// SPDX-License-Identifier: GPL-2.0-or-later /* * ALSA driver for RME Digi96, Digi96/8 and Digi96/8 PRO/PAD/PST audio * interfaces * * Copyright (c) 2000, 2001 Anders Torger <torger@ludd.luth.se> * * Thanks to Henk Hesselink <henk@anda.nl> for the analog volume control * code. */ #include <linux/delay.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/module.h> #include <linux/vmalloc.h> #include <linux/io.h> #include <sound/core.h> #include <sound/info.h> #include <sound/control.h> #include <sound/pcm.h> #include <sound/pcm_params.h> #include <sound/asoundef.h> #include <sound/initval.h> /* note, two last pcis should be equal, it is not a bug */ MODULE_AUTHOR("Anders Torger <torger@ludd.luth.se>"); MODULE_DESCRIPTION("RME Digi96, Digi96/8, Digi96/8 PRO, Digi96/8 PST, " "Digi96/8 PAD"); MODULE_LICENSE("GPL"); static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; /* Index 0-MAX */ static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; /* ID for this card */ static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; /* Enable this card */ module_param_array(index, int, NULL, 0444); MODULE_PARM_DESC(index, "Index value for RME Digi96 soundcard."); module_param_array(id, charp, NULL, 0444); MODULE_PARM_DESC(id, "ID string for RME Digi96 soundcard."); module_param_array(enable, bool, NULL, 0444); MODULE_PARM_DESC(enable, "Enable RME Digi96 soundcard."); /* * Defines for RME Digi96 series, from internal RME reference documents * dated 12.01.00 */ #define RME96_SPDIF_NCHANNELS 2 /* Playback and capture buffer size */ #define RME96_BUFFER_SIZE 0x10000 /* IO area size */ #define RME96_IO_SIZE 0x60000 /* IO area offsets */ #define RME96_IO_PLAY_BUFFER 0x0 #define RME96_IO_REC_BUFFER 0x10000 #define RME96_IO_CONTROL_REGISTER 0x20000 #define RME96_IO_ADDITIONAL_REG 0x20004 #define RME96_IO_CONFIRM_PLAY_IRQ 0x20008 #define RME96_IO_CONFIRM_REC_IRQ 0x2000C #define RME96_IO_SET_PLAY_POS 0x40000 #define RME96_IO_RESET_PLAY_POS 0x4FFFC #define RME96_IO_SET_REC_POS 0x50000 #define RME96_IO_RESET_REC_POS 0x5FFFC #define RME96_IO_GET_PLAY_POS 0x20000 #define RME96_IO_GET_REC_POS 0x30000 /* Write control register bits */ #define RME96_WCR_START (1 << 0) #define RME96_WCR_START_2 (1 << 1) #define RME96_WCR_GAIN_0 (1 << 2) #define RME96_WCR_GAIN_1 (1 << 3) #define RME96_WCR_MODE24 (1 << 4) #define RME96_WCR_MODE24_2 (1 << 5) #define RME96_WCR_BM (1 << 6) #define RME96_WCR_BM_2 (1 << 7) #define RME96_WCR_ADAT (1 << 8) #define RME96_WCR_FREQ_0 (1 << 9) #define RME96_WCR_FREQ_1 (1 << 10) #define RME96_WCR_DS (1 << 11) #define RME96_WCR_PRO (1 << 12) #define RME96_WCR_EMP (1 << 13) #define RME96_WCR_SEL (1 << 14) #define RME96_WCR_MASTER (1 << 15) #define RME96_WCR_PD (1 << 16) #define RME96_WCR_INP_0 (1 << 17) #define RME96_WCR_INP_1 (1 << 18) #define RME96_WCR_THRU_0 (1 << 19) #define RME96_WCR_THRU_1 (1 << 20) #define RME96_WCR_THRU_2 (1 << 21) #define RME96_WCR_THRU_3 (1 << 22) #define RME96_WCR_THRU_4 (1 << 23) #define RME96_WCR_THRU_5 (1 << 24) #define RME96_WCR_THRU_6 (1 << 25) #define RME96_WCR_THRU_7 (1 << 26) #define RME96_WCR_DOLBY (1 << 27) #define RME96_WCR_MONITOR_0 (1 << 28) #define RME96_WCR_MONITOR_1 (1 << 29) #define RME96_WCR_ISEL (1 << 30) #define RME96_WCR_IDIS (1 << 31) #define RME96_WCR_BITPOS_GAIN_0 2 #define RME96_WCR_BITPOS_GAIN_1 3 #define RME96_WCR_BITPOS_FREQ_0 9 #define RME96_WCR_BITPOS_FREQ_1 10 #define RME96_WCR_BITPOS_INP_0 17 #define RME96_WCR_BITPOS_INP_1 18 #define RME96_WCR_BITPOS_MONITOR_0 28 #define RME96_WCR_BITPOS_MONITOR_1 29 /* Read control register bits */ #define RME96_RCR_AUDIO_ADDR_MASK 0xFFFF #define RME96_RCR_IRQ_2 (1 << 16) #define RME96_RCR_T_OUT (1 << 17) #define RME96_RCR_DEV_ID_0 (1 << 21) #define RME96_RCR_DEV_ID_1 (1 << 22) #define RME96_RCR_LOCK (1 << 23) #define RME96_RCR_VERF (1 << 26) #define RME96_RCR_F0 (1 << 27) #define RME96_RCR_F1 (1 << 28) #define RME96_RCR_F2 (1 << 29) #define RME96_RCR_AUTOSYNC (1 << 30) #define RME96_RCR_IRQ (1 << 31) #define RME96_RCR_BITPOS_F0 27 #define RME96_RCR_BITPOS_F1 28 #define RME96_RCR_BITPOS_F2 29 /* Additional register bits */ #define RME96_AR_WSEL (1 << 0) #define RME96_AR_ANALOG (1 << 1) #define RME96_AR_FREQPAD_0 (1 << 2) #define RME96_AR_FREQPAD_1 (1 << 3) #define RME96_AR_FREQPAD_2 (1 << 4) #define RME96_AR_PD2 (1 << 5) #define RME96_AR_DAC_EN (1 << 6) #define RME96_AR_CLATCH (1 << 7) #define RME96_AR_CCLK (1 << 8) #define RME96_AR_CDATA (1 << 9) #define RME96_AR_BITPOS_F0 2 #define RME96_AR_BITPOS_F1 3 #define RME96_AR_BITPOS_F2 4 /* Monitor tracks */ #define RME96_MONITOR_TRACKS_1_2 0 #define RME96_MONITOR_TRACKS_3_4 1 #define RME96_MONITOR_TRACKS_5_6 2 #define RME96_MONITOR_TRACKS_7_8 3 /* Attenuation */ #define RME96_ATTENUATION_0 0 #define RME96_ATTENUATION_6 1 #define RME96_ATTENUATION_12 2 #define RME96_ATTENUATION_18 3 /* Input types */ #define RME96_INPUT_OPTICAL 0 #define RME96_INPUT_COAXIAL 1 #define RME96_INPUT_INTERNAL 2 #define RME96_INPUT_XLR 3 #define RME96_INPUT_ANALOG 4 /* Clock modes */ #define RME96_CLOCKMODE_SLAVE 0 #define RME96_CLOCKMODE_MASTER 1 #define RME96_CLOCKMODE_WORDCLOCK 2 /* Block sizes in bytes */ #define RME96_SMALL_BLOCK_SIZE 2048 #define RME96_LARGE_BLOCK_SIZE 8192 /* Volume control */ #define RME96_AD1852_VOL_BITS 14 #define RME96_AD1855_VOL_BITS 10 /* Defines for snd_rme96_trigger */ #define RME96_TB_START_PLAYBACK 1 #define RME96_TB_START_CAPTURE 2 #define RME96_TB_STOP_PLAYBACK 4 #define RME96_TB_STOP_CAPTURE 8 #define RME96_TB_RESET_PLAYPOS 16 #define RME96_TB_RESET_CAPTUREPOS 32 #define RME96_TB_CLEAR_PLAYBACK_IRQ 64 #define RME96_TB_CLEAR_CAPTURE_IRQ 128 #define RME96_RESUME_PLAYBACK (RME96_TB_START_PLAYBACK) #define RME96_RESUME_CAPTURE (RME96_TB_START_CAPTURE) #define RME96_RESUME_BOTH (RME96_RESUME_PLAYBACK \ | RME96_RESUME_CAPTURE) #define RME96_START_PLAYBACK (RME96_TB_START_PLAYBACK \ | RME96_TB_RESET_PLAYPOS) #define RME96_START_CAPTURE (RME96_TB_START_CAPTURE \ | RME96_TB_RESET_CAPTUREPOS) #define RME96_START_BOTH (RME96_START_PLAYBACK \ | RME96_START_CAPTURE) #define RME96_STOP_PLAYBACK (RME96_TB_STOP_PLAYBACK \ | RME96_TB_CLEAR_PLAYBACK_IRQ) #define RME96_STOP_CAPTURE (RME96_TB_STOP_CAPTURE \ | RME96_TB_CLEAR_CAPTURE_IRQ) #define RME96_STOP_BOTH (RME96_STOP_PLAYBACK \ | RME96_STOP_CAPTURE) struct rme96 { spinlock_t lock; int irq; unsigned long port; void __iomem *iobase; u32 wcreg; /* cached write control register value */ u32 wcreg_spdif; /* S/PDIF setup */ u32 wcreg_spdif_stream; /* S/PDIF setup (temporary) */ u32 rcreg; /* cached read control register value */ u32 areg; /* cached additional register value */ u16 vol[2]; /* cached volume of analog output */ u8 rev; /* card revision number */ u32 playback_pointer; u32 capture_pointer; void *playback_suspend_buffer; void *capture_suspend_buffer; struct snd_pcm_substream *playback_substream; struct snd_pcm_substream *capture_substream; int playback_frlog; /* log2 of framesize */ int capture_frlog; size_t playback_periodsize; /* in bytes, zero if not used */ size_t capture_periodsize; /* in bytes, zero if not used */ struct snd_card *card; struct snd_pcm *spdif_pcm; struct snd_pcm *adat_pcm; struct pci_dev *pci; struct snd_kcontrol *spdif_ctl; }; static const struct pci_device_id snd_rme96_ids[] = { { PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96), 0, }, { PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96_8), 0, }, { PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96_8_PRO), 0, }, { PCI_VDEVICE(XILINX, PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST), 0, }, { 0, } }; MODULE_DEVICE_TABLE(pci, snd_rme96_ids); #define RME96_ISPLAYING(rme96) ((rme96)->wcreg & RME96_WCR_START) #define RME96_ISRECORDING(rme96) ((rme96)->wcreg & RME96_WCR_START_2) #define RME96_HAS_ANALOG_IN(rme96) ((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST) #define RME96_HAS_ANALOG_OUT(rme96) ((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PRO || \ (rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST) #define RME96_DAC_IS_1852(rme96) (RME96_HAS_ANALOG_OUT(rme96) && (rme96)->rev >= 4) #define RME96_DAC_IS_1855(rme96) (((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST && (rme96)->rev < 4) || \ ((rme96)->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PRO && (rme96)->rev == 2)) #define RME96_185X_MAX_OUT(rme96) ((1 << (RME96_DAC_IS_1852(rme96) ? RME96_AD1852_VOL_BITS : RME96_AD1855_VOL_BITS)) - 1) static int snd_rme96_playback_prepare(struct snd_pcm_substream *substream); static int snd_rme96_capture_prepare(struct snd_pcm_substream *substream); static int snd_rme96_playback_trigger(struct snd_pcm_substream *substream, int cmd); static int snd_rme96_capture_trigger(struct snd_pcm_substream *substream, int cmd); static snd_pcm_uframes_t snd_rme96_playback_pointer(struct snd_pcm_substream *substream); static snd_pcm_uframes_t snd_rme96_capture_pointer(struct snd_pcm_substream *substream); static void snd_rme96_proc_init(struct rme96 *rme96); static int snd_rme96_create_switches(struct snd_card *card, struct rme96 *rme96); static int snd_rme96_getinputtype(struct rme96 *rme96); static inline unsigned int snd_rme96_playback_ptr(struct rme96 *rme96) { return (readl(rme96->iobase + RME96_IO_GET_PLAY_POS) & RME96_RCR_AUDIO_ADDR_MASK) >> rme96->playback_frlog; } static inline unsigned int snd_rme96_capture_ptr(struct rme96 *rme96) { return (readl(rme96->iobase + RME96_IO_GET_REC_POS) & RME96_RCR_AUDIO_ADDR_MASK) >> rme96->capture_frlog; } static int snd_rme96_playback_silence(struct snd_pcm_substream *substream, int channel, unsigned long pos, unsigned long count) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); memset_io(rme96->iobase + RME96_IO_PLAY_BUFFER + pos, 0, count); return 0; } static int snd_rme96_playback_copy(struct snd_pcm_substream *substream, int channel, unsigned long pos, struct iov_iter *src, unsigned long count) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); return copy_from_iter_toio(rme96->iobase + RME96_IO_PLAY_BUFFER + pos, src, count); } static int snd_rme96_capture_copy(struct snd_pcm_substream *substream, int channel, unsigned long pos, struct iov_iter *dst, unsigned long count) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); return copy_to_iter_fromio(dst, rme96->iobase + RME96_IO_REC_BUFFER + pos, count); } /* * Digital output capabilities (S/PDIF) */ static const struct snd_pcm_hardware snd_rme96_playback_spdif_info = { .info = (SNDRV_PCM_INFO_MMAP_IOMEM | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE), .formats = (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE), .rates = (SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000), .rate_min = 32000, .rate_max = 96000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = RME96_BUFFER_SIZE, .period_bytes_min = RME96_SMALL_BLOCK_SIZE, .period_bytes_max = RME96_LARGE_BLOCK_SIZE, .periods_min = RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE, .periods_max = RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE, .fifo_size = 0, }; /* * Digital input capabilities (S/PDIF) */ static const struct snd_pcm_hardware snd_rme96_capture_spdif_info = { .info = (SNDRV_PCM_INFO_MMAP_IOMEM | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE), .formats = (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE), .rates = (SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000 | SNDRV_PCM_RATE_64000 | SNDRV_PCM_RATE_88200 | SNDRV_PCM_RATE_96000), .rate_min = 32000, .rate_max = 96000, .channels_min = 2, .channels_max = 2, .buffer_bytes_max = RME96_BUFFER_SIZE, .period_bytes_min = RME96_SMALL_BLOCK_SIZE, .period_bytes_max = RME96_LARGE_BLOCK_SIZE, .periods_min = RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE, .periods_max = RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE, .fifo_size = 0, }; /* * Digital output capabilities (ADAT) */ static const struct snd_pcm_hardware snd_rme96_playback_adat_info = { .info = (SNDRV_PCM_INFO_MMAP_IOMEM | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE), .formats = (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE), .rates = (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000), .rate_min = 44100, .rate_max = 48000, .channels_min = 8, .channels_max = 8, .buffer_bytes_max = RME96_BUFFER_SIZE, .period_bytes_min = RME96_SMALL_BLOCK_SIZE, .period_bytes_max = RME96_LARGE_BLOCK_SIZE, .periods_min = RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE, .periods_max = RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE, .fifo_size = 0, }; /* * Digital input capabilities (ADAT) */ static const struct snd_pcm_hardware snd_rme96_capture_adat_info = { .info = (SNDRV_PCM_INFO_MMAP_IOMEM | SNDRV_PCM_INFO_MMAP_VALID | SNDRV_PCM_INFO_SYNC_START | SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_PAUSE), .formats = (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S32_LE), .rates = (SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000), .rate_min = 44100, .rate_max = 48000, .channels_min = 8, .channels_max = 8, .buffer_bytes_max = RME96_BUFFER_SIZE, .period_bytes_min = RME96_SMALL_BLOCK_SIZE, .period_bytes_max = RME96_LARGE_BLOCK_SIZE, .periods_min = RME96_BUFFER_SIZE / RME96_LARGE_BLOCK_SIZE, .periods_max = RME96_BUFFER_SIZE / RME96_SMALL_BLOCK_SIZE, .fifo_size = 0, }; /* * The CDATA, CCLK and CLATCH bits can be used to write to the SPI interface * of the AD1852 or AD1852 D/A converter on the board. CDATA must be set up * on the falling edge of CCLK and be stable on the rising edge. The rising * edge of CLATCH after the last data bit clocks in the whole data word. * A fast processor could probably drive the SPI interface faster than the * DAC can handle (3MHz for the 1855, unknown for the 1852). The udelay(1) * limits the data rate to 500KHz and only causes a delay of 33 microsecs. * * NOTE: increased delay from 1 to 10, since there where problems setting * the volume. */ static void snd_rme96_write_SPI(struct rme96 *rme96, u16 val) { int i; for (i = 0; i < 16; i++) { if (val & 0x8000) { rme96->areg |= RME96_AR_CDATA; } else { rme96->areg &= ~RME96_AR_CDATA; } rme96->areg &= ~(RME96_AR_CCLK | RME96_AR_CLATCH); writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); udelay(10); rme96->areg |= RME96_AR_CCLK; writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); udelay(10); val <<= 1; } rme96->areg &= ~(RME96_AR_CCLK | RME96_AR_CDATA); rme96->areg |= RME96_AR_CLATCH; writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); udelay(10); rme96->areg &= ~RME96_AR_CLATCH; writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); } static void snd_rme96_apply_dac_volume(struct rme96 *rme96) { if (RME96_DAC_IS_1852(rme96)) { snd_rme96_write_SPI(rme96, (rme96->vol[0] << 2) | 0x0); snd_rme96_write_SPI(rme96, (rme96->vol[1] << 2) | 0x2); } else if (RME96_DAC_IS_1855(rme96)) { snd_rme96_write_SPI(rme96, (rme96->vol[0] & 0x3FF) | 0x000); snd_rme96_write_SPI(rme96, (rme96->vol[1] & 0x3FF) | 0x400); } } static void snd_rme96_reset_dac(struct rme96 *rme96) { writel(rme96->wcreg | RME96_WCR_PD, rme96->iobase + RME96_IO_CONTROL_REGISTER); writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); } static int snd_rme96_getmontracks(struct rme96 *rme96) { return ((rme96->wcreg >> RME96_WCR_BITPOS_MONITOR_0) & 1) + (((rme96->wcreg >> RME96_WCR_BITPOS_MONITOR_1) & 1) << 1); } static int snd_rme96_setmontracks(struct rme96 *rme96, int montracks) { if (montracks & 1) { rme96->wcreg |= RME96_WCR_MONITOR_0; } else { rme96->wcreg &= ~RME96_WCR_MONITOR_0; } if (montracks & 2) { rme96->wcreg |= RME96_WCR_MONITOR_1; } else { rme96->wcreg &= ~RME96_WCR_MONITOR_1; } writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); return 0; } static int snd_rme96_getattenuation(struct rme96 *rme96) { return ((rme96->wcreg >> RME96_WCR_BITPOS_GAIN_0) & 1) + (((rme96->wcreg >> RME96_WCR_BITPOS_GAIN_1) & 1) << 1); } static int snd_rme96_setattenuation(struct rme96 *rme96, int attenuation) { switch (attenuation) { case 0: rme96->wcreg = (rme96->wcreg & ~RME96_WCR_GAIN_0) & ~RME96_WCR_GAIN_1; break; case 1: rme96->wcreg = (rme96->wcreg | RME96_WCR_GAIN_0) & ~RME96_WCR_GAIN_1; break; case 2: rme96->wcreg = (rme96->wcreg & ~RME96_WCR_GAIN_0) | RME96_WCR_GAIN_1; break; case 3: rme96->wcreg = (rme96->wcreg | RME96_WCR_GAIN_0) | RME96_WCR_GAIN_1; break; default: return -EINVAL; } writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); return 0; } static int snd_rme96_capture_getrate(struct rme96 *rme96, int *is_adat) { int n, rate; *is_adat = 0; if (rme96->areg & RME96_AR_ANALOG) { /* Analog input, overrides S/PDIF setting */ n = ((rme96->areg >> RME96_AR_BITPOS_F0) & 1) + (((rme96->areg >> RME96_AR_BITPOS_F1) & 1) << 1); switch (n) { case 1: rate = 32000; break; case 2: rate = 44100; break; case 3: rate = 48000; break; default: return -1; } return (rme96->areg & RME96_AR_BITPOS_F2) ? rate << 1 : rate; } rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER); if (rme96->rcreg & RME96_RCR_LOCK) { /* ADAT rate */ *is_adat = 1; if (rme96->rcreg & RME96_RCR_T_OUT) { return 48000; } return 44100; } if (rme96->rcreg & RME96_RCR_VERF) { return -1; } /* S/PDIF rate */ n = ((rme96->rcreg >> RME96_RCR_BITPOS_F0) & 1) + (((rme96->rcreg >> RME96_RCR_BITPOS_F1) & 1) << 1) + (((rme96->rcreg >> RME96_RCR_BITPOS_F2) & 1) << 2); switch (n) { case 0: if (rme96->rcreg & RME96_RCR_T_OUT) { return 64000; } return -1; case 3: return 96000; case 4: return 88200; case 5: return 48000; case 6: return 44100; case 7: return 32000; default: break; } return -1; } static int snd_rme96_playback_getrate(struct rme96 *rme96) { int rate, dummy; if (!(rme96->wcreg & RME96_WCR_MASTER) && snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG) { rate = snd_rme96_capture_getrate(rme96, &dummy); if (rate > 0) { /* slave clock */ return rate; } } rate = ((rme96->wcreg >> RME96_WCR_BITPOS_FREQ_0) & 1) + (((rme96->wcreg >> RME96_WCR_BITPOS_FREQ_1) & 1) << 1); switch (rate) { case 1: rate = 32000; break; case 2: rate = 44100; break; case 3: rate = 48000; break; default: return -1; } return (rme96->wcreg & RME96_WCR_DS) ? rate << 1 : rate; } static int snd_rme96_playback_setrate(struct rme96 *rme96, int rate) { int ds; ds = rme96->wcreg & RME96_WCR_DS; switch (rate) { case 32000: rme96->wcreg &= ~RME96_WCR_DS; rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) & ~RME96_WCR_FREQ_1; break; case 44100: rme96->wcreg &= ~RME96_WCR_DS; rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_1) & ~RME96_WCR_FREQ_0; break; case 48000: rme96->wcreg &= ~RME96_WCR_DS; rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) | RME96_WCR_FREQ_1; break; case 64000: rme96->wcreg |= RME96_WCR_DS; rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) & ~RME96_WCR_FREQ_1; break; case 88200: rme96->wcreg |= RME96_WCR_DS; rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_1) & ~RME96_WCR_FREQ_0; break; case 96000: rme96->wcreg |= RME96_WCR_DS; rme96->wcreg = (rme96->wcreg | RME96_WCR_FREQ_0) | RME96_WCR_FREQ_1; break; default: return -EINVAL; } if ((!ds && rme96->wcreg & RME96_WCR_DS) || (ds && !(rme96->wcreg & RME96_WCR_DS))) { /* change to/from double-speed: reset the DAC (if available) */ snd_rme96_reset_dac(rme96); return 1; /* need to restore volume */ } else { writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); return 0; } } static int snd_rme96_capture_analog_setrate(struct rme96 *rme96, int rate) { switch (rate) { case 32000: rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) & ~RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2; break; case 44100: rme96->areg = ((rme96->areg & ~RME96_AR_FREQPAD_0) | RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2; break; case 48000: rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) | RME96_AR_FREQPAD_1) & ~RME96_AR_FREQPAD_2; break; case 64000: if (rme96->rev < 4) { return -EINVAL; } rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) & ~RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2; break; case 88200: if (rme96->rev < 4) { return -EINVAL; } rme96->areg = ((rme96->areg & ~RME96_AR_FREQPAD_0) | RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2; break; case 96000: rme96->areg = ((rme96->areg | RME96_AR_FREQPAD_0) | RME96_AR_FREQPAD_1) | RME96_AR_FREQPAD_2; break; default: return -EINVAL; } writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); return 0; } static int snd_rme96_setclockmode(struct rme96 *rme96, int mode) { switch (mode) { case RME96_CLOCKMODE_SLAVE: /* AutoSync */ rme96->wcreg &= ~RME96_WCR_MASTER; rme96->areg &= ~RME96_AR_WSEL; break; case RME96_CLOCKMODE_MASTER: /* Internal */ rme96->wcreg |= RME96_WCR_MASTER; rme96->areg &= ~RME96_AR_WSEL; break; case RME96_CLOCKMODE_WORDCLOCK: /* Word clock is a master mode */ rme96->wcreg |= RME96_WCR_MASTER; rme96->areg |= RME96_AR_WSEL; break; default: return -EINVAL; } writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); return 0; } static int snd_rme96_getclockmode(struct rme96 *rme96) { if (rme96->areg & RME96_AR_WSEL) { return RME96_CLOCKMODE_WORDCLOCK; } return (rme96->wcreg & RME96_WCR_MASTER) ? RME96_CLOCKMODE_MASTER : RME96_CLOCKMODE_SLAVE; } static int snd_rme96_setinputtype(struct rme96 *rme96, int type) { int n; switch (type) { case RME96_INPUT_OPTICAL: rme96->wcreg = (rme96->wcreg & ~RME96_WCR_INP_0) & ~RME96_WCR_INP_1; break; case RME96_INPUT_COAXIAL: rme96->wcreg = (rme96->wcreg | RME96_WCR_INP_0) & ~RME96_WCR_INP_1; break; case RME96_INPUT_INTERNAL: rme96->wcreg = (rme96->wcreg & ~RME96_WCR_INP_0) | RME96_WCR_INP_1; break; case RME96_INPUT_XLR: if ((rme96->pci->device != PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST && rme96->pci->device != PCI_DEVICE_ID_RME_DIGI96_8_PRO) || (rme96->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST && rme96->rev > 4)) { /* Only Digi96/8 PRO and Digi96/8 PAD supports XLR */ return -EINVAL; } rme96->wcreg = (rme96->wcreg | RME96_WCR_INP_0) | RME96_WCR_INP_1; break; case RME96_INPUT_ANALOG: if (!RME96_HAS_ANALOG_IN(rme96)) { return -EINVAL; } rme96->areg |= RME96_AR_ANALOG; writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); if (rme96->rev < 4) { /* * Revision less than 004 does not support 64 and * 88.2 kHz */ if (snd_rme96_capture_getrate(rme96, &n) == 88200) { snd_rme96_capture_analog_setrate(rme96, 44100); } if (snd_rme96_capture_getrate(rme96, &n) == 64000) { snd_rme96_capture_analog_setrate(rme96, 32000); } } return 0; default: return -EINVAL; } if (type != RME96_INPUT_ANALOG && RME96_HAS_ANALOG_IN(rme96)) { rme96->areg &= ~RME96_AR_ANALOG; writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); } writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); return 0; } static int snd_rme96_getinputtype(struct rme96 *rme96) { if (rme96->areg & RME96_AR_ANALOG) { return RME96_INPUT_ANALOG; } return ((rme96->wcreg >> RME96_WCR_BITPOS_INP_0) & 1) + (((rme96->wcreg >> RME96_WCR_BITPOS_INP_1) & 1) << 1); } static void snd_rme96_setframelog(struct rme96 *rme96, int n_channels, int is_playback) { int frlog; if (n_channels == 2) { frlog = 1; } else { /* assume 8 channels */ frlog = 3; } if (is_playback) { frlog += (rme96->wcreg & RME96_WCR_MODE24) ? 2 : 1; rme96->playback_frlog = frlog; } else { frlog += (rme96->wcreg & RME96_WCR_MODE24_2) ? 2 : 1; rme96->capture_frlog = frlog; } } static int snd_rme96_playback_setformat(struct rme96 *rme96, snd_pcm_format_t format) { switch (format) { case SNDRV_PCM_FORMAT_S16_LE: rme96->wcreg &= ~RME96_WCR_MODE24; break; case SNDRV_PCM_FORMAT_S32_LE: rme96->wcreg |= RME96_WCR_MODE24; break; default: return -EINVAL; } writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); return 0; } static int snd_rme96_capture_setformat(struct rme96 *rme96, snd_pcm_format_t format) { switch (format) { case SNDRV_PCM_FORMAT_S16_LE: rme96->wcreg &= ~RME96_WCR_MODE24_2; break; case SNDRV_PCM_FORMAT_S32_LE: rme96->wcreg |= RME96_WCR_MODE24_2; break; default: return -EINVAL; } writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); return 0; } static void snd_rme96_set_period_properties(struct rme96 *rme96, size_t period_bytes) { switch (period_bytes) { case RME96_LARGE_BLOCK_SIZE: rme96->wcreg &= ~RME96_WCR_ISEL; break; case RME96_SMALL_BLOCK_SIZE: rme96->wcreg |= RME96_WCR_ISEL; break; default: snd_BUG(); break; } rme96->wcreg &= ~RME96_WCR_IDIS; writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); } static int snd_rme96_playback_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err, rate, dummy; bool apply_dac_volume = false; runtime->dma_area = (void __force *)(rme96->iobase + RME96_IO_PLAY_BUFFER); runtime->dma_addr = rme96->port + RME96_IO_PLAY_BUFFER; runtime->dma_bytes = RME96_BUFFER_SIZE; spin_lock_irq(&rme96->lock); rate = 0; if (!(rme96->wcreg & RME96_WCR_MASTER) && snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG) rate = snd_rme96_capture_getrate(rme96, &dummy); if (rate > 0) { /* slave clock */ if ((int)params_rate(params) != rate) { err = -EIO; goto error; } } else { err = snd_rme96_playback_setrate(rme96, params_rate(params)); if (err < 0) goto error; apply_dac_volume = err > 0; /* need to restore volume later? */ } err = snd_rme96_playback_setformat(rme96, params_format(params)); if (err < 0) goto error; snd_rme96_setframelog(rme96, params_channels(params), 1); if (rme96->capture_periodsize != 0) { if (params_period_size(params) << rme96->playback_frlog != rme96->capture_periodsize) { err = -EBUSY; goto error; } } rme96->playback_periodsize = params_period_size(params) << rme96->playback_frlog; snd_rme96_set_period_properties(rme96, rme96->playback_periodsize); /* S/PDIF setup */ if ((rme96->wcreg & RME96_WCR_ADAT) == 0) { rme96->wcreg &= ~(RME96_WCR_PRO | RME96_WCR_DOLBY | RME96_WCR_EMP); writel(rme96->wcreg |= rme96->wcreg_spdif_stream, rme96->iobase + RME96_IO_CONTROL_REGISTER); } err = 0; error: spin_unlock_irq(&rme96->lock); if (apply_dac_volume) { usleep_range(3000, 10000); snd_rme96_apply_dac_volume(rme96); } return err; } static int snd_rme96_capture_hw_params(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; int err, isadat, rate; runtime->dma_area = (void __force *)(rme96->iobase + RME96_IO_REC_BUFFER); runtime->dma_addr = rme96->port + RME96_IO_REC_BUFFER; runtime->dma_bytes = RME96_BUFFER_SIZE; spin_lock_irq(&rme96->lock); err = snd_rme96_capture_setformat(rme96, params_format(params)); if (err < 0) { spin_unlock_irq(&rme96->lock); return err; } if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) { err = snd_rme96_capture_analog_setrate(rme96, params_rate(params)); if (err < 0) { spin_unlock_irq(&rme96->lock); return err; } } else { rate = snd_rme96_capture_getrate(rme96, &isadat); if (rate > 0) { if ((int)params_rate(params) != rate) { spin_unlock_irq(&rme96->lock); return -EIO; } if ((isadat && runtime->hw.channels_min == 2) || (!isadat && runtime->hw.channels_min == 8)) { spin_unlock_irq(&rme96->lock); return -EIO; } } } snd_rme96_setframelog(rme96, params_channels(params), 0); if (rme96->playback_periodsize != 0) { if (params_period_size(params) << rme96->capture_frlog != rme96->playback_periodsize) { spin_unlock_irq(&rme96->lock); return -EBUSY; } } rme96->capture_periodsize = params_period_size(params) << rme96->capture_frlog; snd_rme96_set_period_properties(rme96, rme96->capture_periodsize); spin_unlock_irq(&rme96->lock); return 0; } static void snd_rme96_trigger(struct rme96 *rme96, int op) { if (op & RME96_TB_RESET_PLAYPOS) writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS); if (op & RME96_TB_RESET_CAPTUREPOS) writel(0, rme96->iobase + RME96_IO_RESET_REC_POS); if (op & RME96_TB_CLEAR_PLAYBACK_IRQ) { rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER); if (rme96->rcreg & RME96_RCR_IRQ) writel(0, rme96->iobase + RME96_IO_CONFIRM_PLAY_IRQ); } if (op & RME96_TB_CLEAR_CAPTURE_IRQ) { rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER); if (rme96->rcreg & RME96_RCR_IRQ_2) writel(0, rme96->iobase + RME96_IO_CONFIRM_REC_IRQ); } if (op & RME96_TB_START_PLAYBACK) rme96->wcreg |= RME96_WCR_START; if (op & RME96_TB_STOP_PLAYBACK) rme96->wcreg &= ~RME96_WCR_START; if (op & RME96_TB_START_CAPTURE) rme96->wcreg |= RME96_WCR_START_2; if (op & RME96_TB_STOP_CAPTURE) rme96->wcreg &= ~RME96_WCR_START_2; writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); } static irqreturn_t snd_rme96_interrupt(int irq, void *dev_id) { struct rme96 *rme96 = (struct rme96 *)dev_id; rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER); /* fastpath out, to ease interrupt sharing */ if (!((rme96->rcreg & RME96_RCR_IRQ) || (rme96->rcreg & RME96_RCR_IRQ_2))) { return IRQ_NONE; } if (rme96->rcreg & RME96_RCR_IRQ) { /* playback */ snd_pcm_period_elapsed(rme96->playback_substream); writel(0, rme96->iobase + RME96_IO_CONFIRM_PLAY_IRQ); } if (rme96->rcreg & RME96_RCR_IRQ_2) { /* capture */ snd_pcm_period_elapsed(rme96->capture_substream); writel(0, rme96->iobase + RME96_IO_CONFIRM_REC_IRQ); } return IRQ_HANDLED; } static const unsigned int period_bytes[] = { RME96_SMALL_BLOCK_SIZE, RME96_LARGE_BLOCK_SIZE }; static const struct snd_pcm_hw_constraint_list hw_constraints_period_bytes = { .count = ARRAY_SIZE(period_bytes), .list = period_bytes, .mask = 0 }; static void rme96_set_buffer_size_constraint(struct rme96 *rme96, struct snd_pcm_runtime *runtime) { unsigned int size; snd_pcm_hw_constraint_single(runtime, SNDRV_PCM_HW_PARAM_BUFFER_BYTES, RME96_BUFFER_SIZE); size = rme96->playback_periodsize; if (!size) size = rme96->capture_periodsize; if (size) snd_pcm_hw_constraint_single(runtime, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, size); else snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_PERIOD_BYTES, &hw_constraints_period_bytes); } static int snd_rme96_playback_spdif_open(struct snd_pcm_substream *substream) { int rate, dummy; struct rme96 *rme96 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; snd_pcm_set_sync(substream); spin_lock_irq(&rme96->lock); if (rme96->playback_substream) { spin_unlock_irq(&rme96->lock); return -EBUSY; } rme96->wcreg &= ~RME96_WCR_ADAT; writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); rme96->playback_substream = substream; spin_unlock_irq(&rme96->lock); runtime->hw = snd_rme96_playback_spdif_info; if (!(rme96->wcreg & RME96_WCR_MASTER) && snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG) { rate = snd_rme96_capture_getrate(rme96, &dummy); if (rate > 0) { /* slave clock */ runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); runtime->hw.rate_min = rate; runtime->hw.rate_max = rate; } } rme96_set_buffer_size_constraint(rme96, runtime); rme96->wcreg_spdif_stream = rme96->wcreg_spdif; rme96->spdif_ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE; snd_ctl_notify(rme96->card, SNDRV_CTL_EVENT_MASK_VALUE | SNDRV_CTL_EVENT_MASK_INFO, &rme96->spdif_ctl->id); return 0; } static int snd_rme96_capture_spdif_open(struct snd_pcm_substream *substream) { int isadat, rate; struct rme96 *rme96 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; snd_pcm_set_sync(substream); runtime->hw = snd_rme96_capture_spdif_info; if (snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG) { rate = snd_rme96_capture_getrate(rme96, &isadat); if (rate > 0) { if (isadat) return -EIO; runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); runtime->hw.rate_min = rate; runtime->hw.rate_max = rate; } } spin_lock_irq(&rme96->lock); if (rme96->capture_substream) { spin_unlock_irq(&rme96->lock); return -EBUSY; } rme96->capture_substream = substream; spin_unlock_irq(&rme96->lock); rme96_set_buffer_size_constraint(rme96, runtime); return 0; } static int snd_rme96_playback_adat_open(struct snd_pcm_substream *substream) { int rate, dummy; struct rme96 *rme96 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; snd_pcm_set_sync(substream); spin_lock_irq(&rme96->lock); if (rme96->playback_substream) { spin_unlock_irq(&rme96->lock); return -EBUSY; } rme96->wcreg |= RME96_WCR_ADAT; writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); rme96->playback_substream = substream; spin_unlock_irq(&rme96->lock); runtime->hw = snd_rme96_playback_adat_info; if (!(rme96->wcreg & RME96_WCR_MASTER) && snd_rme96_getinputtype(rme96) != RME96_INPUT_ANALOG) { rate = snd_rme96_capture_getrate(rme96, &dummy); if (rate > 0) { /* slave clock */ runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); runtime->hw.rate_min = rate; runtime->hw.rate_max = rate; } } rme96_set_buffer_size_constraint(rme96, runtime); return 0; } static int snd_rme96_capture_adat_open(struct snd_pcm_substream *substream) { int isadat, rate; struct rme96 *rme96 = snd_pcm_substream_chip(substream); struct snd_pcm_runtime *runtime = substream->runtime; snd_pcm_set_sync(substream); runtime->hw = snd_rme96_capture_adat_info; if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) { /* makes no sense to use analog input. Note that analog expension cards AEB4/8-I are RME96_INPUT_INTERNAL */ return -EIO; } rate = snd_rme96_capture_getrate(rme96, &isadat); if (rate > 0) { if (!isadat) { return -EIO; } runtime->hw.rates = snd_pcm_rate_to_rate_bit(rate); runtime->hw.rate_min = rate; runtime->hw.rate_max = rate; } spin_lock_irq(&rme96->lock); if (rme96->capture_substream) { spin_unlock_irq(&rme96->lock); return -EBUSY; } rme96->capture_substream = substream; spin_unlock_irq(&rme96->lock); rme96_set_buffer_size_constraint(rme96, runtime); return 0; } static int snd_rme96_playback_close(struct snd_pcm_substream *substream) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); int spdif = 0; spin_lock_irq(&rme96->lock); if (RME96_ISPLAYING(rme96)) { snd_rme96_trigger(rme96, RME96_STOP_PLAYBACK); } rme96->playback_substream = NULL; rme96->playback_periodsize = 0; spdif = (rme96->wcreg & RME96_WCR_ADAT) == 0; spin_unlock_irq(&rme96->lock); if (spdif) { rme96->spdif_ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE; snd_ctl_notify(rme96->card, SNDRV_CTL_EVENT_MASK_VALUE | SNDRV_CTL_EVENT_MASK_INFO, &rme96->spdif_ctl->id); } return 0; } static int snd_rme96_capture_close(struct snd_pcm_substream *substream) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); spin_lock_irq(&rme96->lock); if (RME96_ISRECORDING(rme96)) { snd_rme96_trigger(rme96, RME96_STOP_CAPTURE); } rme96->capture_substream = NULL; rme96->capture_periodsize = 0; spin_unlock_irq(&rme96->lock); return 0; } static int snd_rme96_playback_prepare(struct snd_pcm_substream *substream) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); spin_lock_irq(&rme96->lock); if (RME96_ISPLAYING(rme96)) { snd_rme96_trigger(rme96, RME96_STOP_PLAYBACK); } writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS); spin_unlock_irq(&rme96->lock); return 0; } static int snd_rme96_capture_prepare(struct snd_pcm_substream *substream) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); spin_lock_irq(&rme96->lock); if (RME96_ISRECORDING(rme96)) { snd_rme96_trigger(rme96, RME96_STOP_CAPTURE); } writel(0, rme96->iobase + RME96_IO_RESET_REC_POS); spin_unlock_irq(&rme96->lock); return 0; } static int snd_rme96_playback_trigger(struct snd_pcm_substream *substream, int cmd) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); struct snd_pcm_substream *s; bool sync; snd_pcm_group_for_each_entry(s, substream) { if (snd_pcm_substream_chip(s) == rme96) snd_pcm_trigger_done(s, substream); } sync = (rme96->playback_substream && rme96->capture_substream) && (rme96->playback_substream->group == rme96->capture_substream->group); switch (cmd) { case SNDRV_PCM_TRIGGER_START: if (!RME96_ISPLAYING(rme96)) { if (substream != rme96->playback_substream) return -EBUSY; snd_rme96_trigger(rme96, sync ? RME96_START_BOTH : RME96_START_PLAYBACK); } break; case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: if (RME96_ISPLAYING(rme96)) { if (substream != rme96->playback_substream) return -EBUSY; snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH : RME96_STOP_PLAYBACK); } break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: if (RME96_ISPLAYING(rme96)) snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH : RME96_STOP_PLAYBACK); break; case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: if (!RME96_ISPLAYING(rme96)) snd_rme96_trigger(rme96, sync ? RME96_RESUME_BOTH : RME96_RESUME_PLAYBACK); break; default: return -EINVAL; } return 0; } static int snd_rme96_capture_trigger(struct snd_pcm_substream *substream, int cmd) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); struct snd_pcm_substream *s; bool sync; snd_pcm_group_for_each_entry(s, substream) { if (snd_pcm_substream_chip(s) == rme96) snd_pcm_trigger_done(s, substream); } sync = (rme96->playback_substream && rme96->capture_substream) && (rme96->playback_substream->group == rme96->capture_substream->group); switch (cmd) { case SNDRV_PCM_TRIGGER_START: if (!RME96_ISRECORDING(rme96)) { if (substream != rme96->capture_substream) return -EBUSY; snd_rme96_trigger(rme96, sync ? RME96_START_BOTH : RME96_START_CAPTURE); } break; case SNDRV_PCM_TRIGGER_SUSPEND: case SNDRV_PCM_TRIGGER_STOP: if (RME96_ISRECORDING(rme96)) { if (substream != rme96->capture_substream) return -EBUSY; snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH : RME96_STOP_CAPTURE); } break; case SNDRV_PCM_TRIGGER_PAUSE_PUSH: if (RME96_ISRECORDING(rme96)) snd_rme96_trigger(rme96, sync ? RME96_STOP_BOTH : RME96_STOP_CAPTURE); break; case SNDRV_PCM_TRIGGER_RESUME: case SNDRV_PCM_TRIGGER_PAUSE_RELEASE: if (!RME96_ISRECORDING(rme96)) snd_rme96_trigger(rme96, sync ? RME96_RESUME_BOTH : RME96_RESUME_CAPTURE); break; default: return -EINVAL; } return 0; } static snd_pcm_uframes_t snd_rme96_playback_pointer(struct snd_pcm_substream *substream) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); return snd_rme96_playback_ptr(rme96); } static snd_pcm_uframes_t snd_rme96_capture_pointer(struct snd_pcm_substream *substream) { struct rme96 *rme96 = snd_pcm_substream_chip(substream); return snd_rme96_capture_ptr(rme96); } static const struct snd_pcm_ops snd_rme96_playback_spdif_ops = { .open = snd_rme96_playback_spdif_open, .close = snd_rme96_playback_close, .hw_params = snd_rme96_playback_hw_params, .prepare = snd_rme96_playback_prepare, .trigger = snd_rme96_playback_trigger, .pointer = snd_rme96_playback_pointer, .copy = snd_rme96_playback_copy, .fill_silence = snd_rme96_playback_silence, .mmap = snd_pcm_lib_mmap_iomem, }; static const struct snd_pcm_ops snd_rme96_capture_spdif_ops = { .open = snd_rme96_capture_spdif_open, .close = snd_rme96_capture_close, .hw_params = snd_rme96_capture_hw_params, .prepare = snd_rme96_capture_prepare, .trigger = snd_rme96_capture_trigger, .pointer = snd_rme96_capture_pointer, .copy = snd_rme96_capture_copy, .mmap = snd_pcm_lib_mmap_iomem, }; static const struct snd_pcm_ops snd_rme96_playback_adat_ops = { .open = snd_rme96_playback_adat_open, .close = snd_rme96_playback_close, .hw_params = snd_rme96_playback_hw_params, .prepare = snd_rme96_playback_prepare, .trigger = snd_rme96_playback_trigger, .pointer = snd_rme96_playback_pointer, .copy = snd_rme96_playback_copy, .fill_silence = snd_rme96_playback_silence, .mmap = snd_pcm_lib_mmap_iomem, }; static const struct snd_pcm_ops snd_rme96_capture_adat_ops = { .open = snd_rme96_capture_adat_open, .close = snd_rme96_capture_close, .hw_params = snd_rme96_capture_hw_params, .prepare = snd_rme96_capture_prepare, .trigger = snd_rme96_capture_trigger, .pointer = snd_rme96_capture_pointer, .copy = snd_rme96_capture_copy, .mmap = snd_pcm_lib_mmap_iomem, }; static void snd_rme96_free(struct rme96 *rme96) { if (rme96->irq >= 0) { snd_rme96_trigger(rme96, RME96_STOP_BOTH); rme96->areg &= ~RME96_AR_DAC_EN; writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); } vfree(rme96->playback_suspend_buffer); vfree(rme96->capture_suspend_buffer); } static void snd_rme96_free_spdif_pcm(struct snd_pcm *pcm) { struct rme96 *rme96 = pcm->private_data; rme96->spdif_pcm = NULL; } static void snd_rme96_free_adat_pcm(struct snd_pcm *pcm) { struct rme96 *rme96 = pcm->private_data; rme96->adat_pcm = NULL; } static int snd_rme96_create(struct rme96 *rme96) { struct pci_dev *pci = rme96->pci; int err; rme96->irq = -1; spin_lock_init(&rme96->lock); err = pcim_enable_device(pci); if (err < 0) return err; err = pci_request_regions(pci, "RME96"); if (err < 0) return err; rme96->port = pci_resource_start(rme96->pci, 0); rme96->iobase = devm_ioremap(&pci->dev, rme96->port, RME96_IO_SIZE); if (!rme96->iobase) { dev_err(rme96->card->dev, "unable to remap memory region 0x%lx-0x%lx\n", rme96->port, rme96->port + RME96_IO_SIZE - 1); return -EBUSY; } if (devm_request_irq(&pci->dev, pci->irq, snd_rme96_interrupt, IRQF_SHARED, KBUILD_MODNAME, rme96)) { dev_err(rme96->card->dev, "unable to grab IRQ %d\n", pci->irq); return -EBUSY; } rme96->irq = pci->irq; rme96->card->sync_irq = rme96->irq; /* read the card's revision number */ pci_read_config_byte(pci, 8, &rme96->rev); /* set up ALSA pcm device for S/PDIF */ err = snd_pcm_new(rme96->card, "Digi96 IEC958", 0, 1, 1, &rme96->spdif_pcm); if (err < 0) return err; rme96->spdif_pcm->private_data = rme96; rme96->spdif_pcm->private_free = snd_rme96_free_spdif_pcm; strcpy(rme96->spdif_pcm->name, "Digi96 IEC958"); snd_pcm_set_ops(rme96->spdif_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme96_playback_spdif_ops); snd_pcm_set_ops(rme96->spdif_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme96_capture_spdif_ops); rme96->spdif_pcm->info_flags = 0; /* set up ALSA pcm device for ADAT */ if (pci->device == PCI_DEVICE_ID_RME_DIGI96) { /* ADAT is not available on the base model */ rme96->adat_pcm = NULL; } else { err = snd_pcm_new(rme96->card, "Digi96 ADAT", 1, 1, 1, &rme96->adat_pcm); if (err < 0) return err; rme96->adat_pcm->private_data = rme96; rme96->adat_pcm->private_free = snd_rme96_free_adat_pcm; strcpy(rme96->adat_pcm->name, "Digi96 ADAT"); snd_pcm_set_ops(rme96->adat_pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_rme96_playback_adat_ops); snd_pcm_set_ops(rme96->adat_pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_rme96_capture_adat_ops); rme96->adat_pcm->info_flags = 0; } rme96->playback_periodsize = 0; rme96->capture_periodsize = 0; /* make sure playback/capture is stopped, if by some reason active */ snd_rme96_trigger(rme96, RME96_STOP_BOTH); /* set default values in registers */ rme96->wcreg = RME96_WCR_FREQ_1 | /* set 44.1 kHz playback */ RME96_WCR_SEL | /* normal playback */ RME96_WCR_MASTER | /* set to master clock mode */ RME96_WCR_INP_0; /* set coaxial input */ rme96->areg = RME96_AR_FREQPAD_1; /* set 44.1 kHz analog capture */ writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); /* reset the ADC */ writel(rme96->areg | RME96_AR_PD2, rme96->iobase + RME96_IO_ADDITIONAL_REG); writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); /* reset and enable the DAC (order is important). */ snd_rme96_reset_dac(rme96); rme96->areg |= RME96_AR_DAC_EN; writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); /* reset playback and record buffer pointers */ writel(0, rme96->iobase + RME96_IO_RESET_PLAY_POS); writel(0, rme96->iobase + RME96_IO_RESET_REC_POS); /* reset volume */ rme96->vol[0] = rme96->vol[1] = 0; if (RME96_HAS_ANALOG_OUT(rme96)) { snd_rme96_apply_dac_volume(rme96); } /* init switch interface */ err = snd_rme96_create_switches(rme96->card, rme96); if (err < 0) return err; /* init proc interface */ snd_rme96_proc_init(rme96); return 0; } /* * proc interface */ static void snd_rme96_proc_read(struct snd_info_entry *entry, struct snd_info_buffer *buffer) { int n; struct rme96 *rme96 = entry->private_data; rme96->rcreg = readl(rme96->iobase + RME96_IO_CONTROL_REGISTER); snd_iprintf(buffer, rme96->card->longname); snd_iprintf(buffer, " (index #%d)\n", rme96->card->number + 1); snd_iprintf(buffer, "\nGeneral settings\n"); if (rme96->wcreg & RME96_WCR_IDIS) { snd_iprintf(buffer, " period size: N/A (interrupts " "disabled)\n"); } else if (rme96->wcreg & RME96_WCR_ISEL) { snd_iprintf(buffer, " period size: 2048 bytes\n"); } else { snd_iprintf(buffer, " period size: 8192 bytes\n"); } snd_iprintf(buffer, "\nInput settings\n"); switch (snd_rme96_getinputtype(rme96)) { case RME96_INPUT_OPTICAL: snd_iprintf(buffer, " input: optical"); break; case RME96_INPUT_COAXIAL: snd_iprintf(buffer, " input: coaxial"); break; case RME96_INPUT_INTERNAL: snd_iprintf(buffer, " input: internal"); break; case RME96_INPUT_XLR: snd_iprintf(buffer, " input: XLR"); break; case RME96_INPUT_ANALOG: snd_iprintf(buffer, " input: analog"); break; } if (snd_rme96_capture_getrate(rme96, &n) < 0) { snd_iprintf(buffer, "\n sample rate: no valid signal\n"); } else { if (n) { snd_iprintf(buffer, " (8 channels)\n"); } else { snd_iprintf(buffer, " (2 channels)\n"); } snd_iprintf(buffer, " sample rate: %d Hz\n", snd_rme96_capture_getrate(rme96, &n)); } if (rme96->wcreg & RME96_WCR_MODE24_2) { snd_iprintf(buffer, " sample format: 24 bit\n"); } else { snd_iprintf(buffer, " sample format: 16 bit\n"); } snd_iprintf(buffer, "\nOutput settings\n"); if (rme96->wcreg & RME96_WCR_SEL) { snd_iprintf(buffer, " output signal: normal playback\n"); } else { snd_iprintf(buffer, " output signal: same as input\n"); } snd_iprintf(buffer, " sample rate: %d Hz\n", snd_rme96_playback_getrate(rme96)); if (rme96->wcreg & RME96_WCR_MODE24) { snd_iprintf(buffer, " sample format: 24 bit\n"); } else { snd_iprintf(buffer, " sample format: 16 bit\n"); } if (rme96->areg & RME96_AR_WSEL) { snd_iprintf(buffer, " sample clock source: word clock\n"); } else if (rme96->wcreg & RME96_WCR_MASTER) { snd_iprintf(buffer, " sample clock source: internal\n"); } else if (snd_rme96_getinputtype(rme96) == RME96_INPUT_ANALOG) { snd_iprintf(buffer, " sample clock source: autosync (internal anyway due to analog input setting)\n"); } else if (snd_rme96_capture_getrate(rme96, &n) < 0) { snd_iprintf(buffer, " sample clock source: autosync (internal anyway due to no valid signal)\n"); } else { snd_iprintf(buffer, " sample clock source: autosync\n"); } if (rme96->wcreg & RME96_WCR_PRO) { snd_iprintf(buffer, " format: AES/EBU (professional)\n"); } else { snd_iprintf(buffer, " format: IEC958 (consumer)\n"); } if (rme96->wcreg & RME96_WCR_EMP) { snd_iprintf(buffer, " emphasis: on\n"); } else { snd_iprintf(buffer, " emphasis: off\n"); } if (rme96->wcreg & RME96_WCR_DOLBY) { snd_iprintf(buffer, " non-audio (dolby): on\n"); } else { snd_iprintf(buffer, " non-audio (dolby): off\n"); } if (RME96_HAS_ANALOG_IN(rme96)) { snd_iprintf(buffer, "\nAnalog output settings\n"); switch (snd_rme96_getmontracks(rme96)) { case RME96_MONITOR_TRACKS_1_2: snd_iprintf(buffer, " monitored ADAT tracks: 1+2\n"); break; case RME96_MONITOR_TRACKS_3_4: snd_iprintf(buffer, " monitored ADAT tracks: 3+4\n"); break; case RME96_MONITOR_TRACKS_5_6: snd_iprintf(buffer, " monitored ADAT tracks: 5+6\n"); break; case RME96_MONITOR_TRACKS_7_8: snd_iprintf(buffer, " monitored ADAT tracks: 7+8\n"); break; } switch (snd_rme96_getattenuation(rme96)) { case RME96_ATTENUATION_0: snd_iprintf(buffer, " attenuation: 0 dB\n"); break; case RME96_ATTENUATION_6: snd_iprintf(buffer, " attenuation: -6 dB\n"); break; case RME96_ATTENUATION_12: snd_iprintf(buffer, " attenuation: -12 dB\n"); break; case RME96_ATTENUATION_18: snd_iprintf(buffer, " attenuation: -18 dB\n"); break; } snd_iprintf(buffer, " volume left: %u\n", rme96->vol[0]); snd_iprintf(buffer, " volume right: %u\n", rme96->vol[1]); } } static void snd_rme96_proc_init(struct rme96 *rme96) { snd_card_ro_proc_new(rme96->card, "rme96", rme96, snd_rme96_proc_read); } /* * control interface */ #define snd_rme96_info_loopback_control snd_ctl_boolean_mono_info static int snd_rme96_get_loopback_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); spin_lock_irq(&rme96->lock); ucontrol->value.integer.value[0] = rme96->wcreg & RME96_WCR_SEL ? 0 : 1; spin_unlock_irq(&rme96->lock); return 0; } static int snd_rme96_put_loopback_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ucontrol->value.integer.value[0] ? 0 : RME96_WCR_SEL; spin_lock_irq(&rme96->lock); val = (rme96->wcreg & ~RME96_WCR_SEL) | val; change = val != rme96->wcreg; rme96->wcreg = val; writel(val, rme96->iobase + RME96_IO_CONTROL_REGISTER); spin_unlock_irq(&rme96->lock); return change; } static int snd_rme96_info_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const _texts[5] = { "Optical", "Coaxial", "Internal", "XLR", "Analog" }; struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); const char *texts[5] = { _texts[0], _texts[1], _texts[2], _texts[3], _texts[4] }; int num_items; switch (rme96->pci->device) { case PCI_DEVICE_ID_RME_DIGI96: case PCI_DEVICE_ID_RME_DIGI96_8: num_items = 3; break; case PCI_DEVICE_ID_RME_DIGI96_8_PRO: num_items = 4; break; case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST: if (rme96->rev > 4) { /* PST */ num_items = 4; texts[3] = _texts[4]; /* Analog instead of XLR */ } else { /* PAD */ num_items = 5; } break; default: snd_BUG(); return -EINVAL; } return snd_ctl_enum_info(uinfo, 1, num_items, texts); } static int snd_rme96_get_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); unsigned int items = 3; spin_lock_irq(&rme96->lock); ucontrol->value.enumerated.item[0] = snd_rme96_getinputtype(rme96); switch (rme96->pci->device) { case PCI_DEVICE_ID_RME_DIGI96: case PCI_DEVICE_ID_RME_DIGI96_8: items = 3; break; case PCI_DEVICE_ID_RME_DIGI96_8_PRO: items = 4; break; case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST: if (rme96->rev > 4) { /* for handling PST case, (INPUT_ANALOG is moved to INPUT_XLR */ if (ucontrol->value.enumerated.item[0] == RME96_INPUT_ANALOG) { ucontrol->value.enumerated.item[0] = RME96_INPUT_XLR; } items = 4; } else { items = 5; } break; default: snd_BUG(); break; } if (ucontrol->value.enumerated.item[0] >= items) { ucontrol->value.enumerated.item[0] = items - 1; } spin_unlock_irq(&rme96->lock); return 0; } static int snd_rme96_put_inputtype_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); unsigned int val; int change, items = 3; switch (rme96->pci->device) { case PCI_DEVICE_ID_RME_DIGI96: case PCI_DEVICE_ID_RME_DIGI96_8: items = 3; break; case PCI_DEVICE_ID_RME_DIGI96_8_PRO: items = 4; break; case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST: if (rme96->rev > 4) { items = 4; } else { items = 5; } break; default: snd_BUG(); break; } val = ucontrol->value.enumerated.item[0] % items; /* special case for PST */ if (rme96->pci->device == PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST && rme96->rev > 4) { if (val == RME96_INPUT_XLR) { val = RME96_INPUT_ANALOG; } } spin_lock_irq(&rme96->lock); change = (int)val != snd_rme96_getinputtype(rme96); snd_rme96_setinputtype(rme96, val); spin_unlock_irq(&rme96->lock); return change; } static int snd_rme96_info_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const texts[3] = { "AutoSync", "Internal", "Word" }; return snd_ctl_enum_info(uinfo, 1, 3, texts); } static int snd_rme96_get_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); spin_lock_irq(&rme96->lock); ucontrol->value.enumerated.item[0] = snd_rme96_getclockmode(rme96); spin_unlock_irq(&rme96->lock); return 0; } static int snd_rme96_put_clockmode_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ucontrol->value.enumerated.item[0] % 3; spin_lock_irq(&rme96->lock); change = (int)val != snd_rme96_getclockmode(rme96); snd_rme96_setclockmode(rme96, val); spin_unlock_irq(&rme96->lock); return change; } static int snd_rme96_info_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const texts[4] = { "0 dB", "-6 dB", "-12 dB", "-18 dB" }; return snd_ctl_enum_info(uinfo, 1, 4, texts); } static int snd_rme96_get_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); spin_lock_irq(&rme96->lock); ucontrol->value.enumerated.item[0] = snd_rme96_getattenuation(rme96); spin_unlock_irq(&rme96->lock); return 0; } static int snd_rme96_put_attenuation_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ucontrol->value.enumerated.item[0] % 4; spin_lock_irq(&rme96->lock); change = (int)val != snd_rme96_getattenuation(rme96); snd_rme96_setattenuation(rme96, val); spin_unlock_irq(&rme96->lock); return change; } static int snd_rme96_info_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { static const char * const texts[4] = { "1+2", "3+4", "5+6", "7+8" }; return snd_ctl_enum_info(uinfo, 1, 4, texts); } static int snd_rme96_get_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); spin_lock_irq(&rme96->lock); ucontrol->value.enumerated.item[0] = snd_rme96_getmontracks(rme96); spin_unlock_irq(&rme96->lock); return 0; } static int snd_rme96_put_montracks_control(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); unsigned int val; int change; val = ucontrol->value.enumerated.item[0] % 4; spin_lock_irq(&rme96->lock); change = (int)val != snd_rme96_getmontracks(rme96); snd_rme96_setmontracks(rme96, val); spin_unlock_irq(&rme96->lock); return change; } static u32 snd_rme96_convert_from_aes(struct snd_aes_iec958 *aes) { u32 val = 0; val |= (aes->status[0] & IEC958_AES0_PROFESSIONAL) ? RME96_WCR_PRO : 0; val |= (aes->status[0] & IEC958_AES0_NONAUDIO) ? RME96_WCR_DOLBY : 0; if (val & RME96_WCR_PRO) val |= (aes->status[0] & IEC958_AES0_PRO_EMPHASIS_5015) ? RME96_WCR_EMP : 0; else val |= (aes->status[0] & IEC958_AES0_CON_EMPHASIS_5015) ? RME96_WCR_EMP : 0; return val; } static void snd_rme96_convert_to_aes(struct snd_aes_iec958 *aes, u32 val) { aes->status[0] = ((val & RME96_WCR_PRO) ? IEC958_AES0_PROFESSIONAL : 0) | ((val & RME96_WCR_DOLBY) ? IEC958_AES0_NONAUDIO : 0); if (val & RME96_WCR_PRO) aes->status[0] |= (val & RME96_WCR_EMP) ? IEC958_AES0_PRO_EMPHASIS_5015 : 0; else aes->status[0] |= (val & RME96_WCR_EMP) ? IEC958_AES0_CON_EMPHASIS_5015 : 0; } static int snd_rme96_control_spdif_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_rme96_control_spdif_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); snd_rme96_convert_to_aes(&ucontrol->value.iec958, rme96->wcreg_spdif); return 0; } static int snd_rme96_control_spdif_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); int change; u32 val; val = snd_rme96_convert_from_aes(&ucontrol->value.iec958); spin_lock_irq(&rme96->lock); change = val != rme96->wcreg_spdif; rme96->wcreg_spdif = val; spin_unlock_irq(&rme96->lock); return change; } static int snd_rme96_control_spdif_stream_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_rme96_control_spdif_stream_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); snd_rme96_convert_to_aes(&ucontrol->value.iec958, rme96->wcreg_spdif_stream); return 0; } static int snd_rme96_control_spdif_stream_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); int change; u32 val; val = snd_rme96_convert_from_aes(&ucontrol->value.iec958); spin_lock_irq(&rme96->lock); change = val != rme96->wcreg_spdif_stream; rme96->wcreg_spdif_stream = val; rme96->wcreg &= ~(RME96_WCR_PRO | RME96_WCR_DOLBY | RME96_WCR_EMP); rme96->wcreg |= val; writel(rme96->wcreg, rme96->iobase + RME96_IO_CONTROL_REGISTER); spin_unlock_irq(&rme96->lock); return change; } static int snd_rme96_control_spdif_mask_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958; uinfo->count = 1; return 0; } static int snd_rme96_control_spdif_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol) { ucontrol->value.iec958.status[0] = kcontrol->private_value; return 0; } static int snd_rme96_dac_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER; uinfo->count = 2; uinfo->value.integer.min = 0; uinfo->value.integer.max = RME96_185X_MAX_OUT(rme96); return 0; } static int snd_rme96_dac_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *u) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); spin_lock_irq(&rme96->lock); u->value.integer.value[0] = rme96->vol[0]; u->value.integer.value[1] = rme96->vol[1]; spin_unlock_irq(&rme96->lock); return 0; } static int snd_rme96_dac_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *u) { struct rme96 *rme96 = snd_kcontrol_chip(kcontrol); int change = 0; unsigned int vol, maxvol; if (!RME96_HAS_ANALOG_OUT(rme96)) return -EINVAL; maxvol = RME96_185X_MAX_OUT(rme96); spin_lock_irq(&rme96->lock); vol = u->value.integer.value[0]; if (vol != rme96->vol[0] && vol <= maxvol) { rme96->vol[0] = vol; change = 1; } vol = u->value.integer.value[1]; if (vol != rme96->vol[1] && vol <= maxvol) { rme96->vol[1] = vol; change = 1; } if (change) snd_rme96_apply_dac_volume(rme96); spin_unlock_irq(&rme96->lock); return change; } static const struct snd_kcontrol_new snd_rme96_controls[] = { { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT), .info = snd_rme96_control_spdif_info, .get = snd_rme96_control_spdif_get, .put = snd_rme96_control_spdif_put }, { .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM), .info = snd_rme96_control_spdif_stream_info, .get = snd_rme96_control_spdif_stream_get, .put = snd_rme96_control_spdif_stream_put }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK), .info = snd_rme96_control_spdif_mask_info, .get = snd_rme96_control_spdif_mask_get, .private_value = IEC958_AES0_NONAUDIO | IEC958_AES0_PROFESSIONAL | IEC958_AES0_CON_EMPHASIS }, { .access = SNDRV_CTL_ELEM_ACCESS_READ, .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,PRO_MASK), .info = snd_rme96_control_spdif_mask_info, .get = snd_rme96_control_spdif_mask_get, .private_value = IEC958_AES0_NONAUDIO | IEC958_AES0_PROFESSIONAL | IEC958_AES0_PRO_EMPHASIS }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Input Connector", .info = snd_rme96_info_inputtype_control, .get = snd_rme96_get_inputtype_control, .put = snd_rme96_put_inputtype_control }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Loopback Input", .info = snd_rme96_info_loopback_control, .get = snd_rme96_get_loopback_control, .put = snd_rme96_put_loopback_control }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Sample Clock Source", .info = snd_rme96_info_clockmode_control, .get = snd_rme96_get_clockmode_control, .put = snd_rme96_put_clockmode_control }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Monitor Tracks", .info = snd_rme96_info_montracks_control, .get = snd_rme96_get_montracks_control, .put = snd_rme96_put_montracks_control }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Attenuation", .info = snd_rme96_info_attenuation_control, .get = snd_rme96_get_attenuation_control, .put = snd_rme96_put_attenuation_control }, { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "DAC Playback Volume", .info = snd_rme96_dac_volume_info, .get = snd_rme96_dac_volume_get, .put = snd_rme96_dac_volume_put } }; static int snd_rme96_create_switches(struct snd_card *card, struct rme96 *rme96) { int idx, err; struct snd_kcontrol *kctl; for (idx = 0; idx < 7; idx++) { kctl = snd_ctl_new1(&snd_rme96_controls[idx], rme96); err = snd_ctl_add(card, kctl); if (err < 0) return err; if (idx == 1) /* IEC958 (S/PDIF) Stream */ rme96->spdif_ctl = kctl; } if (RME96_HAS_ANALOG_OUT(rme96)) { for (idx = 7; idx < 10; idx++) { err = snd_ctl_add(card, snd_ctl_new1(&snd_rme96_controls[idx], rme96)); if (err < 0) return err; } } return 0; } /* * Card initialisation */ static int rme96_suspend(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct rme96 *rme96 = card->private_data; snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); /* save capture & playback pointers */ rme96->playback_pointer = readl(rme96->iobase + RME96_IO_GET_PLAY_POS) & RME96_RCR_AUDIO_ADDR_MASK; rme96->capture_pointer = readl(rme96->iobase + RME96_IO_GET_REC_POS) & RME96_RCR_AUDIO_ADDR_MASK; /* save playback and capture buffers */ memcpy_fromio(rme96->playback_suspend_buffer, rme96->iobase + RME96_IO_PLAY_BUFFER, RME96_BUFFER_SIZE); memcpy_fromio(rme96->capture_suspend_buffer, rme96->iobase + RME96_IO_REC_BUFFER, RME96_BUFFER_SIZE); /* disable the DAC */ rme96->areg &= ~RME96_AR_DAC_EN; writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); return 0; } static int rme96_resume(struct device *dev) { struct snd_card *card = dev_get_drvdata(dev); struct rme96 *rme96 = card->private_data; /* reset playback and record buffer pointers */ writel(0, rme96->iobase + RME96_IO_SET_PLAY_POS + rme96->playback_pointer); writel(0, rme96->iobase + RME96_IO_SET_REC_POS + rme96->capture_pointer); /* restore playback and capture buffers */ memcpy_toio(rme96->iobase + RME96_IO_PLAY_BUFFER, rme96->playback_suspend_buffer, RME96_BUFFER_SIZE); memcpy_toio(rme96->iobase + RME96_IO_REC_BUFFER, rme96->capture_suspend_buffer, RME96_BUFFER_SIZE); /* reset the ADC */ writel(rme96->areg | RME96_AR_PD2, rme96->iobase + RME96_IO_ADDITIONAL_REG); writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); /* reset and enable DAC, restore analog volume */ snd_rme96_reset_dac(rme96); rme96->areg |= RME96_AR_DAC_EN; writel(rme96->areg, rme96->iobase + RME96_IO_ADDITIONAL_REG); if (RME96_HAS_ANALOG_OUT(rme96)) { usleep_range(3000, 10000); snd_rme96_apply_dac_volume(rme96); } snd_power_change_state(card, SNDRV_CTL_POWER_D0); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(rme96_pm, rme96_suspend, rme96_resume); static void snd_rme96_card_free(struct snd_card *card) { snd_rme96_free(card->private_data); } static int __snd_rme96_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { static int dev; struct rme96 *rme96; struct snd_card *card; int err; u8 val; if (dev >= SNDRV_CARDS) { return -ENODEV; } if (!enable[dev]) { dev++; return -ENOENT; } err = snd_devm_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, sizeof(*rme96), &card); if (err < 0) return err; card->private_free = snd_rme96_card_free; rme96 = card->private_data; rme96->card = card; rme96->pci = pci; err = snd_rme96_create(rme96); if (err) return err; if (IS_ENABLED(CONFIG_PM_SLEEP)) { rme96->playback_suspend_buffer = vmalloc(RME96_BUFFER_SIZE); if (!rme96->playback_suspend_buffer) return -ENOMEM; rme96->capture_suspend_buffer = vmalloc(RME96_BUFFER_SIZE); if (!rme96->capture_suspend_buffer) return -ENOMEM; } strcpy(card->driver, "Digi96"); switch (rme96->pci->device) { case PCI_DEVICE_ID_RME_DIGI96: strcpy(card->shortname, "RME Digi96"); break; case PCI_DEVICE_ID_RME_DIGI96_8: strcpy(card->shortname, "RME Digi96/8"); break; case PCI_DEVICE_ID_RME_DIGI96_8_PRO: strcpy(card->shortname, "RME Digi96/8 PRO"); break; case PCI_DEVICE_ID_RME_DIGI96_8_PAD_OR_PST: pci_read_config_byte(rme96->pci, 8, &val); if (val < 5) { strcpy(card->shortname, "RME Digi96/8 PAD"); } else { strcpy(card->shortname, "RME Digi96/8 PST"); } break; } sprintf(card->longname, "%s at 0x%lx, irq %d", card->shortname, rme96->port, rme96->irq); err = snd_card_register(card); if (err) return err; pci_set_drvdata(pci, card); dev++; return 0; } static int snd_rme96_probe(struct pci_dev *pci, const struct pci_device_id *pci_id) { return snd_card_free_on_error(&pci->dev, __snd_rme96_probe(pci, pci_id)); } static struct pci_driver rme96_driver = { .name = KBUILD_MODNAME, .id_table = snd_rme96_ids, .probe = snd_rme96_probe, .driver = { .pm = &rme96_pm, }, }; module_pci_driver(rme96_driver);