/* * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include <linux/kernel.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/ratelimit.h> #include <net/addrconf.h> #include <rdma/ib_cm.h> #include "rds_single_path.h" #include "rds.h" #include "ib.h" #include "ib_mr.h" /* * Set the selected protocol version */ static void rds_ib_set_protocol(struct rds_connection *conn, unsigned int version) { conn->c_version = version; } /* * Set up flow control */ static void rds_ib_set_flow_control(struct rds_connection *conn, u32 credits) { struct rds_ib_connection *ic = conn->c_transport_data; if (rds_ib_sysctl_flow_control && credits != 0) { /* We're doing flow control */ ic->i_flowctl = 1; rds_ib_send_add_credits(conn, credits); } else { ic->i_flowctl = 0; } } /* * Connection established. * We get here for both outgoing and incoming connection. */ void rds_ib_cm_connect_complete(struct rds_connection *conn, struct rdma_cm_event *event) { struct rds_ib_connection *ic = conn->c_transport_data; const union rds_ib_conn_priv *dp = NULL; __be64 ack_seq = 0; __be32 credit = 0; u8 major = 0; u8 minor = 0; int err; dp = event->param.conn.private_data; if (conn->c_isv6) { if (event->param.conn.private_data_len >= sizeof(struct rds6_ib_connect_private)) { major = dp->ricp_v6.dp_protocol_major; minor = dp->ricp_v6.dp_protocol_minor; credit = dp->ricp_v6.dp_credit; /* dp structure start is not guaranteed to be 8 bytes * aligned. Since dp_ack_seq is 64-bit extended load * operations can be used so go through get_unaligned * to avoid unaligned errors. */ ack_seq = get_unaligned(&dp->ricp_v6.dp_ack_seq); } } else if (event->param.conn.private_data_len >= sizeof(struct rds_ib_connect_private)) { major = dp->ricp_v4.dp_protocol_major; minor = dp->ricp_v4.dp_protocol_minor; credit = dp->ricp_v4.dp_credit; ack_seq = get_unaligned(&dp->ricp_v4.dp_ack_seq); } /* make sure it isn't empty data */ if (major) { rds_ib_set_protocol(conn, RDS_PROTOCOL(major, minor)); rds_ib_set_flow_control(conn, be32_to_cpu(credit)); } if (conn->c_version < RDS_PROTOCOL_VERSION) { if (conn->c_version != RDS_PROTOCOL_COMPAT_VERSION) { pr_notice("RDS/IB: Connection <%pI6c,%pI6c> version %u.%u no longer supported\n", &conn->c_laddr, &conn->c_faddr, RDS_PROTOCOL_MAJOR(conn->c_version), RDS_PROTOCOL_MINOR(conn->c_version)); rds_conn_destroy(conn); return; } } pr_notice("RDS/IB: %s conn connected <%pI6c,%pI6c,%d> version %u.%u%s\n", ic->i_active_side ? "Active" : "Passive", &conn->c_laddr, &conn->c_faddr, conn->c_tos, RDS_PROTOCOL_MAJOR(conn->c_version), RDS_PROTOCOL_MINOR(conn->c_version), ic->i_flowctl ? ", flow control" : ""); /* receive sl from the peer */ ic->i_sl = ic->i_cm_id->route.path_rec->sl; atomic_set(&ic->i_cq_quiesce, 0); /* Init rings and fill recv. this needs to wait until protocol * negotiation is complete, since ring layout is different * from 3.1 to 4.1. */ rds_ib_send_init_ring(ic); rds_ib_recv_init_ring(ic); /* Post receive buffers - as a side effect, this will update * the posted credit count. */ rds_ib_recv_refill(conn, 1, GFP_KERNEL); /* update ib_device with this local ipaddr */ err = rds_ib_update_ipaddr(ic->rds_ibdev, &conn->c_laddr); if (err) printk(KERN_ERR "rds_ib_update_ipaddr failed (%d)\n", err); /* If the peer gave us the last packet it saw, process this as if * we had received a regular ACK. */ if (dp) { if (ack_seq) rds_send_drop_acked(conn, be64_to_cpu(ack_seq), NULL); } conn->c_proposed_version = conn->c_version; rds_connect_complete(conn); } static void rds_ib_cm_fill_conn_param(struct rds_connection *conn, struct rdma_conn_param *conn_param, union rds_ib_conn_priv *dp, u32 protocol_version, u32 max_responder_resources, u32 max_initiator_depth, bool isv6) { struct rds_ib_connection *ic = conn->c_transport_data; struct rds_ib_device *rds_ibdev = ic->rds_ibdev; memset(conn_param, 0, sizeof(struct rdma_conn_param)); conn_param->responder_resources = min_t(u32, rds_ibdev->max_responder_resources, max_responder_resources); conn_param->initiator_depth = min_t(u32, rds_ibdev->max_initiator_depth, max_initiator_depth); conn_param->retry_count = min_t(unsigned int, rds_ib_retry_count, 7); conn_param->rnr_retry_count = 7; if (dp) { memset(dp, 0, sizeof(*dp)); if (isv6) { dp->ricp_v6.dp_saddr = conn->c_laddr; dp->ricp_v6.dp_daddr = conn->c_faddr; dp->ricp_v6.dp_protocol_major = RDS_PROTOCOL_MAJOR(protocol_version); dp->ricp_v6.dp_protocol_minor = RDS_PROTOCOL_MINOR(protocol_version); dp->ricp_v6.dp_protocol_minor_mask = cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); dp->ricp_v6.dp_ack_seq = cpu_to_be64(rds_ib_piggyb_ack(ic)); dp->ricp_v6.dp_cmn.ricpc_dp_toss = conn->c_tos; conn_param->private_data = &dp->ricp_v6; conn_param->private_data_len = sizeof(dp->ricp_v6); } else { dp->ricp_v4.dp_saddr = conn->c_laddr.s6_addr32[3]; dp->ricp_v4.dp_daddr = conn->c_faddr.s6_addr32[3]; dp->ricp_v4.dp_protocol_major = RDS_PROTOCOL_MAJOR(protocol_version); dp->ricp_v4.dp_protocol_minor = RDS_PROTOCOL_MINOR(protocol_version); dp->ricp_v4.dp_protocol_minor_mask = cpu_to_be16(RDS_IB_SUPPORTED_PROTOCOLS); dp->ricp_v4.dp_ack_seq = cpu_to_be64(rds_ib_piggyb_ack(ic)); dp->ricp_v4.dp_cmn.ricpc_dp_toss = conn->c_tos; conn_param->private_data = &dp->ricp_v4; conn_param->private_data_len = sizeof(dp->ricp_v4); } /* Advertise flow control */ if (ic->i_flowctl) { unsigned int credits; credits = IB_GET_POST_CREDITS (atomic_read(&ic->i_credits)); if (isv6) dp->ricp_v6.dp_credit = cpu_to_be32(credits); else dp->ricp_v4.dp_credit = cpu_to_be32(credits); atomic_sub(IB_SET_POST_CREDITS(credits), &ic->i_credits); } } } static void rds_ib_cq_event_handler(struct ib_event *event, void *data) { rdsdebug("event %u (%s) data %p\n", event->event, ib_event_msg(event->event), data); } /* Plucking the oldest entry from the ring can be done concurrently with * the thread refilling the ring. Each ring operation is protected by * spinlocks and the transient state of refilling doesn't change the * recording of which entry is oldest. * * This relies on IB only calling one cq comp_handler for each cq so that * there will only be one caller of rds_recv_incoming() per RDS connection. */ static void rds_ib_cq_comp_handler_recv(struct ib_cq *cq, void *context) { struct rds_connection *conn = context; struct rds_ib_connection *ic = conn->c_transport_data; rdsdebug("conn %p cq %p\n", conn, cq); rds_ib_stats_inc(s_ib_evt_handler_call); tasklet_schedule(&ic->i_recv_tasklet); } static void poll_scq(struct rds_ib_connection *ic, struct ib_cq *cq, struct ib_wc *wcs) { int nr, i; struct ib_wc *wc; while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { for (i = 0; i < nr; i++) { wc = wcs + i; rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", (unsigned long long)wc->wr_id, wc->status, wc->byte_len, be32_to_cpu(wc->ex.imm_data)); if (wc->wr_id <= ic->i_send_ring.w_nr || wc->wr_id == RDS_IB_ACK_WR_ID) rds_ib_send_cqe_handler(ic, wc); else rds_ib_mr_cqe_handler(ic, wc); } } } static void rds_ib_tasklet_fn_send(unsigned long data) { struct rds_ib_connection *ic = (struct rds_ib_connection *)data; struct rds_connection *conn = ic->conn; rds_ib_stats_inc(s_ib_tasklet_call); /* if cq has been already reaped, ignore incoming cq event */ if (atomic_read(&ic->i_cq_quiesce)) return; poll_scq(ic, ic->i_send_cq, ic->i_send_wc); ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); poll_scq(ic, ic->i_send_cq, ic->i_send_wc); if (rds_conn_up(conn) && (!test_bit(RDS_LL_SEND_FULL, &conn->c_flags) || test_bit(0, &conn->c_map_queued))) rds_send_xmit(&ic->conn->c_path[0]); } static void poll_rcq(struct rds_ib_connection *ic, struct ib_cq *cq, struct ib_wc *wcs, struct rds_ib_ack_state *ack_state) { int nr, i; struct ib_wc *wc; while ((nr = ib_poll_cq(cq, RDS_IB_WC_MAX, wcs)) > 0) { for (i = 0; i < nr; i++) { wc = wcs + i; rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n", (unsigned long long)wc->wr_id, wc->status, wc->byte_len, be32_to_cpu(wc->ex.imm_data)); rds_ib_recv_cqe_handler(ic, wc, ack_state); } } } static void rds_ib_tasklet_fn_recv(unsigned long data) { struct rds_ib_connection *ic = (struct rds_ib_connection *)data; struct rds_connection *conn = ic->conn; struct rds_ib_device *rds_ibdev = ic->rds_ibdev; struct rds_ib_ack_state state; if (!rds_ibdev) rds_conn_drop(conn); rds_ib_stats_inc(s_ib_tasklet_call); /* if cq has been already reaped, ignore incoming cq event */ if (atomic_read(&ic->i_cq_quiesce)) return; memset(&state, 0, sizeof(state)); poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); poll_rcq(ic, ic->i_recv_cq, ic->i_recv_wc, &state); if (state.ack_next_valid) rds_ib_set_ack(ic, state.ack_next, state.ack_required); if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) { rds_send_drop_acked(conn, state.ack_recv, NULL); ic->i_ack_recv = state.ack_recv; } if (rds_conn_up(conn)) rds_ib_attempt_ack(ic); } static void rds_ib_qp_event_handler(struct ib_event *event, void *data) { struct rds_connection *conn = data; struct rds_ib_connection *ic = conn->c_transport_data; rdsdebug("conn %p ic %p event %u (%s)\n", conn, ic, event->event, ib_event_msg(event->event)); switch (event->event) { case IB_EVENT_COMM_EST: rdma_notify(ic->i_cm_id, IB_EVENT_COMM_EST); break; default: rdsdebug("Fatal QP Event %u (%s) - connection %pI6c->%pI6c, reconnecting\n", event->event, ib_event_msg(event->event), &conn->c_laddr, &conn->c_faddr); rds_conn_drop(conn); break; } } static void rds_ib_cq_comp_handler_send(struct ib_cq *cq, void *context) { struct rds_connection *conn = context; struct rds_ib_connection *ic = conn->c_transport_data; rdsdebug("conn %p cq %p\n", conn, cq); rds_ib_stats_inc(s_ib_evt_handler_call); tasklet_schedule(&ic->i_send_tasklet); } static inline int ibdev_get_unused_vector(struct rds_ib_device *rds_ibdev) { int min = rds_ibdev->vector_load[rds_ibdev->dev->num_comp_vectors - 1]; int index = rds_ibdev->dev->num_comp_vectors - 1; int i; for (i = rds_ibdev->dev->num_comp_vectors - 1; i >= 0; i--) { if (rds_ibdev->vector_load[i] < min) { index = i; min = rds_ibdev->vector_load[i]; } } rds_ibdev->vector_load[index]++; return index; } static inline void ibdev_put_vector(struct rds_ib_device *rds_ibdev, int index) { rds_ibdev->vector_load[index]--; } static void rds_dma_hdr_free(struct ib_device *dev, struct rds_header *hdr, dma_addr_t dma_addr, enum dma_data_direction dir) { ib_dma_unmap_single(dev, dma_addr, sizeof(*hdr), dir); kfree(hdr); } static struct rds_header *rds_dma_hdr_alloc(struct ib_device *dev, dma_addr_t *dma_addr, enum dma_data_direction dir) { struct rds_header *hdr; hdr = kzalloc_node(sizeof(*hdr), GFP_KERNEL, ibdev_to_node(dev)); if (!hdr) return NULL; *dma_addr = ib_dma_map_single(dev, hdr, sizeof(*hdr), DMA_BIDIRECTIONAL); if (ib_dma_mapping_error(dev, *dma_addr)) { kfree(hdr); return NULL; } return hdr; } /* Free the DMA memory used to store struct rds_header. * * @dev: the RDS IB device * @hdrs: pointer to the array storing DMA memory pointers * @dma_addrs: pointer to the array storing DMA addresses * @num_hdars: number of headers to free. */ static void rds_dma_hdrs_free(struct rds_ib_device *dev, struct rds_header **hdrs, dma_addr_t *dma_addrs, u32 num_hdrs, enum dma_data_direction dir) { u32 i; for (i = 0; i < num_hdrs; i++) rds_dma_hdr_free(dev->dev, hdrs[i], dma_addrs[i], dir); kvfree(hdrs); kvfree(dma_addrs); } /* Allocate DMA coherent memory to be used to store struct rds_header for * sending/receiving packets. The pointers to the DMA memory and the * associated DMA addresses are stored in two arrays. * * @dev: the RDS IB device * @dma_addrs: pointer to the array for storing DMA addresses * @num_hdrs: number of headers to allocate * * It returns the pointer to the array storing the DMA memory pointers. On * error, NULL pointer is returned. */ static struct rds_header **rds_dma_hdrs_alloc(struct rds_ib_device *dev, dma_addr_t **dma_addrs, u32 num_hdrs, enum dma_data_direction dir) { struct rds_header **hdrs; dma_addr_t *hdr_daddrs; u32 i; hdrs = kvmalloc_node(sizeof(*hdrs) * num_hdrs, GFP_KERNEL, ibdev_to_node(dev->dev)); if (!hdrs) return NULL; hdr_daddrs = kvmalloc_node(sizeof(*hdr_daddrs) * num_hdrs, GFP_KERNEL, ibdev_to_node(dev->dev)); if (!hdr_daddrs) { kvfree(hdrs); return NULL; } for (i = 0; i < num_hdrs; i++) { hdrs[i] = rds_dma_hdr_alloc(dev->dev, &hdr_daddrs[i], dir); if (!hdrs[i]) { rds_dma_hdrs_free(dev, hdrs, hdr_daddrs, i, dir); return NULL; } } *dma_addrs = hdr_daddrs; return hdrs; } /* * This needs to be very careful to not leave IS_ERR pointers around for * cleanup to trip over. */ static int rds_ib_setup_qp(struct rds_connection *conn) { struct rds_ib_connection *ic = conn->c_transport_data; struct ib_device *dev = ic->i_cm_id->device; struct ib_qp_init_attr attr; struct ib_cq_init_attr cq_attr = {}; struct rds_ib_device *rds_ibdev; unsigned long max_wrs; int ret, fr_queue_space; /* * It's normal to see a null device if an incoming connection races * with device removal, so we don't print a warning. */ rds_ibdev = rds_ib_get_client_data(dev); if (!rds_ibdev) return -EOPNOTSUPP; /* The fr_queue_space is currently set to 512, to add extra space on * completion queue and send queue. This extra space is used for FRWR * registration and invalidation work requests */ fr_queue_space = RDS_IB_DEFAULT_FR_WR; /* add the conn now so that connection establishment has the dev */ rds_ib_add_conn(rds_ibdev, conn); max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_send_wr + 1 ? rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_send_wr; if (ic->i_send_ring.w_nr != max_wrs) rds_ib_ring_resize(&ic->i_send_ring, max_wrs); max_wrs = rds_ibdev->max_wrs < rds_ib_sysctl_max_recv_wr + 1 ? rds_ibdev->max_wrs - 1 : rds_ib_sysctl_max_recv_wr; if (ic->i_recv_ring.w_nr != max_wrs) rds_ib_ring_resize(&ic->i_recv_ring, max_wrs); /* Protection domain and memory range */ ic->i_pd = rds_ibdev->pd; ic->i_scq_vector = ibdev_get_unused_vector(rds_ibdev); cq_attr.cqe = ic->i_send_ring.w_nr + fr_queue_space + 1; cq_attr.comp_vector = ic->i_scq_vector; ic->i_send_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_send, rds_ib_cq_event_handler, conn, &cq_attr); if (IS_ERR(ic->i_send_cq)) { ret = PTR_ERR(ic->i_send_cq); ic->i_send_cq = NULL; ibdev_put_vector(rds_ibdev, ic->i_scq_vector); rdsdebug("ib_create_cq send failed: %d\n", ret); goto rds_ibdev_out; } ic->i_rcq_vector = ibdev_get_unused_vector(rds_ibdev); cq_attr.cqe = ic->i_recv_ring.w_nr; cq_attr.comp_vector = ic->i_rcq_vector; ic->i_recv_cq = ib_create_cq(dev, rds_ib_cq_comp_handler_recv, rds_ib_cq_event_handler, conn, &cq_attr); if (IS_ERR(ic->i_recv_cq)) { ret = PTR_ERR(ic->i_recv_cq); ic->i_recv_cq = NULL; ibdev_put_vector(rds_ibdev, ic->i_rcq_vector); rdsdebug("ib_create_cq recv failed: %d\n", ret); goto send_cq_out; } ret = ib_req_notify_cq(ic->i_send_cq, IB_CQ_NEXT_COMP); if (ret) { rdsdebug("ib_req_notify_cq send failed: %d\n", ret); goto recv_cq_out; } ret = ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED); if (ret) { rdsdebug("ib_req_notify_cq recv failed: %d\n", ret); goto recv_cq_out; } /* XXX negotiate max send/recv with remote? */ memset(&attr, 0, sizeof(attr)); attr.event_handler = rds_ib_qp_event_handler; attr.qp_context = conn; /* + 1 to allow for the single ack message */ attr.cap.max_send_wr = ic->i_send_ring.w_nr + fr_queue_space + 1; attr.cap.max_recv_wr = ic->i_recv_ring.w_nr + 1; attr.cap.max_send_sge = rds_ibdev->max_sge; attr.cap.max_recv_sge = RDS_IB_RECV_SGE; attr.sq_sig_type = IB_SIGNAL_REQ_WR; attr.qp_type = IB_QPT_RC; attr.send_cq = ic->i_send_cq; attr.recv_cq = ic->i_recv_cq; /* * XXX this can fail if max_*_wr is too large? Are we supposed * to back off until we get a value that the hardware can support? */ ret = rdma_create_qp(ic->i_cm_id, ic->i_pd, &attr); if (ret) { rdsdebug("rdma_create_qp failed: %d\n", ret); goto recv_cq_out; } ic->i_send_hdrs = rds_dma_hdrs_alloc(rds_ibdev, &ic->i_send_hdrs_dma, ic->i_send_ring.w_nr, DMA_TO_DEVICE); if (!ic->i_send_hdrs) { ret = -ENOMEM; rdsdebug("DMA send hdrs alloc failed\n"); goto qp_out; } ic->i_recv_hdrs = rds_dma_hdrs_alloc(rds_ibdev, &ic->i_recv_hdrs_dma, ic->i_recv_ring.w_nr, DMA_FROM_DEVICE); if (!ic->i_recv_hdrs) { ret = -ENOMEM; rdsdebug("DMA recv hdrs alloc failed\n"); goto send_hdrs_dma_out; } ic->i_ack = rds_dma_hdr_alloc(rds_ibdev->dev, &ic->i_ack_dma, DMA_TO_DEVICE); if (!ic->i_ack) { ret = -ENOMEM; rdsdebug("DMA ack header alloc failed\n"); goto recv_hdrs_dma_out; } ic->i_sends = vzalloc_node(array_size(sizeof(struct rds_ib_send_work), ic->i_send_ring.w_nr), ibdev_to_node(dev)); if (!ic->i_sends) { ret = -ENOMEM; rdsdebug("send allocation failed\n"); goto ack_dma_out; } ic->i_recvs = vzalloc_node(array_size(sizeof(struct rds_ib_recv_work), ic->i_recv_ring.w_nr), ibdev_to_node(dev)); if (!ic->i_recvs) { ret = -ENOMEM; rdsdebug("recv allocation failed\n"); goto sends_out; } rds_ib_recv_init_ack(ic); rdsdebug("conn %p pd %p cq %p %p\n", conn, ic->i_pd, ic->i_send_cq, ic->i_recv_cq); goto out; sends_out: vfree(ic->i_sends); ack_dma_out: rds_dma_hdr_free(rds_ibdev->dev, ic->i_ack, ic->i_ack_dma, DMA_TO_DEVICE); ic->i_ack = NULL; recv_hdrs_dma_out: rds_dma_hdrs_free(rds_ibdev, ic->i_recv_hdrs, ic->i_recv_hdrs_dma, ic->i_recv_ring.w_nr, DMA_FROM_DEVICE); ic->i_recv_hdrs = NULL; ic->i_recv_hdrs_dma = NULL; send_hdrs_dma_out: rds_dma_hdrs_free(rds_ibdev, ic->i_send_hdrs, ic->i_send_hdrs_dma, ic->i_send_ring.w_nr, DMA_TO_DEVICE); ic->i_send_hdrs = NULL; ic->i_send_hdrs_dma = NULL; qp_out: rdma_destroy_qp(ic->i_cm_id); recv_cq_out: ib_destroy_cq(ic->i_recv_cq); ic->i_recv_cq = NULL; send_cq_out: ib_destroy_cq(ic->i_send_cq); ic->i_send_cq = NULL; rds_ibdev_out: rds_ib_remove_conn(rds_ibdev, conn); out: rds_ib_dev_put(rds_ibdev); return ret; } static u32 rds_ib_protocol_compatible(struct rdma_cm_event *event, bool isv6) { const union rds_ib_conn_priv *dp = event->param.conn.private_data; u8 data_len, major, minor; u32 version = 0; __be16 mask; u16 common; /* * rdma_cm private data is odd - when there is any private data in the * request, we will be given a pretty large buffer without telling us the * original size. The only way to tell the difference is by looking at * the contents, which are initialized to zero. * If the protocol version fields aren't set, this is a connection attempt * from an older version. This could be 3.0 or 2.0 - we can't tell. * We really should have changed this for OFED 1.3 :-( */ /* Be paranoid. RDS always has privdata */ if (!event->param.conn.private_data_len) { printk(KERN_NOTICE "RDS incoming connection has no private data, " "rejecting\n"); return 0; } if (isv6) { data_len = sizeof(struct rds6_ib_connect_private); major = dp->ricp_v6.dp_protocol_major; minor = dp->ricp_v6.dp_protocol_minor; mask = dp->ricp_v6.dp_protocol_minor_mask; } else { data_len = sizeof(struct rds_ib_connect_private); major = dp->ricp_v4.dp_protocol_major; minor = dp->ricp_v4.dp_protocol_minor; mask = dp->ricp_v4.dp_protocol_minor_mask; } /* Even if len is crap *now* I still want to check it. -ASG */ if (event->param.conn.private_data_len < data_len || major == 0) return RDS_PROTOCOL_4_0; common = be16_to_cpu(mask) & RDS_IB_SUPPORTED_PROTOCOLS; if (major == 4 && common) { version = RDS_PROTOCOL_4_0; while ((common >>= 1) != 0) version++; } else if (RDS_PROTOCOL_COMPAT_VERSION == RDS_PROTOCOL(major, minor)) { version = RDS_PROTOCOL_COMPAT_VERSION; } else { if (isv6) printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI6c using incompatible protocol version %u.%u\n", &dp->ricp_v6.dp_saddr, major, minor); else printk_ratelimited(KERN_NOTICE "RDS: Connection from %pI4 using incompatible protocol version %u.%u\n", &dp->ricp_v4.dp_saddr, major, minor); } return version; } #if IS_ENABLED(CONFIG_IPV6) /* Given an IPv6 address, find the net_device which hosts that address and * return its index. This is used by the rds_ib_cm_handle_connect() code to * find the interface index of where an incoming request comes from when * the request is using a link local address. * * Note one problem in this search. It is possible that two interfaces have * the same link local address. Unfortunately, this cannot be solved unless * the underlying layer gives us the interface which an incoming RDMA connect * request comes from. */ static u32 __rds_find_ifindex(struct net *net, const struct in6_addr *addr) { struct net_device *dev; int idx = 0; rcu_read_lock(); for_each_netdev_rcu(net, dev) { if (ipv6_chk_addr(net, addr, dev, 1)) { idx = dev->ifindex; break; } } rcu_read_unlock(); return idx; } #endif int rds_ib_cm_handle_connect(struct rdma_cm_id *cm_id, struct rdma_cm_event *event, bool isv6) { __be64 lguid = cm_id->route.path_rec->sgid.global.interface_id; __be64 fguid = cm_id->route.path_rec->dgid.global.interface_id; const struct rds_ib_conn_priv_cmn *dp_cmn; struct rds_connection *conn = NULL; struct rds_ib_connection *ic = NULL; struct rdma_conn_param conn_param; const union rds_ib_conn_priv *dp; union rds_ib_conn_priv dp_rep; struct in6_addr s_mapped_addr; struct in6_addr d_mapped_addr; const struct in6_addr *saddr6; const struct in6_addr *daddr6; int destroy = 1; u32 ifindex = 0; u32 version; int err = 1; /* Check whether the remote protocol version matches ours. */ version = rds_ib_protocol_compatible(event, isv6); if (!version) { err = RDS_RDMA_REJ_INCOMPAT; goto out; } dp = event->param.conn.private_data; if (isv6) { #if IS_ENABLED(CONFIG_IPV6) dp_cmn = &dp->ricp_v6.dp_cmn; saddr6 = &dp->ricp_v6.dp_saddr; daddr6 = &dp->ricp_v6.dp_daddr; /* If either address is link local, need to find the * interface index in order to create a proper RDS * connection. */ if (ipv6_addr_type(daddr6) & IPV6_ADDR_LINKLOCAL) { /* Using init_net for now .. */ ifindex = __rds_find_ifindex(&init_net, daddr6); /* No index found... Need to bail out. */ if (ifindex == 0) { err = -EOPNOTSUPP; goto out; } } else if (ipv6_addr_type(saddr6) & IPV6_ADDR_LINKLOCAL) { /* Use our address to find the correct index. */ ifindex = __rds_find_ifindex(&init_net, daddr6); /* No index found... Need to bail out. */ if (ifindex == 0) { err = -EOPNOTSUPP; goto out; } } #else err = -EOPNOTSUPP; goto out; #endif } else { dp_cmn = &dp->ricp_v4.dp_cmn; ipv6_addr_set_v4mapped(dp->ricp_v4.dp_saddr, &s_mapped_addr); ipv6_addr_set_v4mapped(dp->ricp_v4.dp_daddr, &d_mapped_addr); saddr6 = &s_mapped_addr; daddr6 = &d_mapped_addr; } rdsdebug("saddr %pI6c daddr %pI6c RDSv%u.%u lguid 0x%llx fguid 0x%llx, tos:%d\n", saddr6, daddr6, RDS_PROTOCOL_MAJOR(version), RDS_PROTOCOL_MINOR(version), (unsigned long long)be64_to_cpu(lguid), (unsigned long long)be64_to_cpu(fguid), dp_cmn->ricpc_dp_toss); /* RDS/IB is not currently netns aware, thus init_net */ conn = rds_conn_create(&init_net, daddr6, saddr6, &rds_ib_transport, dp_cmn->ricpc_dp_toss, GFP_KERNEL, ifindex); if (IS_ERR(conn)) { rdsdebug("rds_conn_create failed (%ld)\n", PTR_ERR(conn)); conn = NULL; goto out; } /* * The connection request may occur while the * previous connection exist, e.g. in case of failover. * But as connections may be initiated simultaneously * by both hosts, we have a random backoff mechanism - * see the comment above rds_queue_reconnect() */ mutex_lock(&conn->c_cm_lock); if (!rds_conn_transition(conn, RDS_CONN_DOWN, RDS_CONN_CONNECTING)) { if (rds_conn_state(conn) == RDS_CONN_UP) { rdsdebug("incoming connect while connecting\n"); rds_conn_drop(conn); rds_ib_stats_inc(s_ib_listen_closed_stale); } else if (rds_conn_state(conn) == RDS_CONN_CONNECTING) { /* Wait and see - our connect may still be succeeding */ rds_ib_stats_inc(s_ib_connect_raced); } goto out; } ic = conn->c_transport_data; rds_ib_set_protocol(conn, version); rds_ib_set_flow_control(conn, be32_to_cpu(dp_cmn->ricpc_credit)); /* If the peer gave us the last packet it saw, process this as if * we had received a regular ACK. */ if (dp_cmn->ricpc_ack_seq) rds_send_drop_acked(conn, be64_to_cpu(dp_cmn->ricpc_ack_seq), NULL); BUG_ON(cm_id->context); BUG_ON(ic->i_cm_id); ic->i_cm_id = cm_id; cm_id->context = conn; /* We got halfway through setting up the ib_connection, if we * fail now, we have to take the long route out of this mess. */ destroy = 0; err = rds_ib_setup_qp(conn); if (err) { rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", err); goto out; } rds_ib_cm_fill_conn_param(conn, &conn_param, &dp_rep, version, event->param.conn.responder_resources, event->param.conn.initiator_depth, isv6); rdma_set_min_rnr_timer(cm_id, IB_RNR_TIMER_000_32); /* rdma_accept() calls rdma_reject() internally if it fails */ if (rdma_accept(cm_id, &conn_param)) rds_ib_conn_error(conn, "rdma_accept failed\n"); out: if (conn) mutex_unlock(&conn->c_cm_lock); if (err) rdma_reject(cm_id, &err, sizeof(int), IB_CM_REJ_CONSUMER_DEFINED); return destroy; } int rds_ib_cm_initiate_connect(struct rdma_cm_id *cm_id, bool isv6) { struct rds_connection *conn = cm_id->context; struct rds_ib_connection *ic = conn->c_transport_data; struct rdma_conn_param conn_param; union rds_ib_conn_priv dp; int ret; /* If the peer doesn't do protocol negotiation, we must * default to RDSv3.0 */ rds_ib_set_protocol(conn, RDS_PROTOCOL_4_1); ic->i_flowctl = rds_ib_sysctl_flow_control; /* advertise flow control */ ret = rds_ib_setup_qp(conn); if (ret) { rds_ib_conn_error(conn, "rds_ib_setup_qp failed (%d)\n", ret); goto out; } rds_ib_cm_fill_conn_param(conn, &conn_param, &dp, conn->c_proposed_version, UINT_MAX, UINT_MAX, isv6); ret = rdma_connect_locked(cm_id, &conn_param); if (ret) rds_ib_conn_error(conn, "rdma_connect_locked failed (%d)\n", ret); out: /* Beware - returning non-zero tells the rdma_cm to destroy * the cm_id. We should certainly not do it as long as we still * "own" the cm_id. */ if (ret) { if (ic->i_cm_id == cm_id) ret = 0; } ic->i_active_side = true; return ret; } int rds_ib_conn_path_connect(struct rds_conn_path *cp) { struct rds_connection *conn = cp->cp_conn; struct sockaddr_storage src, dest; rdma_cm_event_handler handler; struct rds_ib_connection *ic; int ret; ic = conn->c_transport_data; /* XXX I wonder what affect the port space has */ /* delegate cm event handler to rdma_transport */ #if IS_ENABLED(CONFIG_IPV6) if (conn->c_isv6) handler = rds6_rdma_cm_event_handler; else #endif handler = rds_rdma_cm_event_handler; ic->i_cm_id = rdma_create_id(&init_net, handler, conn, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(ic->i_cm_id)) { ret = PTR_ERR(ic->i_cm_id); ic->i_cm_id = NULL; rdsdebug("rdma_create_id() failed: %d\n", ret); goto out; } rdsdebug("created cm id %p for conn %p\n", ic->i_cm_id, conn); if (ipv6_addr_v4mapped(&conn->c_faddr)) { struct sockaddr_in *sin; sin = (struct sockaddr_in *)&src; sin->sin_family = AF_INET; sin->sin_addr.s_addr = conn->c_laddr.s6_addr32[3]; sin->sin_port = 0; sin = (struct sockaddr_in *)&dest; sin->sin_family = AF_INET; sin->sin_addr.s_addr = conn->c_faddr.s6_addr32[3]; sin->sin_port = htons(RDS_PORT); } else { struct sockaddr_in6 *sin6; sin6 = (struct sockaddr_in6 *)&src; sin6->sin6_family = AF_INET6; sin6->sin6_addr = conn->c_laddr; sin6->sin6_port = 0; sin6->sin6_scope_id = conn->c_dev_if; sin6 = (struct sockaddr_in6 *)&dest; sin6->sin6_family = AF_INET6; sin6->sin6_addr = conn->c_faddr; sin6->sin6_port = htons(RDS_CM_PORT); sin6->sin6_scope_id = conn->c_dev_if; } ret = rdma_resolve_addr(ic->i_cm_id, (struct sockaddr *)&src, (struct sockaddr *)&dest, RDS_RDMA_RESOLVE_TIMEOUT_MS); if (ret) { rdsdebug("addr resolve failed for cm id %p: %d\n", ic->i_cm_id, ret); rdma_destroy_id(ic->i_cm_id); ic->i_cm_id = NULL; } out: return ret; } /* * This is so careful about only cleaning up resources that were built up * so that it can be called at any point during startup. In fact it * can be called multiple times for a given connection. */ void rds_ib_conn_path_shutdown(struct rds_conn_path *cp) { struct rds_connection *conn = cp->cp_conn; struct rds_ib_connection *ic = conn->c_transport_data; int err = 0; rdsdebug("cm %p pd %p cq %p %p qp %p\n", ic->i_cm_id, ic->i_pd, ic->i_send_cq, ic->i_recv_cq, ic->i_cm_id ? ic->i_cm_id->qp : NULL); if (ic->i_cm_id) { rdsdebug("disconnecting cm %p\n", ic->i_cm_id); err = rdma_disconnect(ic->i_cm_id); if (err) { /* Actually this may happen quite frequently, when * an outgoing connect raced with an incoming connect. */ rdsdebug("failed to disconnect, cm: %p err %d\n", ic->i_cm_id, err); } /* kick off "flush_worker" for all pools in order to reap * all FRMR registrations that are still marked "FRMR_IS_INUSE" */ rds_ib_flush_mrs(); /* * We want to wait for tx and rx completion to finish * before we tear down the connection, but we have to be * careful not to get stuck waiting on a send ring that * only has unsignaled sends in it. We've shutdown new * sends before getting here so by waiting for signaled * sends to complete we're ensured that there will be no * more tx processing. */ wait_event(rds_ib_ring_empty_wait, rds_ib_ring_empty(&ic->i_recv_ring) && (atomic_read(&ic->i_signaled_sends) == 0) && (atomic_read(&ic->i_fastreg_inuse_count) == 0) && (atomic_read(&ic->i_fastreg_wrs) == RDS_IB_DEFAULT_FR_WR)); tasklet_kill(&ic->i_send_tasklet); tasklet_kill(&ic->i_recv_tasklet); atomic_set(&ic->i_cq_quiesce, 1); /* first destroy the ib state that generates callbacks */ if (ic->i_cm_id->qp) rdma_destroy_qp(ic->i_cm_id); if (ic->i_send_cq) { if (ic->rds_ibdev) ibdev_put_vector(ic->rds_ibdev, ic->i_scq_vector); ib_destroy_cq(ic->i_send_cq); } if (ic->i_recv_cq) { if (ic->rds_ibdev) ibdev_put_vector(ic->rds_ibdev, ic->i_rcq_vector); ib_destroy_cq(ic->i_recv_cq); } if (ic->rds_ibdev) { /* then free the resources that ib callbacks use */ if (ic->i_send_hdrs) { rds_dma_hdrs_free(ic->rds_ibdev, ic->i_send_hdrs, ic->i_send_hdrs_dma, ic->i_send_ring.w_nr, DMA_TO_DEVICE); ic->i_send_hdrs = NULL; ic->i_send_hdrs_dma = NULL; } if (ic->i_recv_hdrs) { rds_dma_hdrs_free(ic->rds_ibdev, ic->i_recv_hdrs, ic->i_recv_hdrs_dma, ic->i_recv_ring.w_nr, DMA_FROM_DEVICE); ic->i_recv_hdrs = NULL; ic->i_recv_hdrs_dma = NULL; } if (ic->i_ack) { rds_dma_hdr_free(ic->rds_ibdev->dev, ic->i_ack, ic->i_ack_dma, DMA_TO_DEVICE); ic->i_ack = NULL; } } else { WARN_ON(ic->i_send_hdrs); WARN_ON(ic->i_send_hdrs_dma); WARN_ON(ic->i_recv_hdrs); WARN_ON(ic->i_recv_hdrs_dma); WARN_ON(ic->i_ack); } if (ic->i_sends) rds_ib_send_clear_ring(ic); if (ic->i_recvs) rds_ib_recv_clear_ring(ic); rdma_destroy_id(ic->i_cm_id); /* * Move connection back to the nodev list. */ if (ic->rds_ibdev) rds_ib_remove_conn(ic->rds_ibdev, conn); ic->i_cm_id = NULL; ic->i_pd = NULL; ic->i_send_cq = NULL; ic->i_recv_cq = NULL; } BUG_ON(ic->rds_ibdev); /* Clear pending transmit */ if (ic->i_data_op) { struct rds_message *rm; rm = container_of(ic->i_data_op, struct rds_message, data); rds_message_put(rm); ic->i_data_op = NULL; } /* Clear the ACK state */ clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags); #ifdef KERNEL_HAS_ATOMIC64 atomic64_set(&ic->i_ack_next, 0); #else ic->i_ack_next = 0; #endif ic->i_ack_recv = 0; /* Clear flow control state */ ic->i_flowctl = 0; atomic_set(&ic->i_credits, 0); /* Re-init rings, but retain sizes. */ rds_ib_ring_init(&ic->i_send_ring, ic->i_send_ring.w_nr); rds_ib_ring_init(&ic->i_recv_ring, ic->i_recv_ring.w_nr); if (ic->i_ibinc) { rds_inc_put(&ic->i_ibinc->ii_inc); ic->i_ibinc = NULL; } vfree(ic->i_sends); ic->i_sends = NULL; vfree(ic->i_recvs); ic->i_recvs = NULL; ic->i_active_side = false; } int rds_ib_conn_alloc(struct rds_connection *conn, gfp_t gfp) { struct rds_ib_connection *ic; unsigned long flags; int ret; /* XXX too lazy? */ ic = kzalloc(sizeof(struct rds_ib_connection), gfp); if (!ic) return -ENOMEM; ret = rds_ib_recv_alloc_caches(ic, gfp); if (ret) { kfree(ic); return ret; } INIT_LIST_HEAD(&ic->ib_node); tasklet_init(&ic->i_send_tasklet, rds_ib_tasklet_fn_send, (unsigned long)ic); tasklet_init(&ic->i_recv_tasklet, rds_ib_tasklet_fn_recv, (unsigned long)ic); mutex_init(&ic->i_recv_mutex); #ifndef KERNEL_HAS_ATOMIC64 spin_lock_init(&ic->i_ack_lock); #endif atomic_set(&ic->i_signaled_sends, 0); atomic_set(&ic->i_fastreg_wrs, RDS_IB_DEFAULT_FR_WR); /* * rds_ib_conn_shutdown() waits for these to be emptied so they * must be initialized before it can be called. */ rds_ib_ring_init(&ic->i_send_ring, 0); rds_ib_ring_init(&ic->i_recv_ring, 0); ic->conn = conn; conn->c_transport_data = ic; spin_lock_irqsave(&ib_nodev_conns_lock, flags); list_add_tail(&ic->ib_node, &ib_nodev_conns); spin_unlock_irqrestore(&ib_nodev_conns_lock, flags); rdsdebug("conn %p conn ic %p\n", conn, conn->c_transport_data); return 0; } /* * Free a connection. Connection must be shut down and not set for reconnect. */ void rds_ib_conn_free(void *arg) { struct rds_ib_connection *ic = arg; spinlock_t *lock_ptr; rdsdebug("ic %p\n", ic); /* * Conn is either on a dev's list or on the nodev list. * A race with shutdown() or connect() would cause problems * (since rds_ibdev would change) but that should never happen. */ lock_ptr = ic->rds_ibdev ? &ic->rds_ibdev->spinlock : &ib_nodev_conns_lock; spin_lock_irq(lock_ptr); list_del(&ic->ib_node); spin_unlock_irq(lock_ptr); rds_ib_recv_free_caches(ic); kfree(ic); } /* * An error occurred on the connection */ void __rds_ib_conn_error(struct rds_connection *conn, const char *fmt, ...) { va_list ap; rds_conn_drop(conn); va_start(ap, fmt); vprintk(fmt, ap); va_end(ap); }