/* * Copyright (c) 2007-2013 Nicira, Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of version 2 of the GNU General Public * License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA * 02110-1301, USA */ #include "flow.h" #include "datapath.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static struct kmem_cache *flow_cache; static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask, struct sw_flow_key_range *range, u8 val); static void update_range__(struct sw_flow_match *match, size_t offset, size_t size, bool is_mask) { struct sw_flow_key_range *range = NULL; size_t start = offset; size_t end = offset + size; if (!is_mask) range = &match->range; else if (match->mask) range = &match->mask->range; if (!range) return; if (range->start == range->end) { range->start = start; range->end = end; return; } if (range->start > start) range->start = start; if (range->end < end) range->end = end; } #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ do { \ update_range__(match, offsetof(struct sw_flow_key, field), \ sizeof((match)->key->field), is_mask); \ if (is_mask) { \ if ((match)->mask) \ (match)->mask->key.field = value; \ } else { \ (match)->key->field = value; \ } \ } while (0) #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ do { \ update_range__(match, offsetof(struct sw_flow_key, field), \ len, is_mask); \ if (is_mask) { \ if ((match)->mask) \ memcpy(&(match)->mask->key.field, value_p, len);\ } else { \ memcpy(&(match)->key->field, value_p, len); \ } \ } while (0) void ovs_match_init(struct sw_flow_match *match, struct sw_flow_key *key, struct sw_flow_mask *mask) { memset(match, 0, sizeof(*match)); match->key = key; match->mask = mask; memset(key, 0, sizeof(*key)); if (mask) { memset(&mask->key, 0, sizeof(mask->key)); mask->range.start = mask->range.end = 0; } } static bool ovs_match_validate(const struct sw_flow_match *match, u64 key_attrs, u64 mask_attrs) { u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET; u64 mask_allowed = key_attrs; /* At most allow all key attributes */ /* The following mask attributes allowed only if they * pass the validation tests. */ mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) | (1 << OVS_KEY_ATTR_IPV6) | (1 << OVS_KEY_ATTR_TCP) | (1 << OVS_KEY_ATTR_UDP) | (1 << OVS_KEY_ATTR_ICMP) | (1 << OVS_KEY_ATTR_ICMPV6) | (1 << OVS_KEY_ATTR_ARP) | (1 << OVS_KEY_ATTR_ND)); /* Always allowed mask fields. */ mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) | (1 << OVS_KEY_ATTR_IN_PORT) | (1 << OVS_KEY_ATTR_ETHERTYPE)); /* Check key attributes. */ if (match->key->eth.type == htons(ETH_P_ARP) || match->key->eth.type == htons(ETH_P_RARP)) { key_expected |= 1 << OVS_KEY_ATTR_ARP; if (match->mask && (match->mask->key.eth.type == htons(0xffff))) mask_allowed |= 1 << OVS_KEY_ATTR_ARP; } if (match->key->eth.type == htons(ETH_P_IP)) { key_expected |= 1 << OVS_KEY_ATTR_IPV4; if (match->mask && (match->mask->key.eth.type == htons(0xffff))) mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { if (match->key->ip.proto == IPPROTO_UDP) { key_expected |= 1 << OVS_KEY_ATTR_UDP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_UDP; } if (match->key->ip.proto == IPPROTO_TCP) { key_expected |= 1 << OVS_KEY_ATTR_TCP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_TCP; } if (match->key->ip.proto == IPPROTO_ICMP) { key_expected |= 1 << OVS_KEY_ATTR_ICMP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; } } } if (match->key->eth.type == htons(ETH_P_IPV6)) { key_expected |= 1 << OVS_KEY_ATTR_IPV6; if (match->mask && (match->mask->key.eth.type == htons(0xffff))) mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { if (match->key->ip.proto == IPPROTO_UDP) { key_expected |= 1 << OVS_KEY_ATTR_UDP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_UDP; } if (match->key->ip.proto == IPPROTO_TCP) { key_expected |= 1 << OVS_KEY_ATTR_TCP; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_TCP; } if (match->key->ip.proto == IPPROTO_ICMPV6) { key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; if (match->mask && (match->mask->key.ip.proto == 0xff)) mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; if (match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_SOLICITATION) || match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { key_expected |= 1 << OVS_KEY_ATTR_ND; if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff))) mask_allowed |= 1 << OVS_KEY_ATTR_ND; } } } } if ((key_attrs & key_expected) != key_expected) { /* Key attributes check failed. */ OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n", key_attrs, key_expected); return false; } if ((mask_attrs & mask_allowed) != mask_attrs) { /* Mask attributes check failed. */ OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n", mask_attrs, mask_allowed); return false; } return true; } static int check_header(struct sk_buff *skb, int len) { if (unlikely(skb->len < len)) return -EINVAL; if (unlikely(!pskb_may_pull(skb, len))) return -ENOMEM; return 0; } static bool arphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_network_offset(skb) + sizeof(struct arp_eth_header)); } static int check_iphdr(struct sk_buff *skb) { unsigned int nh_ofs = skb_network_offset(skb); unsigned int ip_len; int err; err = check_header(skb, nh_ofs + sizeof(struct iphdr)); if (unlikely(err)) return err; ip_len = ip_hdrlen(skb); if (unlikely(ip_len < sizeof(struct iphdr) || skb->len < nh_ofs + ip_len)) return -EINVAL; skb_set_transport_header(skb, nh_ofs + ip_len); return 0; } static bool tcphdr_ok(struct sk_buff *skb) { int th_ofs = skb_transport_offset(skb); int tcp_len; if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) return false; tcp_len = tcp_hdrlen(skb); if (unlikely(tcp_len < sizeof(struct tcphdr) || skb->len < th_ofs + tcp_len)) return false; return true; } static bool udphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)); } static bool icmphdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct icmphdr)); } u64 ovs_flow_used_time(unsigned long flow_jiffies) { struct timespec cur_ts; u64 cur_ms, idle_ms; ktime_get_ts(&cur_ts); idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + cur_ts.tv_nsec / NSEC_PER_MSEC; return cur_ms - idle_ms; } static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) { unsigned int nh_ofs = skb_network_offset(skb); unsigned int nh_len; int payload_ofs; struct ipv6hdr *nh; uint8_t nexthdr; __be16 frag_off; int err; err = check_header(skb, nh_ofs + sizeof(*nh)); if (unlikely(err)) return err; nh = ipv6_hdr(skb); nexthdr = nh->nexthdr; payload_ofs = (u8 *)(nh + 1) - skb->data; key->ip.proto = NEXTHDR_NONE; key->ip.tos = ipv6_get_dsfield(nh); key->ip.ttl = nh->hop_limit; key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); key->ipv6.addr.src = nh->saddr; key->ipv6.addr.dst = nh->daddr; payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); if (unlikely(payload_ofs < 0)) return -EINVAL; if (frag_off) { if (frag_off & htons(~0x7)) key->ip.frag = OVS_FRAG_TYPE_LATER; else key->ip.frag = OVS_FRAG_TYPE_FIRST; } nh_len = payload_ofs - nh_ofs; skb_set_transport_header(skb, nh_ofs + nh_len); key->ip.proto = nexthdr; return nh_len; } static bool icmp6hdr_ok(struct sk_buff *skb) { return pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct icmp6hdr)); } void ovs_flow_key_mask(struct sw_flow_key *dst, const struct sw_flow_key *src, const struct sw_flow_mask *mask) { u8 *m = (u8 *)&mask->key + mask->range.start; u8 *s = (u8 *)src + mask->range.start; u8 *d = (u8 *)dst + mask->range.start; int i; memset(dst, 0, sizeof(*dst)); for (i = 0; i < ovs_sw_flow_mask_size_roundup(mask); i++) { *d = *s & *m; d++, s++, m++; } } #define TCP_FLAGS_OFFSET 13 #define TCP_FLAG_MASK 0x3f void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) { u8 tcp_flags = 0; if ((flow->key.eth.type == htons(ETH_P_IP) || flow->key.eth.type == htons(ETH_P_IPV6)) && flow->key.ip.proto == IPPROTO_TCP && likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) { u8 *tcp = (u8 *)tcp_hdr(skb); tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; } spin_lock(&flow->lock); flow->used = jiffies; flow->packet_count++; flow->byte_count += skb->len; flow->tcp_flags |= tcp_flags; spin_unlock(&flow->lock); } struct sw_flow_actions *ovs_flow_actions_alloc(int size) { struct sw_flow_actions *sfa; if (size > MAX_ACTIONS_BUFSIZE) return ERR_PTR(-EINVAL); sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); if (!sfa) return ERR_PTR(-ENOMEM); sfa->actions_len = 0; return sfa; } struct sw_flow *ovs_flow_alloc(void) { struct sw_flow *flow; flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); if (!flow) return ERR_PTR(-ENOMEM); spin_lock_init(&flow->lock); flow->sf_acts = NULL; flow->mask = NULL; return flow; } static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) { hash = jhash_1word(hash, table->hash_seed); return flex_array_get(table->buckets, (hash & (table->n_buckets - 1))); } static struct flex_array *alloc_buckets(unsigned int n_buckets) { struct flex_array *buckets; int i, err; buckets = flex_array_alloc(sizeof(struct hlist_head), n_buckets, GFP_KERNEL); if (!buckets) return NULL; err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); if (err) { flex_array_free(buckets); return NULL; } for (i = 0; i < n_buckets; i++) INIT_HLIST_HEAD((struct hlist_head *) flex_array_get(buckets, i)); return buckets; } static void free_buckets(struct flex_array *buckets) { flex_array_free(buckets); } static struct flow_table *__flow_tbl_alloc(int new_size) { struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); if (!table) return NULL; table->buckets = alloc_buckets(new_size); if (!table->buckets) { kfree(table); return NULL; } table->n_buckets = new_size; table->count = 0; table->node_ver = 0; table->keep_flows = false; get_random_bytes(&table->hash_seed, sizeof(u32)); table->mask_list = NULL; return table; } static void __flow_tbl_destroy(struct flow_table *table) { int i; if (table->keep_flows) goto skip_flows; for (i = 0; i < table->n_buckets; i++) { struct sw_flow *flow; struct hlist_head *head = flex_array_get(table->buckets, i); struct hlist_node *n; int ver = table->node_ver; hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) { hlist_del(&flow->hash_node[ver]); ovs_flow_free(flow, false); } } BUG_ON(!list_empty(table->mask_list)); kfree(table->mask_list); skip_flows: free_buckets(table->buckets); kfree(table); } struct flow_table *ovs_flow_tbl_alloc(int new_size) { struct flow_table *table = __flow_tbl_alloc(new_size); if (!table) return NULL; table->mask_list = kmalloc(sizeof(struct list_head), GFP_KERNEL); if (!table->mask_list) { table->keep_flows = true; __flow_tbl_destroy(table); return NULL; } INIT_LIST_HEAD(table->mask_list); return table; } static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) { struct flow_table *table = container_of(rcu, struct flow_table, rcu); __flow_tbl_destroy(table); } void ovs_flow_tbl_destroy(struct flow_table *table, bool deferred) { if (!table) return; if (deferred) call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); else __flow_tbl_destroy(table); } struct sw_flow *ovs_flow_dump_next(struct flow_table *table, u32 *bucket, u32 *last) { struct sw_flow *flow; struct hlist_head *head; int ver; int i; ver = table->node_ver; while (*bucket < table->n_buckets) { i = 0; head = flex_array_get(table->buckets, *bucket); hlist_for_each_entry_rcu(flow, head, hash_node[ver]) { if (i < *last) { i++; continue; } *last = i + 1; return flow; } (*bucket)++; *last = 0; } return NULL; } static void __tbl_insert(struct flow_table *table, struct sw_flow *flow) { struct hlist_head *head; head = find_bucket(table, flow->hash); hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); table->count++; } static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) { int old_ver; int i; old_ver = old->node_ver; new->node_ver = !old_ver; /* Insert in new table. */ for (i = 0; i < old->n_buckets; i++) { struct sw_flow *flow; struct hlist_head *head; head = flex_array_get(old->buckets, i); hlist_for_each_entry(flow, head, hash_node[old_ver]) __tbl_insert(new, flow); } new->mask_list = old->mask_list; old->keep_flows = true; } static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) { struct flow_table *new_table; new_table = __flow_tbl_alloc(n_buckets); if (!new_table) return ERR_PTR(-ENOMEM); flow_table_copy_flows(table, new_table); return new_table; } struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) { return __flow_tbl_rehash(table, table->n_buckets); } struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) { return __flow_tbl_rehash(table, table->n_buckets * 2); } static void __flow_free(struct sw_flow *flow) { kfree((struct sf_flow_acts __force *)flow->sf_acts); kmem_cache_free(flow_cache, flow); } static void rcu_free_flow_callback(struct rcu_head *rcu) { struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); __flow_free(flow); } void ovs_flow_free(struct sw_flow *flow, bool deferred) { if (!flow) return; ovs_sw_flow_mask_del_ref(flow->mask, deferred); if (deferred) call_rcu(&flow->rcu, rcu_free_flow_callback); else __flow_free(flow); } /* Schedules 'sf_acts' to be freed after the next RCU grace period. * The caller must hold rcu_read_lock for this to be sensible. */ void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) { kfree_rcu(sf_acts, rcu); } static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) { struct qtag_prefix { __be16 eth_type; /* ETH_P_8021Q */ __be16 tci; }; struct qtag_prefix *qp; if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) return 0; if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + sizeof(__be16)))) return -ENOMEM; qp = (struct qtag_prefix *) skb->data; key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); __skb_pull(skb, sizeof(struct qtag_prefix)); return 0; } static __be16 parse_ethertype(struct sk_buff *skb) { struct llc_snap_hdr { u8 dsap; /* Always 0xAA */ u8 ssap; /* Always 0xAA */ u8 ctrl; u8 oui[3]; __be16 ethertype; }; struct llc_snap_hdr *llc; __be16 proto; proto = *(__be16 *) skb->data; __skb_pull(skb, sizeof(__be16)); if (ntohs(proto) >= ETH_P_802_3_MIN) return proto; if (skb->len < sizeof(struct llc_snap_hdr)) return htons(ETH_P_802_2); if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) return htons(0); llc = (struct llc_snap_hdr *) skb->data; if (llc->dsap != LLC_SAP_SNAP || llc->ssap != LLC_SAP_SNAP || (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) return htons(ETH_P_802_2); __skb_pull(skb, sizeof(struct llc_snap_hdr)); if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN) return llc->ethertype; return htons(ETH_P_802_2); } static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, int nh_len) { struct icmp6hdr *icmp = icmp6_hdr(skb); /* The ICMPv6 type and code fields use the 16-bit transport port * fields, so we need to store them in 16-bit network byte order. */ key->ipv6.tp.src = htons(icmp->icmp6_type); key->ipv6.tp.dst = htons(icmp->icmp6_code); if (icmp->icmp6_code == 0 && (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { int icmp_len = skb->len - skb_transport_offset(skb); struct nd_msg *nd; int offset; /* In order to process neighbor discovery options, we need the * entire packet. */ if (unlikely(icmp_len < sizeof(*nd))) return 0; if (unlikely(skb_linearize(skb))) return -ENOMEM; nd = (struct nd_msg *)skb_transport_header(skb); key->ipv6.nd.target = nd->target; icmp_len -= sizeof(*nd); offset = 0; while (icmp_len >= 8) { struct nd_opt_hdr *nd_opt = (struct nd_opt_hdr *)(nd->opt + offset); int opt_len = nd_opt->nd_opt_len * 8; if (unlikely(!opt_len || opt_len > icmp_len)) return 0; /* Store the link layer address if the appropriate * option is provided. It is considered an error if * the same link layer option is specified twice. */ if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR && opt_len == 8) { if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) goto invalid; memcpy(key->ipv6.nd.sll, &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); } else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR && opt_len == 8) { if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) goto invalid; memcpy(key->ipv6.nd.tll, &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); } icmp_len -= opt_len; offset += opt_len; } } return 0; invalid: memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); return 0; } /** * ovs_flow_extract - extracts a flow key from an Ethernet frame. * @skb: sk_buff that contains the frame, with skb->data pointing to the * Ethernet header * @in_port: port number on which @skb was received. * @key: output flow key * * The caller must ensure that skb->len >= ETH_HLEN. * * Returns 0 if successful, otherwise a negative errno value. * * Initializes @skb header pointers as follows: * * - skb->mac_header: the Ethernet header. * * - skb->network_header: just past the Ethernet header, or just past the * VLAN header, to the first byte of the Ethernet payload. * * - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 * on output, then just past the IP header, if one is present and * of a correct length, otherwise the same as skb->network_header. * For other key->eth.type values it is left untouched. */ int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key) { int error; struct ethhdr *eth; memset(key, 0, sizeof(*key)); key->phy.priority = skb->priority; if (OVS_CB(skb)->tun_key) memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key)); key->phy.in_port = in_port; key->phy.skb_mark = skb->mark; skb_reset_mac_header(skb); /* Link layer. We are guaranteed to have at least the 14 byte Ethernet * header in the linear data area. */ eth = eth_hdr(skb); memcpy(key->eth.src, eth->h_source, ETH_ALEN); memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); __skb_pull(skb, 2 * ETH_ALEN); /* We are going to push all headers that we pull, so no need to * update skb->csum here. */ if (vlan_tx_tag_present(skb)) key->eth.tci = htons(skb->vlan_tci); else if (eth->h_proto == htons(ETH_P_8021Q)) if (unlikely(parse_vlan(skb, key))) return -ENOMEM; key->eth.type = parse_ethertype(skb); if (unlikely(key->eth.type == htons(0))) return -ENOMEM; skb_reset_network_header(skb); __skb_push(skb, skb->data - skb_mac_header(skb)); /* Network layer. */ if (key->eth.type == htons(ETH_P_IP)) { struct iphdr *nh; __be16 offset; error = check_iphdr(skb); if (unlikely(error)) { if (error == -EINVAL) { skb->transport_header = skb->network_header; error = 0; } return error; } nh = ip_hdr(skb); key->ipv4.addr.src = nh->saddr; key->ipv4.addr.dst = nh->daddr; key->ip.proto = nh->protocol; key->ip.tos = nh->tos; key->ip.ttl = nh->ttl; offset = nh->frag_off & htons(IP_OFFSET); if (offset) { key->ip.frag = OVS_FRAG_TYPE_LATER; return 0; } if (nh->frag_off & htons(IP_MF) || skb_shinfo(skb)->gso_type & SKB_GSO_UDP) key->ip.frag = OVS_FRAG_TYPE_FIRST; /* Transport layer. */ if (key->ip.proto == IPPROTO_TCP) { if (tcphdr_ok(skb)) { struct tcphdr *tcp = tcp_hdr(skb); key->ipv4.tp.src = tcp->source; key->ipv4.tp.dst = tcp->dest; } } else if (key->ip.proto == IPPROTO_UDP) { if (udphdr_ok(skb)) { struct udphdr *udp = udp_hdr(skb); key->ipv4.tp.src = udp->source; key->ipv4.tp.dst = udp->dest; } } else if (key->ip.proto == IPPROTO_ICMP) { if (icmphdr_ok(skb)) { struct icmphdr *icmp = icmp_hdr(skb); /* The ICMP type and code fields use the 16-bit * transport port fields, so we need to store * them in 16-bit network byte order. */ key->ipv4.tp.src = htons(icmp->type); key->ipv4.tp.dst = htons(icmp->code); } } } else if ((key->eth.type == htons(ETH_P_ARP) || key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) { struct arp_eth_header *arp; arp = (struct arp_eth_header *)skb_network_header(skb); if (arp->ar_hrd == htons(ARPHRD_ETHER) && arp->ar_pro == htons(ETH_P_IP) && arp->ar_hln == ETH_ALEN && arp->ar_pln == 4) { /* We only match on the lower 8 bits of the opcode. */ if (ntohs(arp->ar_op) <= 0xff) key->ip.proto = ntohs(arp->ar_op); memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); } } else if (key->eth.type == htons(ETH_P_IPV6)) { int nh_len; /* IPv6 Header + Extensions */ nh_len = parse_ipv6hdr(skb, key); if (unlikely(nh_len < 0)) { if (nh_len == -EINVAL) { skb->transport_header = skb->network_header; error = 0; } else { error = nh_len; } return error; } if (key->ip.frag == OVS_FRAG_TYPE_LATER) return 0; if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) key->ip.frag = OVS_FRAG_TYPE_FIRST; /* Transport layer. */ if (key->ip.proto == NEXTHDR_TCP) { if (tcphdr_ok(skb)) { struct tcphdr *tcp = tcp_hdr(skb); key->ipv6.tp.src = tcp->source; key->ipv6.tp.dst = tcp->dest; } } else if (key->ip.proto == NEXTHDR_UDP) { if (udphdr_ok(skb)) { struct udphdr *udp = udp_hdr(skb); key->ipv6.tp.src = udp->source; key->ipv6.tp.dst = udp->dest; } } else if (key->ip.proto == NEXTHDR_ICMP) { if (icmp6hdr_ok(skb)) { error = parse_icmpv6(skb, key, nh_len); if (error) return error; } } } return 0; } static u32 ovs_flow_hash(const struct sw_flow_key *key, int key_start, int key_len) { return jhash2((u32 *)((u8 *)key + key_start), DIV_ROUND_UP(key_len - key_start, sizeof(u32)), 0); } static int flow_key_start(const struct sw_flow_key *key) { if (key->tun_key.ipv4_dst) return 0; else return offsetof(struct sw_flow_key, phy); } static bool __cmp_key(const struct sw_flow_key *key1, const struct sw_flow_key *key2, int key_start, int key_len) { return !memcmp((u8 *)key1 + key_start, (u8 *)key2 + key_start, (key_len - key_start)); } static bool __flow_cmp_key(const struct sw_flow *flow, const struct sw_flow_key *key, int key_start, int key_len) { return __cmp_key(&flow->key, key, key_start, key_len); } static bool __flow_cmp_unmasked_key(const struct sw_flow *flow, const struct sw_flow_key *key, int key_start, int key_len) { return __cmp_key(&flow->unmasked_key, key, key_start, key_len); } bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow, const struct sw_flow_key *key, int key_len) { int key_start; key_start = flow_key_start(key); return __flow_cmp_unmasked_key(flow, key, key_start, key_len); } struct sw_flow *ovs_flow_lookup_unmasked_key(struct flow_table *table, struct sw_flow_match *match) { struct sw_flow_key *unmasked = match->key; int key_len = match->range.end; struct sw_flow *flow; flow = ovs_flow_lookup(table, unmasked); if (flow && (!ovs_flow_cmp_unmasked_key(flow, unmasked, key_len))) flow = NULL; return flow; } static struct sw_flow *ovs_masked_flow_lookup(struct flow_table *table, const struct sw_flow_key *flow_key, struct sw_flow_mask *mask) { struct sw_flow *flow; struct hlist_head *head; int key_start = mask->range.start; int key_len = mask->range.end; u32 hash; struct sw_flow_key masked_key; ovs_flow_key_mask(&masked_key, flow_key, mask); hash = ovs_flow_hash(&masked_key, key_start, key_len); head = find_bucket(table, hash); hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) { if (flow->mask == mask && __flow_cmp_key(flow, &masked_key, key_start, key_len)) return flow; } return NULL; } struct sw_flow *ovs_flow_lookup(struct flow_table *tbl, const struct sw_flow_key *key) { struct sw_flow *flow = NULL; struct sw_flow_mask *mask; list_for_each_entry_rcu(mask, tbl->mask_list, list) { flow = ovs_masked_flow_lookup(tbl, key, mask); if (flow) /* Found */ break; } return flow; } void ovs_flow_insert(struct flow_table *table, struct sw_flow *flow) { flow->hash = ovs_flow_hash(&flow->key, flow->mask->range.start, flow->mask->range.end); __tbl_insert(table, flow); } void ovs_flow_remove(struct flow_table *table, struct sw_flow *flow) { BUG_ON(table->count == 0); hlist_del_rcu(&flow->hash_node[table->node_ver]); table->count--; } /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */ const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { [OVS_KEY_ATTR_ENCAP] = -1, [OVS_KEY_ATTR_PRIORITY] = sizeof(u32), [OVS_KEY_ATTR_IN_PORT] = sizeof(u32), [OVS_KEY_ATTR_SKB_MARK] = sizeof(u32), [OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), [OVS_KEY_ATTR_VLAN] = sizeof(__be16), [OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), [OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), [OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), [OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), [OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), [OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), [OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), [OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), [OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), [OVS_KEY_ATTR_TUNNEL] = -1, }; static bool is_all_zero(const u8 *fp, size_t size) { int i; if (!fp) return false; for (i = 0; i < size; i++) if (fp[i]) return false; return true; } static int __parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], u64 *attrsp, bool nz) { const struct nlattr *nla; u32 attrs; int rem; attrs = *attrsp; nla_for_each_nested(nla, attr, rem) { u16 type = nla_type(nla); int expected_len; if (type > OVS_KEY_ATTR_MAX) { OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n", type, OVS_KEY_ATTR_MAX); } if (attrs & (1 << type)) { OVS_NLERR("Duplicate key attribute (type %d).\n", type); return -EINVAL; } expected_len = ovs_key_lens[type]; if (nla_len(nla) != expected_len && expected_len != -1) { OVS_NLERR("Key attribute has unexpected length (type=%d" ", length=%d, expected=%d).\n", type, nla_len(nla), expected_len); return -EINVAL; } if (!nz || !is_all_zero(nla_data(nla), expected_len)) { attrs |= 1 << type; a[type] = nla; } } if (rem) { OVS_NLERR("Message has %d unknown bytes.\n", rem); return -EINVAL; } *attrsp = attrs; return 0; } static int parse_flow_mask_nlattrs(const struct nlattr *attr, const struct nlattr *a[], u64 *attrsp) { return __parse_flow_nlattrs(attr, a, attrsp, true); } static int parse_flow_nlattrs(const struct nlattr *attr, const struct nlattr *a[], u64 *attrsp) { return __parse_flow_nlattrs(attr, a, attrsp, false); } int ovs_ipv4_tun_from_nlattr(const struct nlattr *attr, struct sw_flow_match *match, bool is_mask) { struct nlattr *a; int rem; bool ttl = false; __be16 tun_flags = 0; nla_for_each_nested(a, attr, rem) { int type = nla_type(a); static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { [OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64), [OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32), [OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32), [OVS_TUNNEL_KEY_ATTR_TOS] = 1, [OVS_TUNNEL_KEY_ATTR_TTL] = 1, [OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0, [OVS_TUNNEL_KEY_ATTR_CSUM] = 0, }; if (type > OVS_TUNNEL_KEY_ATTR_MAX) { OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n", type, OVS_TUNNEL_KEY_ATTR_MAX); return -EINVAL; } if (ovs_tunnel_key_lens[type] != nla_len(a)) { OVS_NLERR("IPv4 tunnel attribute type has unexpected " " length (type=%d, length=%d, expected=%d).\n", type, nla_len(a), ovs_tunnel_key_lens[type]); return -EINVAL; } switch (type) { case OVS_TUNNEL_KEY_ATTR_ID: SW_FLOW_KEY_PUT(match, tun_key.tun_id, nla_get_be64(a), is_mask); tun_flags |= TUNNEL_KEY; break; case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: SW_FLOW_KEY_PUT(match, tun_key.ipv4_src, nla_get_be32(a), is_mask); break; case OVS_TUNNEL_KEY_ATTR_IPV4_DST: SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst, nla_get_be32(a), is_mask); break; case OVS_TUNNEL_KEY_ATTR_TOS: SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos, nla_get_u8(a), is_mask); break; case OVS_TUNNEL_KEY_ATTR_TTL: SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl, nla_get_u8(a), is_mask); ttl = true; break; case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: tun_flags |= TUNNEL_DONT_FRAGMENT; break; case OVS_TUNNEL_KEY_ATTR_CSUM: tun_flags |= TUNNEL_CSUM; break; default: return -EINVAL; } } SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); if (rem > 0) { OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem); return -EINVAL; } if (!is_mask) { if (!match->key->tun_key.ipv4_dst) { OVS_NLERR("IPv4 tunnel destination address is zero.\n"); return -EINVAL; } if (!ttl) { OVS_NLERR("IPv4 tunnel TTL not specified.\n"); return -EINVAL; } } return 0; } int ovs_ipv4_tun_to_nlattr(struct sk_buff *skb, const struct ovs_key_ipv4_tunnel *tun_key, const struct ovs_key_ipv4_tunnel *output) { struct nlattr *nla; nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); if (!nla) return -EMSGSIZE; if (output->tun_flags & TUNNEL_KEY && nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id)) return -EMSGSIZE; if (output->ipv4_src && nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src)) return -EMSGSIZE; if (output->ipv4_dst && nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst)) return -EMSGSIZE; if (output->ipv4_tos && nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos)) return -EMSGSIZE; if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl)) return -EMSGSIZE; if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) return -EMSGSIZE; if ((output->tun_flags & TUNNEL_CSUM) && nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) return -EMSGSIZE; nla_nest_end(skb, nla); return 0; } static int metadata_from_nlattrs(struct sw_flow_match *match, u64 *attrs, const struct nlattr **a, bool is_mask) { if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { SW_FLOW_KEY_PUT(match, phy.priority, nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); } if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); if (is_mask) in_port = 0xffffffff; /* Always exact match in_port. */ else if (in_port >= DP_MAX_PORTS) return -EINVAL; SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); } else if (!is_mask) { SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); } if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); *attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); } if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { if (ovs_ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, is_mask)) return -EINVAL; *attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); } return 0; } static int ovs_key_from_nlattrs(struct sw_flow_match *match, u64 attrs, const struct nlattr **a, bool is_mask) { int err; u64 orig_attrs = attrs; err = metadata_from_nlattrs(match, &attrs, a, is_mask); if (err) return err; if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { const struct ovs_key_ethernet *eth_key; eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); SW_FLOW_KEY_MEMCPY(match, eth.src, eth_key->eth_src, ETH_ALEN, is_mask); SW_FLOW_KEY_MEMCPY(match, eth.dst, eth_key->eth_dst, ETH_ALEN, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); } if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { __be16 tci; tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); if (!(tci & htons(VLAN_TAG_PRESENT))) { if (is_mask) OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n"); else OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n"); return -EINVAL; } SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_VLAN); } else if (!is_mask) SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true); if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { __be16 eth_type; eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); if (is_mask) { /* Always exact match EtherType. */ eth_type = htons(0xffff); } else if (ntohs(eth_type) < ETH_P_802_3_MIN) { OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n", ntohs(eth_type), ETH_P_802_3_MIN); return -EINVAL; } SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); } else if (!is_mask) { SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); } if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { const struct ovs_key_ipv4 *ipv4_key; ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n", ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); return -EINVAL; } SW_FLOW_KEY_PUT(match, ip.proto, ipv4_key->ipv4_proto, is_mask); SW_FLOW_KEY_PUT(match, ip.tos, ipv4_key->ipv4_tos, is_mask); SW_FLOW_KEY_PUT(match, ip.ttl, ipv4_key->ipv4_ttl, is_mask); SW_FLOW_KEY_PUT(match, ip.frag, ipv4_key->ipv4_frag, is_mask); SW_FLOW_KEY_PUT(match, ipv4.addr.src, ipv4_key->ipv4_src, is_mask); SW_FLOW_KEY_PUT(match, ipv4.addr.dst, ipv4_key->ipv4_dst, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_IPV4); } if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { const struct ovs_key_ipv6 *ipv6_key; ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n", ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); return -EINVAL; } SW_FLOW_KEY_PUT(match, ipv6.label, ipv6_key->ipv6_label, is_mask); SW_FLOW_KEY_PUT(match, ip.proto, ipv6_key->ipv6_proto, is_mask); SW_FLOW_KEY_PUT(match, ip.tos, ipv6_key->ipv6_tclass, is_mask); SW_FLOW_KEY_PUT(match, ip.ttl, ipv6_key->ipv6_hlimit, is_mask); SW_FLOW_KEY_PUT(match, ip.frag, ipv6_key->ipv6_frag, is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, ipv6_key->ipv6_src, sizeof(match->key->ipv6.addr.src), is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, ipv6_key->ipv6_dst, sizeof(match->key->ipv6.addr.dst), is_mask); attrs &= ~(1 << OVS_KEY_ATTR_IPV6); } if (attrs & (1 << OVS_KEY_ATTR_ARP)) { const struct ovs_key_arp *arp_key; arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); if (!is_mask && (arp_key->arp_op & htons(0xff00))) { OVS_NLERR("Unknown ARP opcode (opcode=%d).\n", arp_key->arp_op); return -EINVAL; } SW_FLOW_KEY_PUT(match, ipv4.addr.src, arp_key->arp_sip, is_mask); SW_FLOW_KEY_PUT(match, ipv4.addr.dst, arp_key->arp_tip, is_mask); SW_FLOW_KEY_PUT(match, ip.proto, ntohs(arp_key->arp_op), is_mask); SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, arp_key->arp_sha, ETH_ALEN, is_mask); SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, arp_key->arp_tha, ETH_ALEN, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ARP); } if (attrs & (1 << OVS_KEY_ATTR_TCP)) { const struct ovs_key_tcp *tcp_key; tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { SW_FLOW_KEY_PUT(match, ipv4.tp.src, tcp_key->tcp_src, is_mask); SW_FLOW_KEY_PUT(match, ipv4.tp.dst, tcp_key->tcp_dst, is_mask); } else { SW_FLOW_KEY_PUT(match, ipv6.tp.src, tcp_key->tcp_src, is_mask); SW_FLOW_KEY_PUT(match, ipv6.tp.dst, tcp_key->tcp_dst, is_mask); } attrs &= ~(1 << OVS_KEY_ATTR_TCP); } if (attrs & (1 << OVS_KEY_ATTR_UDP)) { const struct ovs_key_udp *udp_key; udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { SW_FLOW_KEY_PUT(match, ipv4.tp.src, udp_key->udp_src, is_mask); SW_FLOW_KEY_PUT(match, ipv4.tp.dst, udp_key->udp_dst, is_mask); } else { SW_FLOW_KEY_PUT(match, ipv6.tp.src, udp_key->udp_src, is_mask); SW_FLOW_KEY_PUT(match, ipv6.tp.dst, udp_key->udp_dst, is_mask); } attrs &= ~(1 << OVS_KEY_ATTR_UDP); } if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { const struct ovs_key_icmp *icmp_key; icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); SW_FLOW_KEY_PUT(match, ipv4.tp.src, htons(icmp_key->icmp_type), is_mask); SW_FLOW_KEY_PUT(match, ipv4.tp.dst, htons(icmp_key->icmp_code), is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ICMP); } if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { const struct ovs_key_icmpv6 *icmpv6_key; icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); SW_FLOW_KEY_PUT(match, ipv6.tp.src, htons(icmpv6_key->icmpv6_type), is_mask); SW_FLOW_KEY_PUT(match, ipv6.tp.dst, htons(icmpv6_key->icmpv6_code), is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); } if (attrs & (1 << OVS_KEY_ATTR_ND)) { const struct ovs_key_nd *nd_key; nd_key = nla_data(a[OVS_KEY_ATTR_ND]); SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, nd_key->nd_target, sizeof(match->key->ipv6.nd.target), is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, nd_key->nd_sll, ETH_ALEN, is_mask); SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, nd_key->nd_tll, ETH_ALEN, is_mask); attrs &= ~(1 << OVS_KEY_ATTR_ND); } if (attrs != 0) return -EINVAL; return 0; } /** * ovs_match_from_nlattrs - parses Netlink attributes into a flow key and * mask. In case the 'mask' is NULL, the flow is treated as exact match * flow. Otherwise, it is treated as a wildcarded flow, except the mask * does not include any don't care bit. * @match: receives the extracted flow match information. * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute * sequence. The fields should of the packet that triggered the creation * of this flow. * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink * attribute specifies the mask field of the wildcarded flow. */ int ovs_match_from_nlattrs(struct sw_flow_match *match, const struct nlattr *key, const struct nlattr *mask) { const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; const struct nlattr *encap; u64 key_attrs = 0; u64 mask_attrs = 0; bool encap_valid = false; int err; err = parse_flow_nlattrs(key, a, &key_attrs); if (err) return err; if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) { __be16 tci; if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { OVS_NLERR("Invalid Vlan frame.\n"); return -EINVAL; } key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); encap = a[OVS_KEY_ATTR_ENCAP]; key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); encap_valid = true; if (tci & htons(VLAN_TAG_PRESENT)) { err = parse_flow_nlattrs(encap, a, &key_attrs); if (err) return err; } else if (!tci) { /* Corner case for truncated 802.1Q header. */ if (nla_len(encap)) { OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n"); return -EINVAL; } } else { OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n"); return -EINVAL; } } err = ovs_key_from_nlattrs(match, key_attrs, a, false); if (err) return err; if (mask) { err = parse_flow_mask_nlattrs(mask, a, &mask_attrs); if (err) return err; if (mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP) { __be16 eth_type = 0; __be16 tci = 0; if (!encap_valid) { OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n"); return -EINVAL; } mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); if (a[OVS_KEY_ATTR_ETHERTYPE]) eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); if (eth_type == htons(0xffff)) { mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); encap = a[OVS_KEY_ATTR_ENCAP]; err = parse_flow_mask_nlattrs(encap, a, &mask_attrs); } else { OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n", ntohs(eth_type)); return -EINVAL; } if (a[OVS_KEY_ATTR_VLAN]) tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); if (!(tci & htons(VLAN_TAG_PRESENT))) { OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci)); return -EINVAL; } } err = ovs_key_from_nlattrs(match, mask_attrs, a, true); if (err) return err; } else { /* Populate exact match flow's key mask. */ if (match->mask) ovs_sw_flow_mask_set(match->mask, &match->range, 0xff); } if (!ovs_match_validate(match, key_attrs, mask_attrs)) return -EINVAL; return 0; } /** * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. * @flow: Receives extracted in_port, priority, tun_key and skb_mark. * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute * sequence. * * This parses a series of Netlink attributes that form a flow key, which must * take the same form accepted by flow_from_nlattrs(), but only enough of it to * get the metadata, that is, the parts of the flow key that cannot be * extracted from the packet itself. */ int ovs_flow_metadata_from_nlattrs(struct sw_flow *flow, const struct nlattr *attr) { struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key; const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; u64 attrs = 0; int err; struct sw_flow_match match; flow->key.phy.in_port = DP_MAX_PORTS; flow->key.phy.priority = 0; flow->key.phy.skb_mark = 0; memset(tun_key, 0, sizeof(flow->key.tun_key)); err = parse_flow_nlattrs(attr, a, &attrs); if (err) return -EINVAL; memset(&match, 0, sizeof(match)); match.key = &flow->key; err = metadata_from_nlattrs(&match, &attrs, a, false); if (err) return err; return 0; } int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, const struct sw_flow_key *output, struct sk_buff *skb) { struct ovs_key_ethernet *eth_key; struct nlattr *nla, *encap; bool is_mask = (swkey != output); if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) goto nla_put_failure; if ((swkey->tun_key.ipv4_dst || is_mask) && ovs_ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key)) goto nla_put_failure; if (swkey->phy.in_port == DP_MAX_PORTS) { if (is_mask && (output->phy.in_port == 0xffff)) if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) goto nla_put_failure; } else { u16 upper_u16; upper_u16 = !is_mask ? 0 : 0xffff; if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, (upper_u16 << 16) | output->phy.in_port)) goto nla_put_failure; } if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) goto nla_put_failure; nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); if (!nla) goto nla_put_failure; eth_key = nla_data(nla); memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN); memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN); if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { __be16 eth_type; eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff); if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci)) goto nla_put_failure; encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); if (!swkey->eth.tci) goto unencap; } else encap = NULL; if (swkey->eth.type == htons(ETH_P_802_2)) { /* * Ethertype 802.2 is represented in the netlink with omitted * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and * 0xffff in the mask attribute. Ethertype can also * be wildcarded. */ if (is_mask && output->eth.type) if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) goto nla_put_failure; goto unencap; } if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) goto nla_put_failure; if (swkey->eth.type == htons(ETH_P_IP)) { struct ovs_key_ipv4 *ipv4_key; nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); if (!nla) goto nla_put_failure; ipv4_key = nla_data(nla); ipv4_key->ipv4_src = output->ipv4.addr.src; ipv4_key->ipv4_dst = output->ipv4.addr.dst; ipv4_key->ipv4_proto = output->ip.proto; ipv4_key->ipv4_tos = output->ip.tos; ipv4_key->ipv4_ttl = output->ip.ttl; ipv4_key->ipv4_frag = output->ip.frag; } else if (swkey->eth.type == htons(ETH_P_IPV6)) { struct ovs_key_ipv6 *ipv6_key; nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); if (!nla) goto nla_put_failure; ipv6_key = nla_data(nla); memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, sizeof(ipv6_key->ipv6_src)); memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, sizeof(ipv6_key->ipv6_dst)); ipv6_key->ipv6_label = output->ipv6.label; ipv6_key->ipv6_proto = output->ip.proto; ipv6_key->ipv6_tclass = output->ip.tos; ipv6_key->ipv6_hlimit = output->ip.ttl; ipv6_key->ipv6_frag = output->ip.frag; } else if (swkey->eth.type == htons(ETH_P_ARP) || swkey->eth.type == htons(ETH_P_RARP)) { struct ovs_key_arp *arp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); if (!nla) goto nla_put_failure; arp_key = nla_data(nla); memset(arp_key, 0, sizeof(struct ovs_key_arp)); arp_key->arp_sip = output->ipv4.addr.src; arp_key->arp_tip = output->ipv4.addr.dst; arp_key->arp_op = htons(output->ip.proto); memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN); memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN); } if ((swkey->eth.type == htons(ETH_P_IP) || swkey->eth.type == htons(ETH_P_IPV6)) && swkey->ip.frag != OVS_FRAG_TYPE_LATER) { if (swkey->ip.proto == IPPROTO_TCP) { struct ovs_key_tcp *tcp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); if (!nla) goto nla_put_failure; tcp_key = nla_data(nla); if (swkey->eth.type == htons(ETH_P_IP)) { tcp_key->tcp_src = output->ipv4.tp.src; tcp_key->tcp_dst = output->ipv4.tp.dst; } else if (swkey->eth.type == htons(ETH_P_IPV6)) { tcp_key->tcp_src = output->ipv6.tp.src; tcp_key->tcp_dst = output->ipv6.tp.dst; } } else if (swkey->ip.proto == IPPROTO_UDP) { struct ovs_key_udp *udp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); if (!nla) goto nla_put_failure; udp_key = nla_data(nla); if (swkey->eth.type == htons(ETH_P_IP)) { udp_key->udp_src = output->ipv4.tp.src; udp_key->udp_dst = output->ipv4.tp.dst; } else if (swkey->eth.type == htons(ETH_P_IPV6)) { udp_key->udp_src = output->ipv6.tp.src; udp_key->udp_dst = output->ipv6.tp.dst; } } else if (swkey->eth.type == htons(ETH_P_IP) && swkey->ip.proto == IPPROTO_ICMP) { struct ovs_key_icmp *icmp_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); if (!nla) goto nla_put_failure; icmp_key = nla_data(nla); icmp_key->icmp_type = ntohs(output->ipv4.tp.src); icmp_key->icmp_code = ntohs(output->ipv4.tp.dst); } else if (swkey->eth.type == htons(ETH_P_IPV6) && swkey->ip.proto == IPPROTO_ICMPV6) { struct ovs_key_icmpv6 *icmpv6_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, sizeof(*icmpv6_key)); if (!nla) goto nla_put_failure; icmpv6_key = nla_data(nla); icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src); icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst); if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { struct ovs_key_nd *nd_key; nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); if (!nla) goto nla_put_failure; nd_key = nla_data(nla); memcpy(nd_key->nd_target, &output->ipv6.nd.target, sizeof(nd_key->nd_target)); memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN); memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN); } } } unencap: if (encap) nla_nest_end(skb, encap); return 0; nla_put_failure: return -EMSGSIZE; } /* Initializes the flow module. * Returns zero if successful or a negative error code. */ int ovs_flow_init(void) { flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, 0, NULL); if (flow_cache == NULL) return -ENOMEM; return 0; } /* Uninitializes the flow module. */ void ovs_flow_exit(void) { kmem_cache_destroy(flow_cache); } struct sw_flow_mask *ovs_sw_flow_mask_alloc(void) { struct sw_flow_mask *mask; mask = kmalloc(sizeof(*mask), GFP_KERNEL); if (mask) mask->ref_count = 0; return mask; } void ovs_sw_flow_mask_add_ref(struct sw_flow_mask *mask) { mask->ref_count++; } void ovs_sw_flow_mask_del_ref(struct sw_flow_mask *mask, bool deferred) { if (!mask) return; BUG_ON(!mask->ref_count); mask->ref_count--; if (!mask->ref_count) { list_del_rcu(&mask->list); if (deferred) kfree_rcu(mask, rcu); else kfree(mask); } } static bool ovs_sw_flow_mask_equal(const struct sw_flow_mask *a, const struct sw_flow_mask *b) { u8 *a_ = (u8 *)&a->key + a->range.start; u8 *b_ = (u8 *)&b->key + b->range.start; return (a->range.end == b->range.end) && (a->range.start == b->range.start) && (memcmp(a_, b_, ovs_sw_flow_mask_actual_size(a)) == 0); } struct sw_flow_mask *ovs_sw_flow_mask_find(const struct flow_table *tbl, const struct sw_flow_mask *mask) { struct list_head *ml; list_for_each(ml, tbl->mask_list) { struct sw_flow_mask *m; m = container_of(ml, struct sw_flow_mask, list); if (ovs_sw_flow_mask_equal(mask, m)) return m; } return NULL; } /** * add a new mask into the mask list. * The caller needs to make sure that 'mask' is not the same * as any masks that are already on the list. */ void ovs_sw_flow_mask_insert(struct flow_table *tbl, struct sw_flow_mask *mask) { list_add_rcu(&mask->list, tbl->mask_list); } /** * Set 'range' fields in the mask to the value of 'val'. */ static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask, struct sw_flow_key_range *range, u8 val) { u8 *m = (u8 *)&mask->key + range->start; mask->range = *range; memset(m, val, ovs_sw_flow_mask_size_roundup(mask)); }