// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* - * net/sched/act_ct.c Connection Tracking action * * Authors: Paul Blakey * Yossi Kuperman * Marcelo Ricardo Leitner */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct tc_action_ops act_ct_ops; static unsigned int ct_net_id; struct tc_ct_action_net { struct tc_action_net tn; /* Must be first */ bool labels; }; /* Determine whether skb->_nfct is equal to the result of conntrack lookup. */ static bool tcf_ct_skb_nfct_cached(struct net *net, struct sk_buff *skb, u16 zone_id, bool force) { enum ip_conntrack_info ctinfo; struct nf_conn *ct; ct = nf_ct_get(skb, &ctinfo); if (!ct) return false; if (!net_eq(net, read_pnet(&ct->ct_net))) return false; if (nf_ct_zone(ct)->id != zone_id) return false; /* Force conntrack entry direction. */ if (force && CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL) { if (nf_ct_is_confirmed(ct)) nf_ct_kill(ct); nf_conntrack_put(&ct->ct_general); nf_ct_set(skb, NULL, IP_CT_UNTRACKED); return false; } return true; } /* Trim the skb to the length specified by the IP/IPv6 header, * removing any trailing lower-layer padding. This prepares the skb * for higher-layer processing that assumes skb->len excludes padding * (such as nf_ip_checksum). The caller needs to pull the skb to the * network header, and ensure ip_hdr/ipv6_hdr points to valid data. */ static int tcf_ct_skb_network_trim(struct sk_buff *skb, int family) { unsigned int len; int err; switch (family) { case NFPROTO_IPV4: len = ntohs(ip_hdr(skb)->tot_len); break; case NFPROTO_IPV6: len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len); break; default: len = skb->len; } err = pskb_trim_rcsum(skb, len); return err; } static u8 tcf_ct_skb_nf_family(struct sk_buff *skb) { u8 family = NFPROTO_UNSPEC; switch (skb->protocol) { case htons(ETH_P_IP): family = NFPROTO_IPV4; break; case htons(ETH_P_IPV6): family = NFPROTO_IPV6; break; default: break; } return family; } static int tcf_ct_ipv4_is_fragment(struct sk_buff *skb, bool *frag) { unsigned int len; len = skb_network_offset(skb) + sizeof(struct iphdr); if (unlikely(skb->len < len)) return -EINVAL; if (unlikely(!pskb_may_pull(skb, len))) return -ENOMEM; *frag = ip_is_fragment(ip_hdr(skb)); return 0; } static int tcf_ct_ipv6_is_fragment(struct sk_buff *skb, bool *frag) { unsigned int flags = 0, len, payload_ofs = 0; unsigned short frag_off; int nexthdr; len = skb_network_offset(skb) + sizeof(struct ipv6hdr); if (unlikely(skb->len < len)) return -EINVAL; if (unlikely(!pskb_may_pull(skb, len))) return -ENOMEM; nexthdr = ipv6_find_hdr(skb, &payload_ofs, -1, &frag_off, &flags); if (unlikely(nexthdr < 0)) return -EPROTO; *frag = flags & IP6_FH_F_FRAG; return 0; } static int tcf_ct_handle_fragments(struct net *net, struct sk_buff *skb, u8 family, u16 zone) { enum ip_conntrack_info ctinfo; struct nf_conn *ct; int err = 0; bool frag; /* Previously seen (loopback)? Ignore. */ ct = nf_ct_get(skb, &ctinfo); if ((ct && !nf_ct_is_template(ct)) || ctinfo == IP_CT_UNTRACKED) return 0; if (family == NFPROTO_IPV4) err = tcf_ct_ipv4_is_fragment(skb, &frag); else err = tcf_ct_ipv6_is_fragment(skb, &frag); if (err || !frag) return err; skb_get(skb); if (family == NFPROTO_IPV4) { enum ip_defrag_users user = IP_DEFRAG_CONNTRACK_IN + zone; memset(IPCB(skb), 0, sizeof(struct inet_skb_parm)); local_bh_disable(); err = ip_defrag(net, skb, user); local_bh_enable(); if (err && err != -EINPROGRESS) goto out_free; } else { /* NFPROTO_IPV6 */ #if IS_ENABLED(CONFIG_NF_DEFRAG_IPV6) enum ip6_defrag_users user = IP6_DEFRAG_CONNTRACK_IN + zone; memset(IP6CB(skb), 0, sizeof(struct inet6_skb_parm)); err = nf_ct_frag6_gather(net, skb, user); if (err && err != -EINPROGRESS) goto out_free; #else err = -EOPNOTSUPP; goto out_free; #endif } skb_clear_hash(skb); skb->ignore_df = 1; return err; out_free: kfree_skb(skb); return err; } static void tcf_ct_params_free(struct rcu_head *head) { struct tcf_ct_params *params = container_of(head, struct tcf_ct_params, rcu); if (params->tmpl) nf_conntrack_put(¶ms->tmpl->ct_general); kfree(params); } #if IS_ENABLED(CONFIG_NF_NAT) /* Modelled after nf_nat_ipv[46]_fn(). * range is only used for new, uninitialized NAT state. * Returns either NF_ACCEPT or NF_DROP. */ static int ct_nat_execute(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, const struct nf_nat_range2 *range, enum nf_nat_manip_type maniptype) { int hooknum, err = NF_ACCEPT; /* See HOOK2MANIP(). */ if (maniptype == NF_NAT_MANIP_SRC) hooknum = NF_INET_LOCAL_IN; /* Source NAT */ else hooknum = NF_INET_LOCAL_OUT; /* Destination NAT */ switch (ctinfo) { case IP_CT_RELATED: case IP_CT_RELATED_REPLY: if (skb->protocol == htons(ETH_P_IP) && ip_hdr(skb)->protocol == IPPROTO_ICMP) { if (!nf_nat_icmp_reply_translation(skb, ct, ctinfo, hooknum)) err = NF_DROP; goto out; } else if (IS_ENABLED(CONFIG_IPV6) && skb->protocol == htons(ETH_P_IPV6)) { __be16 frag_off; u8 nexthdr = ipv6_hdr(skb)->nexthdr; int hdrlen = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &nexthdr, &frag_off); if (hdrlen >= 0 && nexthdr == IPPROTO_ICMPV6) { if (!nf_nat_icmpv6_reply_translation(skb, ct, ctinfo, hooknum, hdrlen)) err = NF_DROP; goto out; } } /* Non-ICMP, fall thru to initialize if needed. */ /* fall through */ case IP_CT_NEW: /* Seen it before? This can happen for loopback, retrans, * or local packets. */ if (!nf_nat_initialized(ct, maniptype)) { /* Initialize according to the NAT action. */ err = (range && range->flags & NF_NAT_RANGE_MAP_IPS) /* Action is set up to establish a new * mapping. */ ? nf_nat_setup_info(ct, range, maniptype) : nf_nat_alloc_null_binding(ct, hooknum); if (err != NF_ACCEPT) goto out; } break; case IP_CT_ESTABLISHED: case IP_CT_ESTABLISHED_REPLY: break; default: err = NF_DROP; goto out; } err = nf_nat_packet(ct, ctinfo, hooknum, skb); out: return err; } #endif /* CONFIG_NF_NAT */ static void tcf_ct_act_set_mark(struct nf_conn *ct, u32 mark, u32 mask) { #if IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) u32 new_mark; if (!mask) return; new_mark = mark | (ct->mark & ~(mask)); if (ct->mark != new_mark) { ct->mark = new_mark; if (nf_ct_is_confirmed(ct)) nf_conntrack_event_cache(IPCT_MARK, ct); } #endif } static void tcf_ct_act_set_labels(struct nf_conn *ct, u32 *labels, u32 *labels_m) { #if IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) size_t labels_sz = FIELD_SIZEOF(struct tcf_ct_params, labels); if (!memchr_inv(labels_m, 0, labels_sz)) return; nf_connlabels_replace(ct, labels, labels_m, 4); #endif } static int tcf_ct_act_nat(struct sk_buff *skb, struct nf_conn *ct, enum ip_conntrack_info ctinfo, int ct_action, struct nf_nat_range2 *range, bool commit) { #if IS_ENABLED(CONFIG_NF_NAT) enum nf_nat_manip_type maniptype; if (!(ct_action & TCA_CT_ACT_NAT)) return NF_ACCEPT; /* Add NAT extension if not confirmed yet. */ if (!nf_ct_is_confirmed(ct) && !nf_ct_nat_ext_add(ct)) return NF_DROP; /* Can't NAT. */ if (ctinfo != IP_CT_NEW && (ct->status & IPS_NAT_MASK) && (ctinfo != IP_CT_RELATED || commit)) { /* NAT an established or related connection like before. */ if (CTINFO2DIR(ctinfo) == IP_CT_DIR_REPLY) /* This is the REPLY direction for a connection * for which NAT was applied in the forward * direction. Do the reverse NAT. */ maniptype = ct->status & IPS_SRC_NAT ? NF_NAT_MANIP_DST : NF_NAT_MANIP_SRC; else maniptype = ct->status & IPS_SRC_NAT ? NF_NAT_MANIP_SRC : NF_NAT_MANIP_DST; } else if (ct_action & TCA_CT_ACT_NAT_SRC) { maniptype = NF_NAT_MANIP_SRC; } else if (ct_action & TCA_CT_ACT_NAT_DST) { maniptype = NF_NAT_MANIP_DST; } else { return NF_ACCEPT; } return ct_nat_execute(skb, ct, ctinfo, range, maniptype); #else return NF_ACCEPT; #endif } static int tcf_ct_act(struct sk_buff *skb, const struct tc_action *a, struct tcf_result *res) { struct net *net = dev_net(skb->dev); bool cached, commit, clear, force; enum ip_conntrack_info ctinfo; struct tcf_ct *c = to_ct(a); struct nf_conn *tmpl = NULL; struct nf_hook_state state; int nh_ofs, err, retval; struct tcf_ct_params *p; struct nf_conn *ct; u8 family; p = rcu_dereference_bh(c->params); retval = READ_ONCE(c->tcf_action); commit = p->ct_action & TCA_CT_ACT_COMMIT; clear = p->ct_action & TCA_CT_ACT_CLEAR; force = p->ct_action & TCA_CT_ACT_FORCE; tmpl = p->tmpl; if (clear) { ct = nf_ct_get(skb, &ctinfo); if (ct) { nf_conntrack_put(&ct->ct_general); nf_ct_set(skb, NULL, IP_CT_UNTRACKED); } goto out; } family = tcf_ct_skb_nf_family(skb); if (family == NFPROTO_UNSPEC) goto drop; /* The conntrack module expects to be working at L3. * We also try to pull the IPv4/6 header to linear area */ nh_ofs = skb_network_offset(skb); skb_pull_rcsum(skb, nh_ofs); err = tcf_ct_handle_fragments(net, skb, family, p->zone); if (err == -EINPROGRESS) { retval = TC_ACT_STOLEN; goto out; } if (err) goto drop; err = tcf_ct_skb_network_trim(skb, family); if (err) goto drop; /* If we are recirculating packets to match on ct fields and * committing with a separate ct action, then we don't need to * actually run the packet through conntrack twice unless it's for a * different zone. */ cached = tcf_ct_skb_nfct_cached(net, skb, p->zone, force); if (!cached) { /* Associate skb with specified zone. */ if (tmpl) { ct = nf_ct_get(skb, &ctinfo); if (skb_nfct(skb)) nf_conntrack_put(skb_nfct(skb)); nf_conntrack_get(&tmpl->ct_general); nf_ct_set(skb, tmpl, IP_CT_NEW); } state.hook = NF_INET_PRE_ROUTING; state.net = net; state.pf = family; err = nf_conntrack_in(skb, &state); if (err != NF_ACCEPT) goto out_push; } ct = nf_ct_get(skb, &ctinfo); if (!ct) goto out_push; nf_ct_deliver_cached_events(ct); err = tcf_ct_act_nat(skb, ct, ctinfo, p->ct_action, &p->range, commit); if (err != NF_ACCEPT) goto drop; if (commit) { tcf_ct_act_set_mark(ct, p->mark, p->mark_mask); tcf_ct_act_set_labels(ct, p->labels, p->labels_mask); /* This will take care of sending queued events * even if the connection is already confirmed. */ nf_conntrack_confirm(skb); } out_push: skb_push_rcsum(skb, nh_ofs); out: tcf_action_update_bstats(&c->common, skb); return retval; drop: tcf_action_inc_drop_qstats(&c->common); return TC_ACT_SHOT; } static const struct nla_policy ct_policy[TCA_CT_MAX + 1] = { [TCA_CT_UNSPEC] = { .strict_start_type = TCA_CT_UNSPEC + 1 }, [TCA_CT_ACTION] = { .type = NLA_U16 }, [TCA_CT_PARMS] = { .type = NLA_EXACT_LEN, .len = sizeof(struct tc_ct) }, [TCA_CT_ZONE] = { .type = NLA_U16 }, [TCA_CT_MARK] = { .type = NLA_U32 }, [TCA_CT_MARK_MASK] = { .type = NLA_U32 }, [TCA_CT_LABELS] = { .type = NLA_BINARY, .len = 128 / BITS_PER_BYTE }, [TCA_CT_LABELS_MASK] = { .type = NLA_BINARY, .len = 128 / BITS_PER_BYTE }, [TCA_CT_NAT_IPV4_MIN] = { .type = NLA_U32 }, [TCA_CT_NAT_IPV4_MAX] = { .type = NLA_U32 }, [TCA_CT_NAT_IPV6_MIN] = { .type = NLA_EXACT_LEN, .len = sizeof(struct in6_addr) }, [TCA_CT_NAT_IPV6_MAX] = { .type = NLA_EXACT_LEN, .len = sizeof(struct in6_addr) }, [TCA_CT_NAT_PORT_MIN] = { .type = NLA_U16 }, [TCA_CT_NAT_PORT_MAX] = { .type = NLA_U16 }, }; static int tcf_ct_fill_params_nat(struct tcf_ct_params *p, struct tc_ct *parm, struct nlattr **tb, struct netlink_ext_ack *extack) { struct nf_nat_range2 *range; if (!(p->ct_action & TCA_CT_ACT_NAT)) return 0; if (!IS_ENABLED(CONFIG_NF_NAT)) { NL_SET_ERR_MSG_MOD(extack, "Netfilter nat isn't enabled in kernel"); return -EOPNOTSUPP; } if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) return 0; if ((p->ct_action & TCA_CT_ACT_NAT_SRC) && (p->ct_action & TCA_CT_ACT_NAT_DST)) { NL_SET_ERR_MSG_MOD(extack, "dnat and snat can't be enabled at the same time"); return -EOPNOTSUPP; } range = &p->range; if (tb[TCA_CT_NAT_IPV4_MIN]) { struct nlattr *max_attr = tb[TCA_CT_NAT_IPV4_MAX]; p->ipv4_range = true; range->flags |= NF_NAT_RANGE_MAP_IPS; range->min_addr.ip = nla_get_in_addr(tb[TCA_CT_NAT_IPV4_MIN]); range->max_addr.ip = max_attr ? nla_get_in_addr(max_attr) : range->min_addr.ip; } else if (tb[TCA_CT_NAT_IPV6_MIN]) { struct nlattr *max_attr = tb[TCA_CT_NAT_IPV6_MAX]; p->ipv4_range = false; range->flags |= NF_NAT_RANGE_MAP_IPS; range->min_addr.in6 = nla_get_in6_addr(tb[TCA_CT_NAT_IPV6_MIN]); range->max_addr.in6 = max_attr ? nla_get_in6_addr(max_attr) : range->min_addr.in6; } if (tb[TCA_CT_NAT_PORT_MIN]) { range->flags |= NF_NAT_RANGE_PROTO_SPECIFIED; range->min_proto.all = nla_get_be16(tb[TCA_CT_NAT_PORT_MIN]); range->max_proto.all = tb[TCA_CT_NAT_PORT_MAX] ? nla_get_be16(tb[TCA_CT_NAT_PORT_MAX]) : range->min_proto.all; } return 0; } static void tcf_ct_set_key_val(struct nlattr **tb, void *val, int val_type, void *mask, int mask_type, int len) { if (!tb[val_type]) return; nla_memcpy(val, tb[val_type], len); if (!mask) return; if (mask_type == TCA_CT_UNSPEC || !tb[mask_type]) memset(mask, 0xff, len); else nla_memcpy(mask, tb[mask_type], len); } static int tcf_ct_fill_params(struct net *net, struct tcf_ct_params *p, struct tc_ct *parm, struct nlattr **tb, struct netlink_ext_ack *extack) { struct tc_ct_action_net *tn = net_generic(net, ct_net_id); struct nf_conntrack_zone zone; struct nf_conn *tmpl; int err; p->zone = NF_CT_DEFAULT_ZONE_ID; tcf_ct_set_key_val(tb, &p->ct_action, TCA_CT_ACTION, NULL, TCA_CT_UNSPEC, sizeof(p->ct_action)); if (p->ct_action & TCA_CT_ACT_CLEAR) return 0; err = tcf_ct_fill_params_nat(p, parm, tb, extack); if (err) return err; if (tb[TCA_CT_MARK]) { if (!IS_ENABLED(CONFIG_NF_CONNTRACK_MARK)) { NL_SET_ERR_MSG_MOD(extack, "Conntrack mark isn't enabled."); return -EOPNOTSUPP; } tcf_ct_set_key_val(tb, &p->mark, TCA_CT_MARK, &p->mark_mask, TCA_CT_MARK_MASK, sizeof(p->mark)); } if (tb[TCA_CT_LABELS]) { if (!IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS)) { NL_SET_ERR_MSG_MOD(extack, "Conntrack labels isn't enabled."); return -EOPNOTSUPP; } if (!tn->labels) { NL_SET_ERR_MSG_MOD(extack, "Failed to set connlabel length"); return -EOPNOTSUPP; } tcf_ct_set_key_val(tb, p->labels, TCA_CT_LABELS, p->labels_mask, TCA_CT_LABELS_MASK, sizeof(p->labels)); } if (tb[TCA_CT_ZONE]) { if (!IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES)) { NL_SET_ERR_MSG_MOD(extack, "Conntrack zones isn't enabled."); return -EOPNOTSUPP; } tcf_ct_set_key_val(tb, &p->zone, TCA_CT_ZONE, NULL, TCA_CT_UNSPEC, sizeof(p->zone)); } if (p->zone == NF_CT_DEFAULT_ZONE_ID) return 0; nf_ct_zone_init(&zone, p->zone, NF_CT_DEFAULT_ZONE_DIR, 0); tmpl = nf_ct_tmpl_alloc(net, &zone, GFP_KERNEL); if (!tmpl) { NL_SET_ERR_MSG_MOD(extack, "Failed to allocate conntrack template"); return -ENOMEM; } __set_bit(IPS_CONFIRMED_BIT, &tmpl->status); nf_conntrack_get(&tmpl->ct_general); p->tmpl = tmpl; return 0; } static int tcf_ct_init(struct net *net, struct nlattr *nla, struct nlattr *est, struct tc_action **a, int replace, int bind, bool rtnl_held, struct tcf_proto *tp, u32 flags, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, ct_net_id); struct tcf_ct_params *params = NULL; struct nlattr *tb[TCA_CT_MAX + 1]; struct tcf_chain *goto_ch = NULL; struct tc_ct *parm; struct tcf_ct *c; int err, res = 0; u32 index; if (!nla) { NL_SET_ERR_MSG_MOD(extack, "Ct requires attributes to be passed"); return -EINVAL; } err = nla_parse_nested(tb, TCA_CT_MAX, nla, ct_policy, extack); if (err < 0) return err; if (!tb[TCA_CT_PARMS]) { NL_SET_ERR_MSG_MOD(extack, "Missing required ct parameters"); return -EINVAL; } parm = nla_data(tb[TCA_CT_PARMS]); index = parm->index; err = tcf_idr_check_alloc(tn, &index, a, bind); if (err < 0) return err; if (!err) { err = tcf_idr_create(tn, index, est, a, &act_ct_ops, bind, true); if (err) { tcf_idr_cleanup(tn, index); return err; } res = ACT_P_CREATED; } else { if (bind) return 0; if (!replace) { tcf_idr_release(*a, bind); return -EEXIST; } } err = tcf_action_check_ctrlact(parm->action, tp, &goto_ch, extack); if (err < 0) goto cleanup; c = to_ct(*a); params = kzalloc(sizeof(*params), GFP_KERNEL); if (unlikely(!params)) { err = -ENOMEM; goto cleanup; } err = tcf_ct_fill_params(net, params, parm, tb, extack); if (err) goto cleanup; spin_lock_bh(&c->tcf_lock); goto_ch = tcf_action_set_ctrlact(*a, parm->action, goto_ch); rcu_swap_protected(c->params, params, lockdep_is_held(&c->tcf_lock)); spin_unlock_bh(&c->tcf_lock); if (goto_ch) tcf_chain_put_by_act(goto_ch); if (params) kfree_rcu(params, rcu); if (res == ACT_P_CREATED) tcf_idr_insert(tn, *a); return res; cleanup: if (goto_ch) tcf_chain_put_by_act(goto_ch); kfree(params); tcf_idr_release(*a, bind); return err; } static void tcf_ct_cleanup(struct tc_action *a) { struct tcf_ct_params *params; struct tcf_ct *c = to_ct(a); params = rcu_dereference_protected(c->params, 1); if (params) call_rcu(¶ms->rcu, tcf_ct_params_free); } static int tcf_ct_dump_key_val(struct sk_buff *skb, void *val, int val_type, void *mask, int mask_type, int len) { int err; if (mask && !memchr_inv(mask, 0, len)) return 0; err = nla_put(skb, val_type, len, val); if (err) return err; if (mask_type != TCA_CT_UNSPEC) { err = nla_put(skb, mask_type, len, mask); if (err) return err; } return 0; } static int tcf_ct_dump_nat(struct sk_buff *skb, struct tcf_ct_params *p) { struct nf_nat_range2 *range = &p->range; if (!(p->ct_action & TCA_CT_ACT_NAT)) return 0; if (!(p->ct_action & (TCA_CT_ACT_NAT_SRC | TCA_CT_ACT_NAT_DST))) return 0; if (range->flags & NF_NAT_RANGE_MAP_IPS) { if (p->ipv4_range) { if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MIN, range->min_addr.ip)) return -1; if (nla_put_in_addr(skb, TCA_CT_NAT_IPV4_MAX, range->max_addr.ip)) return -1; } else { if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MIN, &range->min_addr.in6)) return -1; if (nla_put_in6_addr(skb, TCA_CT_NAT_IPV6_MAX, &range->max_addr.in6)) return -1; } } if (range->flags & NF_NAT_RANGE_PROTO_SPECIFIED) { if (nla_put_be16(skb, TCA_CT_NAT_PORT_MIN, range->min_proto.all)) return -1; if (nla_put_be16(skb, TCA_CT_NAT_PORT_MAX, range->max_proto.all)) return -1; } return 0; } static inline int tcf_ct_dump(struct sk_buff *skb, struct tc_action *a, int bind, int ref) { unsigned char *b = skb_tail_pointer(skb); struct tcf_ct *c = to_ct(a); struct tcf_ct_params *p; struct tc_ct opt = { .index = c->tcf_index, .refcnt = refcount_read(&c->tcf_refcnt) - ref, .bindcnt = atomic_read(&c->tcf_bindcnt) - bind, }; struct tcf_t t; spin_lock_bh(&c->tcf_lock); p = rcu_dereference_protected(c->params, lockdep_is_held(&c->tcf_lock)); opt.action = c->tcf_action; if (tcf_ct_dump_key_val(skb, &p->ct_action, TCA_CT_ACTION, NULL, TCA_CT_UNSPEC, sizeof(p->ct_action))) goto nla_put_failure; if (p->ct_action & TCA_CT_ACT_CLEAR) goto skip_dump; if (IS_ENABLED(CONFIG_NF_CONNTRACK_MARK) && tcf_ct_dump_key_val(skb, &p->mark, TCA_CT_MARK, &p->mark_mask, TCA_CT_MARK_MASK, sizeof(p->mark))) goto nla_put_failure; if (IS_ENABLED(CONFIG_NF_CONNTRACK_LABELS) && tcf_ct_dump_key_val(skb, p->labels, TCA_CT_LABELS, p->labels_mask, TCA_CT_LABELS_MASK, sizeof(p->labels))) goto nla_put_failure; if (IS_ENABLED(CONFIG_NF_CONNTRACK_ZONES) && tcf_ct_dump_key_val(skb, &p->zone, TCA_CT_ZONE, NULL, TCA_CT_UNSPEC, sizeof(p->zone))) goto nla_put_failure; if (tcf_ct_dump_nat(skb, p)) goto nla_put_failure; skip_dump: if (nla_put(skb, TCA_CT_PARMS, sizeof(opt), &opt)) goto nla_put_failure; tcf_tm_dump(&t, &c->tcf_tm); if (nla_put_64bit(skb, TCA_CT_TM, sizeof(t), &t, TCA_CT_PAD)) goto nla_put_failure; spin_unlock_bh(&c->tcf_lock); return skb->len; nla_put_failure: spin_unlock_bh(&c->tcf_lock); nlmsg_trim(skb, b); return -1; } static int tcf_ct_walker(struct net *net, struct sk_buff *skb, struct netlink_callback *cb, int type, const struct tc_action_ops *ops, struct netlink_ext_ack *extack) { struct tc_action_net *tn = net_generic(net, ct_net_id); return tcf_generic_walker(tn, skb, cb, type, ops, extack); } static int tcf_ct_search(struct net *net, struct tc_action **a, u32 index) { struct tc_action_net *tn = net_generic(net, ct_net_id); return tcf_idr_search(tn, a, index); } static void tcf_stats_update(struct tc_action *a, u64 bytes, u32 packets, u64 lastuse, bool hw) { struct tcf_ct *c = to_ct(a); tcf_action_update_stats(a, bytes, packets, false, hw); c->tcf_tm.lastuse = max_t(u64, c->tcf_tm.lastuse, lastuse); } static struct tc_action_ops act_ct_ops = { .kind = "ct", .id = TCA_ID_CT, .owner = THIS_MODULE, .act = tcf_ct_act, .dump = tcf_ct_dump, .init = tcf_ct_init, .cleanup = tcf_ct_cleanup, .walk = tcf_ct_walker, .lookup = tcf_ct_search, .stats_update = tcf_stats_update, .size = sizeof(struct tcf_ct), }; static __net_init int ct_init_net(struct net *net) { unsigned int n_bits = FIELD_SIZEOF(struct tcf_ct_params, labels) * 8; struct tc_ct_action_net *tn = net_generic(net, ct_net_id); if (nf_connlabels_get(net, n_bits - 1)) { tn->labels = false; pr_err("act_ct: Failed to set connlabels length"); } else { tn->labels = true; } return tc_action_net_init(net, &tn->tn, &act_ct_ops); } static void __net_exit ct_exit_net(struct list_head *net_list) { struct net *net; rtnl_lock(); list_for_each_entry(net, net_list, exit_list) { struct tc_ct_action_net *tn = net_generic(net, ct_net_id); if (tn->labels) nf_connlabels_put(net); } rtnl_unlock(); tc_action_net_exit(net_list, ct_net_id); } static struct pernet_operations ct_net_ops = { .init = ct_init_net, .exit_batch = ct_exit_net, .id = &ct_net_id, .size = sizeof(struct tc_ct_action_net), }; static int __init ct_init_module(void) { return tcf_register_action(&act_ct_ops, &ct_net_ops); } static void __exit ct_cleanup_module(void) { tcf_unregister_action(&act_ct_ops, &ct_net_ops); } module_init(ct_init_module); module_exit(ct_cleanup_module); MODULE_AUTHOR("Paul Blakey "); MODULE_AUTHOR("Yossi Kuperman "); MODULE_AUTHOR("Marcelo Ricardo Leitner "); MODULE_DESCRIPTION("Connection tracking action"); MODULE_LICENSE("GPL v2");