/* * NAU85L40 ALSA SoC audio driver * * Copyright 2016 Nuvoton Technology Corp. * Author: John Hsu * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nau8540.h" #define NAU_FREF_MAX 13500000 #define NAU_FVCO_MAX 100000000 #define NAU_FVCO_MIN 90000000 /* the maximum frequency of CLK_ADC */ #define CLK_ADC_MAX 6144000 /* scaling for mclk from sysclk_src output */ static const struct nau8540_fll_attr mclk_src_scaling[] = { { 1, 0x0 }, { 2, 0x2 }, { 4, 0x3 }, { 8, 0x4 }, { 16, 0x5 }, { 32, 0x6 }, { 3, 0x7 }, { 6, 0xa }, { 12, 0xb }, { 24, 0xc }, }; /* ratio for input clk freq */ static const struct nau8540_fll_attr fll_ratio[] = { { 512000, 0x01 }, { 256000, 0x02 }, { 128000, 0x04 }, { 64000, 0x08 }, { 32000, 0x10 }, { 8000, 0x20 }, { 4000, 0x40 }, }; static const struct nau8540_fll_attr fll_pre_scalar[] = { { 1, 0x0 }, { 2, 0x1 }, { 4, 0x2 }, { 8, 0x3 }, }; /* over sampling rate */ static const struct nau8540_osr_attr osr_adc_sel[] = { { 32, 3 }, /* OSR 32, SRC 1/8 */ { 64, 2 }, /* OSR 64, SRC 1/4 */ { 128, 1 }, /* OSR 128, SRC 1/2 */ { 256, 0 }, /* OSR 256, SRC 1 */ }; static const struct reg_default nau8540_reg_defaults[] = { {NAU8540_REG_POWER_MANAGEMENT, 0x0000}, {NAU8540_REG_CLOCK_CTRL, 0x0000}, {NAU8540_REG_CLOCK_SRC, 0x0000}, {NAU8540_REG_FLL1, 0x0001}, {NAU8540_REG_FLL2, 0x3126}, {NAU8540_REG_FLL3, 0x0008}, {NAU8540_REG_FLL4, 0x0010}, {NAU8540_REG_FLL5, 0xC000}, {NAU8540_REG_FLL6, 0x6000}, {NAU8540_REG_FLL_VCO_RSV, 0xF13C}, {NAU8540_REG_PCM_CTRL0, 0x000B}, {NAU8540_REG_PCM_CTRL1, 0x3010}, {NAU8540_REG_PCM_CTRL2, 0x0800}, {NAU8540_REG_PCM_CTRL3, 0x0000}, {NAU8540_REG_PCM_CTRL4, 0x000F}, {NAU8540_REG_ALC_CONTROL_1, 0x0000}, {NAU8540_REG_ALC_CONTROL_2, 0x700B}, {NAU8540_REG_ALC_CONTROL_3, 0x0022}, {NAU8540_REG_ALC_CONTROL_4, 0x1010}, {NAU8540_REG_ALC_CONTROL_5, 0x1010}, {NAU8540_REG_NOTCH_FIL1_CH1, 0x0000}, {NAU8540_REG_NOTCH_FIL2_CH1, 0x0000}, {NAU8540_REG_NOTCH_FIL1_CH2, 0x0000}, {NAU8540_REG_NOTCH_FIL2_CH2, 0x0000}, {NAU8540_REG_NOTCH_FIL1_CH3, 0x0000}, {NAU8540_REG_NOTCH_FIL2_CH3, 0x0000}, {NAU8540_REG_NOTCH_FIL1_CH4, 0x0000}, {NAU8540_REG_NOTCH_FIL2_CH4, 0x0000}, {NAU8540_REG_HPF_FILTER_CH12, 0x0000}, {NAU8540_REG_HPF_FILTER_CH34, 0x0000}, {NAU8540_REG_ADC_SAMPLE_RATE, 0x0002}, {NAU8540_REG_DIGITAL_GAIN_CH1, 0x0400}, {NAU8540_REG_DIGITAL_GAIN_CH2, 0x0400}, {NAU8540_REG_DIGITAL_GAIN_CH3, 0x0400}, {NAU8540_REG_DIGITAL_GAIN_CH4, 0x0400}, {NAU8540_REG_DIGITAL_MUX, 0x00E4}, {NAU8540_REG_GPIO_CTRL, 0x0000}, {NAU8540_REG_MISC_CTRL, 0x0000}, {NAU8540_REG_I2C_CTRL, 0xEFFF}, {NAU8540_REG_VMID_CTRL, 0x0000}, {NAU8540_REG_MUTE, 0x0000}, {NAU8540_REG_ANALOG_ADC1, 0x0011}, {NAU8540_REG_ANALOG_ADC2, 0x0020}, {NAU8540_REG_ANALOG_PWR, 0x0000}, {NAU8540_REG_MIC_BIAS, 0x0004}, {NAU8540_REG_REFERENCE, 0x0000}, {NAU8540_REG_FEPGA1, 0x0000}, {NAU8540_REG_FEPGA2, 0x0000}, {NAU8540_REG_FEPGA3, 0x0101}, {NAU8540_REG_FEPGA4, 0x0101}, {NAU8540_REG_PWR, 0x0000}, }; static bool nau8540_readable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8540_REG_POWER_MANAGEMENT ... NAU8540_REG_FLL_VCO_RSV: case NAU8540_REG_PCM_CTRL0 ... NAU8540_REG_PCM_CTRL4: case NAU8540_REG_ALC_CONTROL_1 ... NAU8540_REG_ALC_CONTROL_5: case NAU8540_REG_ALC_GAIN_CH12 ... NAU8540_REG_ADC_SAMPLE_RATE: case NAU8540_REG_DIGITAL_GAIN_CH1 ... NAU8540_REG_DIGITAL_MUX: case NAU8540_REG_P2P_CH1 ... NAU8540_REG_I2C_CTRL: case NAU8540_REG_I2C_DEVICE_ID: case NAU8540_REG_VMID_CTRL ... NAU8540_REG_MUTE: case NAU8540_REG_ANALOG_ADC1 ... NAU8540_REG_PWR: return true; default: return false; } } static bool nau8540_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8540_REG_SW_RESET ... NAU8540_REG_FLL_VCO_RSV: case NAU8540_REG_PCM_CTRL0 ... NAU8540_REG_PCM_CTRL4: case NAU8540_REG_ALC_CONTROL_1 ... NAU8540_REG_ALC_CONTROL_5: case NAU8540_REG_NOTCH_FIL1_CH1 ... NAU8540_REG_ADC_SAMPLE_RATE: case NAU8540_REG_DIGITAL_GAIN_CH1 ... NAU8540_REG_DIGITAL_MUX: case NAU8540_REG_GPIO_CTRL ... NAU8540_REG_I2C_CTRL: case NAU8540_REG_RST: case NAU8540_REG_VMID_CTRL ... NAU8540_REG_MUTE: case NAU8540_REG_ANALOG_ADC1 ... NAU8540_REG_PWR: return true; default: return false; } } static bool nau8540_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case NAU8540_REG_SW_RESET: case NAU8540_REG_ALC_GAIN_CH12 ... NAU8540_REG_ALC_STATUS: case NAU8540_REG_P2P_CH1 ... NAU8540_REG_PEAK_CH4: case NAU8540_REG_I2C_DEVICE_ID: case NAU8540_REG_RST: return true; default: return false; } } static const DECLARE_TLV_DB_MINMAX(adc_vol_tlv, -12800, 3600); static const DECLARE_TLV_DB_MINMAX(fepga_gain_tlv, -100, 3600); static const struct snd_kcontrol_new nau8540_snd_controls[] = { SOC_SINGLE_TLV("Mic1 Volume", NAU8540_REG_DIGITAL_GAIN_CH1, 0, 0x520, 0, adc_vol_tlv), SOC_SINGLE_TLV("Mic2 Volume", NAU8540_REG_DIGITAL_GAIN_CH2, 0, 0x520, 0, adc_vol_tlv), SOC_SINGLE_TLV("Mic3 Volume", NAU8540_REG_DIGITAL_GAIN_CH3, 0, 0x520, 0, adc_vol_tlv), SOC_SINGLE_TLV("Mic4 Volume", NAU8540_REG_DIGITAL_GAIN_CH4, 0, 0x520, 0, adc_vol_tlv), SOC_SINGLE_TLV("Frontend PGA1 Volume", NAU8540_REG_FEPGA3, 0, 0x25, 0, fepga_gain_tlv), SOC_SINGLE_TLV("Frontend PGA2 Volume", NAU8540_REG_FEPGA3, 8, 0x25, 0, fepga_gain_tlv), SOC_SINGLE_TLV("Frontend PGA3 Volume", NAU8540_REG_FEPGA4, 0, 0x25, 0, fepga_gain_tlv), SOC_SINGLE_TLV("Frontend PGA4 Volume", NAU8540_REG_FEPGA4, 8, 0x25, 0, fepga_gain_tlv), }; static const char * const adc_channel[] = { "ADC channel 1", "ADC channel 2", "ADC channel 3", "ADC channel 4" }; static SOC_ENUM_SINGLE_DECL( digital_ch4_enum, NAU8540_REG_DIGITAL_MUX, 6, adc_channel); static const struct snd_kcontrol_new digital_ch4_mux = SOC_DAPM_ENUM("Digital CH4 Select", digital_ch4_enum); static SOC_ENUM_SINGLE_DECL( digital_ch3_enum, NAU8540_REG_DIGITAL_MUX, 4, adc_channel); static const struct snd_kcontrol_new digital_ch3_mux = SOC_DAPM_ENUM("Digital CH3 Select", digital_ch3_enum); static SOC_ENUM_SINGLE_DECL( digital_ch2_enum, NAU8540_REG_DIGITAL_MUX, 2, adc_channel); static const struct snd_kcontrol_new digital_ch2_mux = SOC_DAPM_ENUM("Digital CH2 Select", digital_ch2_enum); static SOC_ENUM_SINGLE_DECL( digital_ch1_enum, NAU8540_REG_DIGITAL_MUX, 0, adc_channel); static const struct snd_kcontrol_new digital_ch1_mux = SOC_DAPM_ENUM("Digital CH1 Select", digital_ch1_enum); static const struct snd_soc_dapm_widget nau8540_dapm_widgets[] = { SND_SOC_DAPM_SUPPLY("MICBIAS2", NAU8540_REG_MIC_BIAS, 11, 0, NULL, 0), SND_SOC_DAPM_SUPPLY("MICBIAS1", NAU8540_REG_MIC_BIAS, 10, 0, NULL, 0), SND_SOC_DAPM_INPUT("MIC1"), SND_SOC_DAPM_INPUT("MIC2"), SND_SOC_DAPM_INPUT("MIC3"), SND_SOC_DAPM_INPUT("MIC4"), SND_SOC_DAPM_PGA("Frontend PGA1", NAU8540_REG_PWR, 12, 0, NULL, 0), SND_SOC_DAPM_PGA("Frontend PGA2", NAU8540_REG_PWR, 13, 0, NULL, 0), SND_SOC_DAPM_PGA("Frontend PGA3", NAU8540_REG_PWR, 14, 0, NULL, 0), SND_SOC_DAPM_PGA("Frontend PGA4", NAU8540_REG_PWR, 15, 0, NULL, 0), SND_SOC_DAPM_ADC("ADC1", NULL, NAU8540_REG_POWER_MANAGEMENT, 0, 0), SND_SOC_DAPM_ADC("ADC2", NULL, NAU8540_REG_POWER_MANAGEMENT, 1, 0), SND_SOC_DAPM_ADC("ADC3", NULL, NAU8540_REG_POWER_MANAGEMENT, 2, 0), SND_SOC_DAPM_ADC("ADC4", NULL, NAU8540_REG_POWER_MANAGEMENT, 3, 0), SND_SOC_DAPM_PGA("ADC CH1", NAU8540_REG_ANALOG_PWR, 0, 0, NULL, 0), SND_SOC_DAPM_PGA("ADC CH2", NAU8540_REG_ANALOG_PWR, 1, 0, NULL, 0), SND_SOC_DAPM_PGA("ADC CH3", NAU8540_REG_ANALOG_PWR, 2, 0, NULL, 0), SND_SOC_DAPM_PGA("ADC CH4", NAU8540_REG_ANALOG_PWR, 3, 0, NULL, 0), SND_SOC_DAPM_MUX("Digital CH4 Mux", SND_SOC_NOPM, 0, 0, &digital_ch4_mux), SND_SOC_DAPM_MUX("Digital CH3 Mux", SND_SOC_NOPM, 0, 0, &digital_ch3_mux), SND_SOC_DAPM_MUX("Digital CH2 Mux", SND_SOC_NOPM, 0, 0, &digital_ch2_mux), SND_SOC_DAPM_MUX("Digital CH1 Mux", SND_SOC_NOPM, 0, 0, &digital_ch1_mux), SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, SND_SOC_NOPM, 0, 0), }; static const struct snd_soc_dapm_route nau8540_dapm_routes[] = { {"Frontend PGA1", NULL, "MIC1"}, {"Frontend PGA2", NULL, "MIC2"}, {"Frontend PGA3", NULL, "MIC3"}, {"Frontend PGA4", NULL, "MIC4"}, {"ADC1", NULL, "Frontend PGA1"}, {"ADC2", NULL, "Frontend PGA2"}, {"ADC3", NULL, "Frontend PGA3"}, {"ADC4", NULL, "Frontend PGA4"}, {"ADC CH1", NULL, "ADC1"}, {"ADC CH2", NULL, "ADC2"}, {"ADC CH3", NULL, "ADC3"}, {"ADC CH4", NULL, "ADC4"}, {"ADC1", NULL, "MICBIAS1"}, {"ADC2", NULL, "MICBIAS1"}, {"ADC3", NULL, "MICBIAS2"}, {"ADC4", NULL, "MICBIAS2"}, {"Digital CH1 Mux", "ADC channel 1", "ADC CH1"}, {"Digital CH1 Mux", "ADC channel 2", "ADC CH2"}, {"Digital CH1 Mux", "ADC channel 3", "ADC CH3"}, {"Digital CH1 Mux", "ADC channel 4", "ADC CH4"}, {"Digital CH2 Mux", "ADC channel 1", "ADC CH1"}, {"Digital CH2 Mux", "ADC channel 2", "ADC CH2"}, {"Digital CH2 Mux", "ADC channel 3", "ADC CH3"}, {"Digital CH2 Mux", "ADC channel 4", "ADC CH4"}, {"Digital CH3 Mux", "ADC channel 1", "ADC CH1"}, {"Digital CH3 Mux", "ADC channel 2", "ADC CH2"}, {"Digital CH3 Mux", "ADC channel 3", "ADC CH3"}, {"Digital CH3 Mux", "ADC channel 4", "ADC CH4"}, {"Digital CH4 Mux", "ADC channel 1", "ADC CH1"}, {"Digital CH4 Mux", "ADC channel 2", "ADC CH2"}, {"Digital CH4 Mux", "ADC channel 3", "ADC CH3"}, {"Digital CH4 Mux", "ADC channel 4", "ADC CH4"}, {"AIFTX", NULL, "Digital CH1 Mux"}, {"AIFTX", NULL, "Digital CH2 Mux"}, {"AIFTX", NULL, "Digital CH3 Mux"}, {"AIFTX", NULL, "Digital CH4 Mux"}, }; static int nau8540_clock_check(struct nau8540 *nau8540, int rate, int osr) { int osrate; if (osr >= ARRAY_SIZE(osr_adc_sel)) return -EINVAL; osrate = osr_adc_sel[osr].osr; if (rate * osr > CLK_ADC_MAX) { dev_err(nau8540->dev, "exceed the maximum frequency of CLK_ADC\n"); return -EINVAL; } return 0; } static int nau8540_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params, struct snd_soc_dai *dai) { struct snd_soc_codec *codec = dai->codec; struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); unsigned int val_len = 0, osr; /* CLK_ADC = OSR * FS * ADC clock frequency is defined as Over Sampling Rate (OSR) * multiplied by the audio sample rate (Fs). Note that the OSR and Fs * values must be selected such that the maximum frequency is less * than 6.144 MHz. */ regmap_read(nau8540->regmap, NAU8540_REG_ADC_SAMPLE_RATE, &osr); osr &= NAU8540_ADC_OSR_MASK; if (nau8540_clock_check(nau8540, params_rate(params), osr)) return -EINVAL; regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC, NAU8540_CLK_ADC_SRC_MASK, osr_adc_sel[osr].clk_src << NAU8540_CLK_ADC_SRC_SFT); switch (params_width(params)) { case 16: val_len |= NAU8540_I2S_DL_16; break; case 20: val_len |= NAU8540_I2S_DL_20; break; case 24: val_len |= NAU8540_I2S_DL_24; break; case 32: val_len |= NAU8540_I2S_DL_32; break; default: return -EINVAL; } regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL0, NAU8540_I2S_DL_MASK, val_len); return 0; } static int nau8540_set_fmt(struct snd_soc_dai *dai, unsigned int fmt) { struct snd_soc_codec *codec = dai->codec; struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); unsigned int ctrl1_val = 0, ctrl2_val = 0; switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) { case SND_SOC_DAIFMT_CBM_CFM: ctrl2_val |= NAU8540_I2S_MS_MASTER; break; case SND_SOC_DAIFMT_CBS_CFS: break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_INV_MASK) { case SND_SOC_DAIFMT_NB_NF: break; case SND_SOC_DAIFMT_IB_NF: ctrl1_val |= NAU8540_I2S_BP_INV; break; default: return -EINVAL; } switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) { case SND_SOC_DAIFMT_I2S: ctrl1_val |= NAU8540_I2S_DF_I2S; break; case SND_SOC_DAIFMT_LEFT_J: ctrl1_val |= NAU8540_I2S_DF_LEFT; break; case SND_SOC_DAIFMT_RIGHT_J: ctrl1_val |= NAU8540_I2S_DF_RIGTH; break; case SND_SOC_DAIFMT_DSP_A: ctrl1_val |= NAU8540_I2S_DF_PCM_AB; break; case SND_SOC_DAIFMT_DSP_B: ctrl1_val |= NAU8540_I2S_DF_PCM_AB; ctrl1_val |= NAU8540_I2S_PCMB_EN; break; default: return -EINVAL; } regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL0, NAU8540_I2S_DL_MASK | NAU8540_I2S_DF_MASK | NAU8540_I2S_BP_INV | NAU8540_I2S_PCMB_EN, ctrl1_val); regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1, NAU8540_I2S_MS_MASK | NAU8540_I2S_DO12_OE, ctrl2_val); regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2, NAU8540_I2S_DO34_OE, 0); return 0; } /** * nau8540_set_tdm_slot - configure DAI TX TDM. * @dai: DAI * @tx_mask: bitmask representing active TX slots. Ex. * 0xf for normal 4 channel TDM. * 0xf0 for shifted 4 channel TDM * @rx_mask: no used. * @slots: Number of slots in use. * @slot_width: Width in bits for each slot. * * Configures a DAI for TDM operation. Only support 4 slots TDM. */ static int nau8540_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width) { struct snd_soc_codec *codec = dai->codec; struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); unsigned int ctrl2_val = 0, ctrl4_val = 0; if (slots > 4 || ((tx_mask & 0xf0) && (tx_mask & 0xf))) return -EINVAL; ctrl4_val |= (NAU8540_TDM_MODE | NAU8540_TDM_OFFSET_EN); if (tx_mask & 0xf0) { ctrl2_val = 4 * slot_width; ctrl4_val |= (tx_mask >> 4); } else { ctrl4_val |= tx_mask; } regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL4, NAU8540_TDM_MODE | NAU8540_TDM_OFFSET_EN | NAU8540_TDM_TX_MASK, ctrl4_val); regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL1, NAU8540_I2S_DO12_OE, NAU8540_I2S_DO12_OE); regmap_update_bits(nau8540->regmap, NAU8540_REG_PCM_CTRL2, NAU8540_I2S_DO34_OE | NAU8540_I2S_TSLOT_L_MASK, NAU8540_I2S_DO34_OE | ctrl2_val); return 0; } static const struct snd_soc_dai_ops nau8540_dai_ops = { .hw_params = nau8540_hw_params, .set_fmt = nau8540_set_fmt, .set_tdm_slot = nau8540_set_tdm_slot, }; #define NAU8540_RATES SNDRV_PCM_RATE_8000_48000 #define NAU8540_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \ | SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE) static struct snd_soc_dai_driver nau8540_dai = { .name = "nau8540-hifi", .capture = { .stream_name = "Capture", .channels_min = 1, .channels_max = 4, .rates = NAU8540_RATES, .formats = NAU8540_FORMATS, }, .ops = &nau8540_dai_ops, }; /** * nau8540_calc_fll_param - Calculate FLL parameters. * @fll_in: external clock provided to codec. * @fs: sampling rate. * @fll_param: Pointer to structure of FLL parameters. * * Calculate FLL parameters to configure codec. * * Returns 0 for success or negative error code. */ static int nau8540_calc_fll_param(unsigned int fll_in, unsigned int fs, struct nau8540_fll *fll_param) { u64 fvco, fvco_max; unsigned int fref, i, fvco_sel; /* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing * freq_in by 1, 2, 4, or 8 using FLL pre-scalar. * FREF = freq_in / NAU8540_FLL_REF_DIV_MASK */ for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) { fref = fll_in / fll_pre_scalar[i].param; if (fref <= NAU_FREF_MAX) break; } if (i == ARRAY_SIZE(fll_pre_scalar)) return -EINVAL; fll_param->clk_ref_div = fll_pre_scalar[i].val; /* Choose the FLL ratio based on FREF */ for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) { if (fref >= fll_ratio[i].param) break; } if (i == ARRAY_SIZE(fll_ratio)) return -EINVAL; fll_param->ratio = fll_ratio[i].val; /* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs. * FDCO must be within the 90MHz - 124MHz or the FFL cannot be * guaranteed across the full range of operation. * FDCO = freq_out * 2 * mclk_src_scaling */ fvco_max = 0; fvco_sel = ARRAY_SIZE(mclk_src_scaling); for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) { fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param; if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX && fvco_max < fvco) { fvco_max = fvco; fvco_sel = i; } } if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel) return -EINVAL; fll_param->mclk_src = mclk_src_scaling[fvco_sel].val; /* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional * input based on FDCO, FREF and FLL ratio. */ fvco = div_u64(fvco_max << 16, fref * fll_param->ratio); fll_param->fll_int = (fvco >> 16) & 0x3FF; fll_param->fll_frac = fvco & 0xFFFF; return 0; } static void nau8540_fll_apply(struct regmap *regmap, struct nau8540_fll *fll_param) { regmap_update_bits(regmap, NAU8540_REG_CLOCK_SRC, NAU8540_CLK_SRC_MASK | NAU8540_CLK_MCLK_SRC_MASK, NAU8540_CLK_SRC_MCLK | fll_param->mclk_src); regmap_update_bits(regmap, NAU8540_REG_FLL1, NAU8540_FLL_RATIO_MASK, fll_param->ratio); /* FLL 16-bit fractional input */ regmap_write(regmap, NAU8540_REG_FLL2, fll_param->fll_frac); /* FLL 10-bit integer input */ regmap_update_bits(regmap, NAU8540_REG_FLL3, NAU8540_FLL_INTEGER_MASK, fll_param->fll_int); /* FLL pre-scaler */ regmap_update_bits(regmap, NAU8540_REG_FLL4, NAU8540_FLL_REF_DIV_MASK, fll_param->clk_ref_div << NAU8540_FLL_REF_DIV_SFT); regmap_update_bits(regmap, NAU8540_REG_FLL5, NAU8540_FLL_CLK_SW_MASK, NAU8540_FLL_CLK_SW_REF); regmap_update_bits(regmap, NAU8540_REG_FLL6, NAU8540_DCO_EN, 0); if (fll_param->fll_frac) { regmap_update_bits(regmap, NAU8540_REG_FLL5, NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN | NAU8540_FLL_FTR_SW_MASK, NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN | NAU8540_FLL_FTR_SW_FILTER); regmap_update_bits(regmap, NAU8540_REG_FLL6, NAU8540_SDM_EN, NAU8540_SDM_EN); } else { regmap_update_bits(regmap, NAU8540_REG_FLL5, NAU8540_FLL_PDB_DAC_EN | NAU8540_FLL_LOOP_FTR_EN | NAU8540_FLL_FTR_SW_MASK, NAU8540_FLL_FTR_SW_ACCU); regmap_update_bits(regmap, NAU8540_REG_FLL6, NAU8540_SDM_EN, 0); } } /* freq_out must be 256*Fs in order to achieve the best performance */ static int nau8540_set_pll(struct snd_soc_codec *codec, int pll_id, int source, unsigned int freq_in, unsigned int freq_out) { struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); struct nau8540_fll fll_param; int ret, fs; switch (pll_id) { case NAU8540_CLK_FLL_MCLK: regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3, NAU8540_FLL_CLK_SRC_MASK, NAU8540_FLL_CLK_SRC_MCLK); break; case NAU8540_CLK_FLL_BLK: regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3, NAU8540_FLL_CLK_SRC_MASK, NAU8540_FLL_CLK_SRC_BLK); break; case NAU8540_CLK_FLL_FS: regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL3, NAU8540_FLL_CLK_SRC_MASK, NAU8540_FLL_CLK_SRC_FS); break; default: dev_err(nau8540->dev, "Invalid clock id (%d)\n", pll_id); return -EINVAL; } dev_dbg(nau8540->dev, "Sysclk is %dHz and clock id is %d\n", freq_out, pll_id); fs = freq_out / 256; ret = nau8540_calc_fll_param(freq_in, fs, &fll_param); if (ret < 0) { dev_err(nau8540->dev, "Unsupported input clock %d\n", freq_in); return ret; } dev_dbg(nau8540->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n", fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac, fll_param.fll_int, fll_param.clk_ref_div); nau8540_fll_apply(nau8540->regmap, &fll_param); mdelay(2); regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC, NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_VCO); return 0; } static int nau8540_set_sysclk(struct snd_soc_codec *codec, int clk_id, int source, unsigned int freq, int dir) { struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); switch (clk_id) { case NAU8540_CLK_DIS: case NAU8540_CLK_MCLK: regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC, NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_MCLK); regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL6, NAU8540_DCO_EN, 0); break; case NAU8540_CLK_INTERNAL: regmap_update_bits(nau8540->regmap, NAU8540_REG_FLL6, NAU8540_DCO_EN, NAU8540_DCO_EN); regmap_update_bits(nau8540->regmap, NAU8540_REG_CLOCK_SRC, NAU8540_CLK_SRC_MASK, NAU8540_CLK_SRC_VCO); break; default: dev_err(nau8540->dev, "Invalid clock id (%d)\n", clk_id); return -EINVAL; } dev_dbg(nau8540->dev, "Sysclk is %dHz and clock id is %d\n", freq, clk_id); return 0; } static void nau8540_reset_chip(struct regmap *regmap) { regmap_write(regmap, NAU8540_REG_SW_RESET, 0x00); regmap_write(regmap, NAU8540_REG_SW_RESET, 0x00); } static void nau8540_init_regs(struct nau8540 *nau8540) { struct regmap *regmap = nau8540->regmap; /* Enable Bias/VMID/VMID Tieoff */ regmap_update_bits(regmap, NAU8540_REG_VMID_CTRL, NAU8540_VMID_EN | NAU8540_VMID_SEL_MASK, NAU8540_VMID_EN | (0x2 << NAU8540_VMID_SEL_SFT)); regmap_update_bits(regmap, NAU8540_REG_REFERENCE, NAU8540_PRECHARGE_DIS | NAU8540_GLOBAL_BIAS_EN, NAU8540_PRECHARGE_DIS | NAU8540_GLOBAL_BIAS_EN); mdelay(2); regmap_update_bits(regmap, NAU8540_REG_MIC_BIAS, NAU8540_PU_PRE, NAU8540_PU_PRE); regmap_update_bits(regmap, NAU8540_REG_CLOCK_CTRL, NAU8540_CLK_ADC_EN | NAU8540_CLK_I2S_EN, NAU8540_CLK_ADC_EN | NAU8540_CLK_I2S_EN); /* ADC OSR selection, CLK_ADC = Fs * OSR */ regmap_update_bits(regmap, NAU8540_REG_ADC_SAMPLE_RATE, NAU8540_ADC_OSR_MASK, NAU8540_ADC_OSR_64); } static int __maybe_unused nau8540_suspend(struct snd_soc_codec *codec) { struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); regcache_cache_only(nau8540->regmap, true); regcache_mark_dirty(nau8540->regmap); return 0; } static int __maybe_unused nau8540_resume(struct snd_soc_codec *codec) { struct nau8540 *nau8540 = snd_soc_codec_get_drvdata(codec); regcache_cache_only(nau8540->regmap, false); regcache_sync(nau8540->regmap); return 0; } static const struct snd_soc_codec_driver nau8540_codec_driver = { .set_sysclk = nau8540_set_sysclk, .set_pll = nau8540_set_pll, .suspend = nau8540_suspend, .resume = nau8540_resume, .suspend_bias_off = true, .component_driver = { .controls = nau8540_snd_controls, .num_controls = ARRAY_SIZE(nau8540_snd_controls), .dapm_widgets = nau8540_dapm_widgets, .num_dapm_widgets = ARRAY_SIZE(nau8540_dapm_widgets), .dapm_routes = nau8540_dapm_routes, .num_dapm_routes = ARRAY_SIZE(nau8540_dapm_routes), }, }; static const struct regmap_config nau8540_regmap_config = { .val_bits = 16, .reg_bits = 16, .max_register = NAU8540_REG_MAX, .readable_reg = nau8540_readable_reg, .writeable_reg = nau8540_writeable_reg, .volatile_reg = nau8540_volatile_reg, .cache_type = REGCACHE_RBTREE, .reg_defaults = nau8540_reg_defaults, .num_reg_defaults = ARRAY_SIZE(nau8540_reg_defaults), }; static int nau8540_i2c_probe(struct i2c_client *i2c, const struct i2c_device_id *id) { struct device *dev = &i2c->dev; struct nau8540 *nau8540 = dev_get_platdata(dev); int ret, value; if (!nau8540) { nau8540 = devm_kzalloc(dev, sizeof(*nau8540), GFP_KERNEL); if (!nau8540) return -ENOMEM; } i2c_set_clientdata(i2c, nau8540); nau8540->regmap = devm_regmap_init_i2c(i2c, &nau8540_regmap_config); if (IS_ERR(nau8540->regmap)) return PTR_ERR(nau8540->regmap); ret = regmap_read(nau8540->regmap, NAU8540_REG_I2C_DEVICE_ID, &value); if (ret < 0) { dev_err(dev, "Failed to read device id from the NAU85L40: %d\n", ret); return ret; } nau8540->dev = dev; nau8540_reset_chip(nau8540->regmap); nau8540_init_regs(nau8540); return snd_soc_register_codec(dev, &nau8540_codec_driver, &nau8540_dai, 1); } static int nau8540_i2c_remove(struct i2c_client *client) { snd_soc_unregister_codec(&client->dev); return 0; } static const struct i2c_device_id nau8540_i2c_ids[] = { { "nau8540", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, nau8540_i2c_ids); #ifdef CONFIG_OF static const struct of_device_id nau8540_of_ids[] = { { .compatible = "nuvoton,nau8540", }, {} }; MODULE_DEVICE_TABLE(of, nau8540_of_ids); #endif static struct i2c_driver nau8540_i2c_driver = { .driver = { .name = "nau8540", .of_match_table = of_match_ptr(nau8540_of_ids), }, .probe = nau8540_i2c_probe, .remove = nau8540_i2c_remove, .id_table = nau8540_i2c_ids, }; module_i2c_driver(nau8540_i2c_driver); MODULE_DESCRIPTION("ASoC NAU85L40 driver"); MODULE_AUTHOR("John Hsu "); MODULE_LICENSE("GPL v2");