ctx->port = single_port ? -1 : port; ctx->pipe = -1; spin_lock_init(&ctx->had_spinlock); mutex_init(&ctx->mutex); INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq); } dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n", __func__, (unsigned int)res_mmio->start, (unsigned int)res_mmio->end); card_ctx->mmio_start = devm_ioremap(&pdev->dev, res_mmio->start, (size_t)(resource_size(res_mmio))); if (!card_ctx->mmio_start) { dev_err(&pdev->dev, "Could not get ioremap\n"); return -EACCES; } /* setup interrupt handler */ ret = devm_request_irq(&pdev->dev, irq, display_pipe_interrupt_handler, 0, pdev->name, card_ctx); if (ret < 0) { dev_err(&pdev->dev, "request_irq failed\n"); return ret; } card_ctx->irq = irq; /* only 32bit addressable */ ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (ret) return ret; init_channel_allocations(); card_ctx->num_pipes = pdata->num_pipes; card_ctx->num_ports = single_port ? 1 : pdata->num_ports; for_each_port(card_ctx, port) { int i; ctx = &card_ctx->pcm_ctx[port]; ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS, MAX_CAP_STREAMS, &pcm); if (ret) return ret; /* setup private data which can be retrieved when required */ pcm->private_data = ctx; pcm->info_flags = 0; strscpy(pcm->name, card->shortname, strlen(card->shortname)); /* setup the ops for playback */ snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops); /* allocate dma pages; * try to allocate 600k buffer as default which is large enough */ snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV_WC, card->dev, HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER); /* create controls */ for (i = 0; i < ARRAY_SIZE(had_controls); i++) { struct snd_kcontrol *kctl; kctl = snd_ctl_new1(&had_controls[i], ctx); if (!kctl) return -ENOMEM; kctl->id.device = pcm->device; ret = snd_ctl_add(card, kctl); if (ret < 0) return ret; } /* Register channel map controls */ ret = had_register_chmap_ctls(ctx, pcm); if (ret < 0) return ret; ret = had_create_jack(ctx, pcm); if (ret < 0) return ret; } ret = snd_card_register(card); if (ret) return ret; spin_lock_irq(&pdata->lpe_audio_slock); pdata->notify_audio_lpe = notify_audio_lpe; spin_unlock_irq(&pdata->lpe_audio_slock); pm_runtime_set_autosuspend_delay(&pdev->dev, INTEL_HDMI_AUDIO_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_idle(&pdev->dev); dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__); for_each_port(card_ctx, port) { struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port]; schedule_work(&ctx->hdmi_audio_wq); } return 0; } static int hdmi_lpe_audio_probe(struct platform_device *pdev) { return snd_card_free_on_error(&pdev->dev, __hdmi_lpe_audio_probe(pdev)); } static const struct dev_pm_ops hdmi_lpe_audio_pm = { SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume) }; static struct platform_driver hdmi_lpe_audio_driver = { .driver = { .name = "hdmi-lpe-audio", .pm = &hdmi_lpe_audio_pm, }, .probe = hdmi_lpe_audio_probe, }; module_platform_driver(hdmi_lpe_audio_driver); MODULE_ALIAS("platform:hdmi_lpe_audio"); MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>"); MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>"); MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>"); MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>"); MODULE_DESCRIPTION("Intel HDMI Audio driver"); MODULE_LICENSE("GPL v2");