/* * Copyright 2002-2005, Instant802 Networks, Inc. * Copyright 2005-2006, Devicescape Software, Inc. * Copyright 2006-2007 Jiri Benc * Copyright 2007 Johannes Berg * Copyright 2013-2014 Intel Mobile Communications GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * * Transmit and frame generation functions. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ieee80211_i.h" #include "driver-ops.h" #include "led.h" #include "mesh.h" #include "wep.h" #include "wpa.h" #include "wme.h" #include "rate.h" /* misc utils */ static inline void ieee80211_tx_stats(struct net_device *dev, u32 len) { struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats); u64_stats_update_begin(&tstats->syncp); tstats->tx_packets++; tstats->tx_bytes += len; u64_stats_update_end(&tstats->syncp); } static __le16 ieee80211_duration(struct ieee80211_tx_data *tx, struct sk_buff *skb, int group_addr, int next_frag_len) { int rate, mrate, erp, dur, i, shift = 0; struct ieee80211_rate *txrate; struct ieee80211_local *local = tx->local; struct ieee80211_supported_band *sband; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_chanctx_conf *chanctx_conf; u32 rate_flags = 0; /* assume HW handles this */ if (tx->rate.flags & (IEEE80211_TX_RC_MCS | IEEE80211_TX_RC_VHT_MCS)) return 0; rcu_read_lock(); chanctx_conf = rcu_dereference(tx->sdata->vif.chanctx_conf); if (chanctx_conf) { shift = ieee80211_chandef_get_shift(&chanctx_conf->def); rate_flags = ieee80211_chandef_rate_flags(&chanctx_conf->def); } rcu_read_unlock(); /* uh huh? */ if (WARN_ON_ONCE(tx->rate.idx < 0)) return 0; sband = local->hw.wiphy->bands[info->band]; txrate = &sband->bitrates[tx->rate.idx]; erp = txrate->flags & IEEE80211_RATE_ERP_G; /* * data and mgmt (except PS Poll): * - during CFP: 32768 * - during contention period: * if addr1 is group address: 0 * if more fragments = 0 and addr1 is individual address: time to * transmit one ACK plus SIFS * if more fragments = 1 and addr1 is individual address: time to * transmit next fragment plus 2 x ACK plus 3 x SIFS * * IEEE 802.11, 9.6: * - control response frame (CTS or ACK) shall be transmitted using the * same rate as the immediately previous frame in the frame exchange * sequence, if this rate belongs to the PHY mandatory rates, or else * at the highest possible rate belonging to the PHY rates in the * BSSBasicRateSet */ hdr = (struct ieee80211_hdr *)skb->data; if (ieee80211_is_ctl(hdr->frame_control)) { /* TODO: These control frames are not currently sent by * mac80211, but should they be implemented, this function * needs to be updated to support duration field calculation. * * RTS: time needed to transmit pending data/mgmt frame plus * one CTS frame plus one ACK frame plus 3 x SIFS * CTS: duration of immediately previous RTS minus time * required to transmit CTS and its SIFS * ACK: 0 if immediately previous directed data/mgmt had * more=0, with more=1 duration in ACK frame is duration * from previous frame minus time needed to transmit ACK * and its SIFS * PS Poll: BIT(15) | BIT(14) | aid */ return 0; } /* data/mgmt */ if (0 /* FIX: data/mgmt during CFP */) return cpu_to_le16(32768); if (group_addr) /* Group address as the destination - no ACK */ return 0; /* Individual destination address: * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes) * CTS and ACK frames shall be transmitted using the highest rate in * basic rate set that is less than or equal to the rate of the * immediately previous frame and that is using the same modulation * (CCK or OFDM). If no basic rate set matches with these requirements, * the highest mandatory rate of the PHY that is less than or equal to * the rate of the previous frame is used. * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps */ rate = -1; /* use lowest available if everything fails */ mrate = sband->bitrates[0].bitrate; for (i = 0; i < sband->n_bitrates; i++) { struct ieee80211_rate *r = &sband->bitrates[i]; if (r->bitrate > txrate->bitrate) break; if ((rate_flags & r->flags) != rate_flags) continue; if (tx->sdata->vif.bss_conf.basic_rates & BIT(i)) rate = DIV_ROUND_UP(r->bitrate, 1 << shift); switch (sband->band) { case NL80211_BAND_2GHZ: { u32 flag; if (tx->sdata->flags & IEEE80211_SDATA_OPERATING_GMODE) flag = IEEE80211_RATE_MANDATORY_G; else flag = IEEE80211_RATE_MANDATORY_B; if (r->flags & flag) mrate = r->bitrate; break; } case NL80211_BAND_5GHZ: if (r->flags & IEEE80211_RATE_MANDATORY_A) mrate = r->bitrate; break; case NL80211_BAND_60GHZ: /* TODO, for now fall through */ case NUM_NL80211_BANDS: WARN_ON(1); break; } } if (rate == -1) { /* No matching basic rate found; use highest suitable mandatory * PHY rate */ rate = DIV_ROUND_UP(mrate, 1 << shift); } /* Don't calculate ACKs for QoS Frames with NoAck Policy set */ if (ieee80211_is_data_qos(hdr->frame_control) && *(ieee80211_get_qos_ctl(hdr)) & IEEE80211_QOS_CTL_ACK_POLICY_NOACK) dur = 0; else /* Time needed to transmit ACK * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up * to closest integer */ dur = ieee80211_frame_duration(sband->band, 10, rate, erp, tx->sdata->vif.bss_conf.use_short_preamble, shift); if (next_frag_len) { /* Frame is fragmented: duration increases with time needed to * transmit next fragment plus ACK and 2 x SIFS. */ dur *= 2; /* ACK + SIFS */ /* next fragment */ dur += ieee80211_frame_duration(sband->band, next_frag_len, txrate->bitrate, erp, tx->sdata->vif.bss_conf.use_short_preamble, shift); } return cpu_to_le16(dur); } /* tx handlers */ static ieee80211_tx_result debug_noinline ieee80211_tx_h_dynamic_ps(struct ieee80211_tx_data *tx) { struct ieee80211_local *local = tx->local; struct ieee80211_if_managed *ifmgd; /* driver doesn't support power save */ if (!ieee80211_hw_check(&local->hw, SUPPORTS_PS)) return TX_CONTINUE; /* hardware does dynamic power save */ if (ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS)) return TX_CONTINUE; /* dynamic power save disabled */ if (local->hw.conf.dynamic_ps_timeout <= 0) return TX_CONTINUE; /* we are scanning, don't enable power save */ if (local->scanning) return TX_CONTINUE; if (!local->ps_sdata) return TX_CONTINUE; /* No point if we're going to suspend */ if (local->quiescing) return TX_CONTINUE; /* dynamic ps is supported only in managed mode */ if (tx->sdata->vif.type != NL80211_IFTYPE_STATION) return TX_CONTINUE; ifmgd = &tx->sdata->u.mgd; /* * Don't wakeup from power save if u-apsd is enabled, voip ac has * u-apsd enabled and the frame is in voip class. This effectively * means that even if all access categories have u-apsd enabled, in * practise u-apsd is only used with the voip ac. This is a * workaround for the case when received voip class packets do not * have correct qos tag for some reason, due the network or the * peer application. * * Note: ifmgd->uapsd_queues access is racy here. If the value is * changed via debugfs, user needs to reassociate manually to have * everything in sync. */ if ((ifmgd->flags & IEEE80211_STA_UAPSD_ENABLED) && (ifmgd->uapsd_queues & IEEE80211_WMM_IE_STA_QOSINFO_AC_VO) && skb_get_queue_mapping(tx->skb) == IEEE80211_AC_VO) return TX_CONTINUE; if (local->hw.conf.flags & IEEE80211_CONF_PS) { ieee80211_stop_queues_by_reason(&local->hw, IEEE80211_MAX_QUEUE_MAP, IEEE80211_QUEUE_STOP_REASON_PS, false); ifmgd->flags &= ~IEEE80211_STA_NULLFUNC_ACKED; ieee80211_queue_work(&local->hw, &local->dynamic_ps_disable_work); } /* Don't restart the timer if we're not disassociated */ if (!ifmgd->associated) return TX_CONTINUE; mod_timer(&local->dynamic_ps_timer, jiffies + msecs_to_jiffies(local->hw.conf.dynamic_ps_timeout)); return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_check_assoc(struct ieee80211_tx_data *tx) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); bool assoc = false; if (unlikely(info->flags & IEEE80211_TX_CTL_INJECTED)) return TX_CONTINUE; if (unlikely(test_bit(SCAN_SW_SCANNING, &tx->local->scanning)) && test_bit(SDATA_STATE_OFFCHANNEL, &tx->sdata->state) && !ieee80211_is_probe_req(hdr->frame_control) && !ieee80211_is_nullfunc(hdr->frame_control)) /* * When software scanning only nullfunc frames (to notify * the sleep state to the AP) and probe requests (for the * active scan) are allowed, all other frames should not be * sent and we should not get here, but if we do * nonetheless, drop them to avoid sending them * off-channel. See the link below and * ieee80211_start_scan() for more. * * http://article.gmane.org/gmane.linux.kernel.wireless.general/30089 */ return TX_DROP; if (tx->sdata->vif.type == NL80211_IFTYPE_OCB) return TX_CONTINUE; if (tx->sdata->vif.type == NL80211_IFTYPE_WDS) return TX_CONTINUE; if (tx->flags & IEEE80211_TX_PS_BUFFERED) return TX_CONTINUE; if (tx->sta) assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); if (likely(tx->flags & IEEE80211_TX_UNICAST)) { if (unlikely(!assoc && ieee80211_is_data(hdr->frame_control))) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG sdata_info(tx->sdata, "dropped data frame to not associated station %pM\n", hdr->addr1); #endif I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc); return TX_DROP; } } else if (unlikely(ieee80211_is_data(hdr->frame_control) && ieee80211_vif_get_num_mcast_if(tx->sdata) == 0)) { /* * No associated STAs - no need to send multicast * frames. */ return TX_DROP; } return TX_CONTINUE; } /* This function is called whenever the AP is about to exceed the maximum limit * of buffered frames for power saving STAs. This situation should not really * happen often during normal operation, so dropping the oldest buffered packet * from each queue should be OK to make some room for new frames. */ static void purge_old_ps_buffers(struct ieee80211_local *local) { int total = 0, purged = 0; struct sk_buff *skb; struct ieee80211_sub_if_data *sdata; struct sta_info *sta; list_for_each_entry_rcu(sdata, &local->interfaces, list) { struct ps_data *ps; if (sdata->vif.type == NL80211_IFTYPE_AP) ps = &sdata->u.ap.ps; else if (ieee80211_vif_is_mesh(&sdata->vif)) ps = &sdata->u.mesh.ps; else continue; skb = skb_dequeue(&ps->bc_buf); if (skb) { purged++; ieee80211_free_txskb(&local->hw, skb); } total += skb_queue_len(&ps->bc_buf); } /* * Drop one frame from each station from the lowest-priority * AC that has frames at all. */ list_for_each_entry_rcu(sta, &local->sta_list, list) { int ac; for (ac = IEEE80211_AC_BK; ac >= IEEE80211_AC_VO; ac--) { skb = skb_dequeue(&sta->ps_tx_buf[ac]); total += skb_queue_len(&sta->ps_tx_buf[ac]); if (skb) { purged++; ieee80211_free_txskb(&local->hw, skb); break; } } } local->total_ps_buffered = total; ps_dbg_hw(&local->hw, "PS buffers full - purged %d frames\n", purged); } static ieee80211_tx_result ieee80211_tx_h_multicast_ps_buf(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ps_data *ps; /* * broadcast/multicast frame * * If any of the associated/peer stations is in power save mode, * the frame is buffered to be sent after DTIM beacon frame. * This is done either by the hardware or us. */ /* powersaving STAs currently only in AP/VLAN/mesh mode */ if (tx->sdata->vif.type == NL80211_IFTYPE_AP || tx->sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { if (!tx->sdata->bss) return TX_CONTINUE; ps = &tx->sdata->bss->ps; } else if (ieee80211_vif_is_mesh(&tx->sdata->vif)) { ps = &tx->sdata->u.mesh.ps; } else { return TX_CONTINUE; } /* no buffering for ordered frames */ if (ieee80211_has_order(hdr->frame_control)) return TX_CONTINUE; if (ieee80211_is_probe_req(hdr->frame_control)) return TX_CONTINUE; if (ieee80211_hw_check(&tx->local->hw, QUEUE_CONTROL)) info->hw_queue = tx->sdata->vif.cab_queue; /* no stations in PS mode */ if (!atomic_read(&ps->num_sta_ps)) return TX_CONTINUE; info->flags |= IEEE80211_TX_CTL_SEND_AFTER_DTIM; /* device releases frame after DTIM beacon */ if (!ieee80211_hw_check(&tx->local->hw, HOST_BROADCAST_PS_BUFFERING)) return TX_CONTINUE; /* buffered in mac80211 */ if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); if (skb_queue_len(&ps->bc_buf) >= AP_MAX_BC_BUFFER) { ps_dbg(tx->sdata, "BC TX buffer full - dropping the oldest frame\n"); ieee80211_free_txskb(&tx->local->hw, skb_dequeue(&ps->bc_buf)); } else tx->local->total_ps_buffered++; skb_queue_tail(&ps->bc_buf, tx->skb); return TX_QUEUED; } static int ieee80211_use_mfp(__le16 fc, struct sta_info *sta, struct sk_buff *skb) { if (!ieee80211_is_mgmt(fc)) return 0; if (sta == NULL || !test_sta_flag(sta, WLAN_STA_MFP)) return 0; if (!ieee80211_is_robust_mgmt_frame(skb)) return 0; return 1; } static ieee80211_tx_result ieee80211_tx_h_unicast_ps_buf(struct ieee80211_tx_data *tx) { struct sta_info *sta = tx->sta; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; struct ieee80211_local *local = tx->local; if (unlikely(!sta)) return TX_CONTINUE; if (unlikely((test_sta_flag(sta, WLAN_STA_PS_STA) || test_sta_flag(sta, WLAN_STA_PS_DRIVER) || test_sta_flag(sta, WLAN_STA_PS_DELIVER)) && !(info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER))) { int ac = skb_get_queue_mapping(tx->skb); if (ieee80211_is_mgmt(hdr->frame_control) && !ieee80211_is_bufferable_mmpdu(hdr->frame_control)) { info->flags |= IEEE80211_TX_CTL_NO_PS_BUFFER; return TX_CONTINUE; } ps_dbg(sta->sdata, "STA %pM aid %d: PS buffer for AC %d\n", sta->sta.addr, sta->sta.aid, ac); if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER) purge_old_ps_buffers(tx->local); /* sync with ieee80211_sta_ps_deliver_wakeup */ spin_lock(&sta->ps_lock); /* * STA woke up the meantime and all the frames on ps_tx_buf have * been queued to pending queue. No reordering can happen, go * ahead and Tx the packet. */ if (!test_sta_flag(sta, WLAN_STA_PS_STA) && !test_sta_flag(sta, WLAN_STA_PS_DRIVER) && !test_sta_flag(sta, WLAN_STA_PS_DELIVER)) { spin_unlock(&sta->ps_lock); return TX_CONTINUE; } if (skb_queue_len(&sta->ps_tx_buf[ac]) >= STA_MAX_TX_BUFFER) { struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf[ac]); ps_dbg(tx->sdata, "STA %pM TX buffer for AC %d full - dropping oldest frame\n", sta->sta.addr, ac); ieee80211_free_txskb(&local->hw, old); } else tx->local->total_ps_buffered++; info->control.jiffies = jiffies; info->control.vif = &tx->sdata->vif; info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; skb_queue_tail(&sta->ps_tx_buf[ac], tx->skb); spin_unlock(&sta->ps_lock); if (!timer_pending(&local->sta_cleanup)) mod_timer(&local->sta_cleanup, round_jiffies(jiffies + STA_INFO_CLEANUP_INTERVAL)); /* * We queued up some frames, so the TIM bit might * need to be set, recalculate it. */ sta_info_recalc_tim(sta); return TX_QUEUED; } else if (unlikely(test_sta_flag(sta, WLAN_STA_PS_STA))) { ps_dbg(tx->sdata, "STA %pM in PS mode, but polling/in SP -> send frame\n", sta->sta.addr); } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_ps_buf(struct ieee80211_tx_data *tx) { if (unlikely(tx->flags & IEEE80211_TX_PS_BUFFERED)) return TX_CONTINUE; if (tx->flags & IEEE80211_TX_UNICAST) return ieee80211_tx_h_unicast_ps_buf(tx); else return ieee80211_tx_h_multicast_ps_buf(tx); } static ieee80211_tx_result debug_noinline ieee80211_tx_h_check_control_port_protocol(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); if (unlikely(tx->sdata->control_port_protocol == tx->skb->protocol)) { if (tx->sdata->control_port_no_encrypt) info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; info->control.flags |= IEEE80211_TX_CTRL_PORT_CTRL_PROTO; info->flags |= IEEE80211_TX_CTL_USE_MINRATE; } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_select_key(struct ieee80211_tx_data *tx) { struct ieee80211_key *key; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; if (unlikely(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT)) tx->key = NULL; else if (tx->sta && (key = rcu_dereference(tx->sta->ptk[tx->sta->ptk_idx]))) tx->key = key; else if (ieee80211_is_group_privacy_action(tx->skb) && (key = rcu_dereference(tx->sdata->default_multicast_key))) tx->key = key; else if (ieee80211_is_mgmt(hdr->frame_control) && is_multicast_ether_addr(hdr->addr1) && ieee80211_is_robust_mgmt_frame(tx->skb) && (key = rcu_dereference(tx->sdata->default_mgmt_key))) tx->key = key; else if (is_multicast_ether_addr(hdr->addr1) && (key = rcu_dereference(tx->sdata->default_multicast_key))) tx->key = key; else if (!is_multicast_ether_addr(hdr->addr1) && (key = rcu_dereference(tx->sdata->default_unicast_key))) tx->key = key; else tx->key = NULL; if (tx->key) { bool skip_hw = false; /* TODO: add threshold stuff again */ switch (tx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: case WLAN_CIPHER_SUITE_TKIP: if (!ieee80211_is_data_present(hdr->frame_control)) tx->key = NULL; break; case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: if (!ieee80211_is_data_present(hdr->frame_control) && !ieee80211_use_mfp(hdr->frame_control, tx->sta, tx->skb) && !ieee80211_is_group_privacy_action(tx->skb)) tx->key = NULL; else skip_hw = (tx->key->conf.flags & IEEE80211_KEY_FLAG_SW_MGMT_TX) && ieee80211_is_mgmt(hdr->frame_control); break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: if (!ieee80211_is_mgmt(hdr->frame_control)) tx->key = NULL; break; } if (unlikely(tx->key && tx->key->flags & KEY_FLAG_TAINTED && !ieee80211_is_deauth(hdr->frame_control))) return TX_DROP; if (!skip_hw && tx->key && tx->key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) info->control.hw_key = &tx->key->conf; } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_rate_ctrl(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (void *)tx->skb->data; struct ieee80211_supported_band *sband; u32 len; struct ieee80211_tx_rate_control txrc; struct ieee80211_sta_rates *ratetbl = NULL; bool assoc = false; memset(&txrc, 0, sizeof(txrc)); sband = tx->local->hw.wiphy->bands[info->band]; len = min_t(u32, tx->skb->len + FCS_LEN, tx->local->hw.wiphy->frag_threshold); /* set up the tx rate control struct we give the RC algo */ txrc.hw = &tx->local->hw; txrc.sband = sband; txrc.bss_conf = &tx->sdata->vif.bss_conf; txrc.skb = tx->skb; txrc.reported_rate.idx = -1; txrc.rate_idx_mask = tx->sdata->rc_rateidx_mask[info->band]; if (txrc.rate_idx_mask == (1 << sband->n_bitrates) - 1) txrc.max_rate_idx = -1; else txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; if (tx->sdata->rc_has_mcs_mask[info->band]) txrc.rate_idx_mcs_mask = tx->sdata->rc_rateidx_mcs_mask[info->band]; txrc.bss = (tx->sdata->vif.type == NL80211_IFTYPE_AP || tx->sdata->vif.type == NL80211_IFTYPE_MESH_POINT || tx->sdata->vif.type == NL80211_IFTYPE_ADHOC || tx->sdata->vif.type == NL80211_IFTYPE_OCB); /* set up RTS protection if desired */ if (len > tx->local->hw.wiphy->rts_threshold) { txrc.rts = true; } info->control.use_rts = txrc.rts; info->control.use_cts_prot = tx->sdata->vif.bss_conf.use_cts_prot; /* * Use short preamble if the BSS can handle it, but not for * management frames unless we know the receiver can handle * that -- the management frame might be to a station that * just wants a probe response. */ if (tx->sdata->vif.bss_conf.use_short_preamble && (ieee80211_is_data(hdr->frame_control) || (tx->sta && test_sta_flag(tx->sta, WLAN_STA_SHORT_PREAMBLE)))) txrc.short_preamble = true; info->control.short_preamble = txrc.short_preamble; /* don't ask rate control when rate already injected via radiotap */ if (info->control.flags & IEEE80211_TX_CTRL_RATE_INJECT) return TX_CONTINUE; if (tx->sta) assoc = test_sta_flag(tx->sta, WLAN_STA_ASSOC); /* * Lets not bother rate control if we're associated and cannot * talk to the sta. This should not happen. */ if (WARN(test_bit(SCAN_SW_SCANNING, &tx->local->scanning) && assoc && !rate_usable_index_exists(sband, &tx->sta->sta), "%s: Dropped data frame as no usable bitrate found while " "scanning and associated. Target station: " "%pM on %d GHz band\n", tx->sdata->name, hdr->addr1, info->band ? 5 : 2)) return TX_DROP; /* * If we're associated with the sta at this point we know we can at * least send the frame at the lowest bit rate. */ rate_control_get_rate(tx->sdata, tx->sta, &txrc); if (tx->sta && !info->control.skip_table) ratetbl = rcu_dereference(tx->sta->sta.rates); if (unlikely(info->control.rates[0].idx < 0)) { if (ratetbl) { struct ieee80211_tx_rate rate = { .idx = ratetbl->rate[0].idx, .flags = ratetbl->rate[0].flags, .count = ratetbl->rate[0].count }; if (ratetbl->rate[0].idx < 0) return TX_DROP; tx->rate = rate; } else { return TX_DROP; } } else { tx->rate = info->control.rates[0]; } if (txrc.reported_rate.idx < 0) { txrc.reported_rate = tx->rate; if (tx->sta && ieee80211_is_data(hdr->frame_control)) tx->sta->tx_stats.last_rate = txrc.reported_rate; } else if (tx->sta) tx->sta->tx_stats.last_rate = txrc.reported_rate; if (ratetbl) return TX_CONTINUE; if (unlikely(!info->control.rates[0].count)) info->control.rates[0].count = 1; if (WARN_ON_ONCE((info->control.rates[0].count > 1) && (info->flags & IEEE80211_TX_CTL_NO_ACK))) info->control.rates[0].count = 1; return TX_CONTINUE; } static __le16 ieee80211_tx_next_seq(struct sta_info *sta, int tid) { u16 *seq = &sta->tid_seq[tid]; __le16 ret = cpu_to_le16(*seq); /* Increase the sequence number. */ *seq = (*seq + 0x10) & IEEE80211_SCTL_SEQ; return ret; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_sequence(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)tx->skb->data; u8 *qc; int tid; /* * Packet injection may want to control the sequence * number, if we have no matching interface then we * neither assign one ourselves nor ask the driver to. */ if (unlikely(info->control.vif->type == NL80211_IFTYPE_MONITOR)) return TX_CONTINUE; if (unlikely(ieee80211_is_ctl(hdr->frame_control))) return TX_CONTINUE; if (ieee80211_hdrlen(hdr->frame_control) < 24) return TX_CONTINUE; if (ieee80211_is_qos_nullfunc(hdr->frame_control)) return TX_CONTINUE; /* * Anything but QoS data that has a sequence number field * (is long enough) gets a sequence number from the global * counter. QoS data frames with a multicast destination * also use the global counter (802.11-2012 9.3.2.10). */ if (!ieee80211_is_data_qos(hdr->frame_control) || is_multicast_ether_addr(hdr->addr1)) { /* driver should assign sequence number */ info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; /* for pure STA mode without beacons, we can do it */ hdr->seq_ctrl = cpu_to_le16(tx->sdata->sequence_number); tx->sdata->sequence_number += 0x10; if (tx->sta) tx->sta->tx_stats.msdu[IEEE80211_NUM_TIDS]++; return TX_CONTINUE; } /* * This should be true for injected/management frames only, for * management frames we have set the IEEE80211_TX_CTL_ASSIGN_SEQ * above since they are not QoS-data frames. */ if (!tx->sta) return TX_CONTINUE; /* include per-STA, per-TID sequence counter */ qc = ieee80211_get_qos_ctl(hdr); tid = *qc & IEEE80211_QOS_CTL_TID_MASK; tx->sta->tx_stats.msdu[tid]++; hdr->seq_ctrl = ieee80211_tx_next_seq(tx->sta, tid); return TX_CONTINUE; } static int ieee80211_fragment(struct ieee80211_tx_data *tx, struct sk_buff *skb, int hdrlen, int frag_threshold) { struct ieee80211_local *local = tx->local; struct ieee80211_tx_info *info; struct sk_buff *tmp; int per_fragm = frag_threshold - hdrlen - FCS_LEN; int pos = hdrlen + per_fragm; int rem = skb->len - hdrlen - per_fragm; if (WARN_ON(rem < 0)) return -EINVAL; /* first fragment was already added to queue by caller */ while (rem) { int fraglen = per_fragm; if (fraglen > rem) fraglen = rem; rem -= fraglen; tmp = dev_alloc_skb(local->tx_headroom + frag_threshold + tx->sdata->encrypt_headroom + IEEE80211_ENCRYPT_TAILROOM); if (!tmp) return -ENOMEM; __skb_queue_tail(&tx->skbs, tmp); skb_reserve(tmp, local->tx_headroom + tx->sdata->encrypt_headroom); /* copy control information */ memcpy(tmp->cb, skb->cb, sizeof(tmp->cb)); info = IEEE80211_SKB_CB(tmp); info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_FIRST_FRAGMENT); if (rem) info->flags |= IEEE80211_TX_CTL_MORE_FRAMES; skb_copy_queue_mapping(tmp, skb); tmp->priority = skb->priority; tmp->dev = skb->dev; /* copy header and data */ memcpy(skb_put(tmp, hdrlen), skb->data, hdrlen); memcpy(skb_put(tmp, fraglen), skb->data + pos, fraglen); pos += fraglen; } /* adjust first fragment's length */ skb_trim(skb, hdrlen + per_fragm); return 0; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_fragment(struct ieee80211_tx_data *tx) { struct sk_buff *skb = tx->skb; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *)skb->data; int frag_threshold = tx->local->hw.wiphy->frag_threshold; int hdrlen; int fragnum; /* no matter what happens, tx->skb moves to tx->skbs */ __skb_queue_tail(&tx->skbs, skb); tx->skb = NULL; if (info->flags & IEEE80211_TX_CTL_DONTFRAG) return TX_CONTINUE; if (ieee80211_hw_check(&tx->local->hw, SUPPORTS_TX_FRAG)) return TX_CONTINUE; /* * Warn when submitting a fragmented A-MPDU frame and drop it. * This scenario is handled in ieee80211_tx_prepare but extra * caution taken here as fragmented ampdu may cause Tx stop. */ if (WARN_ON(info->flags & IEEE80211_TX_CTL_AMPDU)) return TX_DROP; hdrlen = ieee80211_hdrlen(hdr->frame_control); /* internal error, why isn't DONTFRAG set? */ if (WARN_ON(skb->len + FCS_LEN <= frag_threshold)) return TX_DROP; /* * Now fragment the frame. This will allocate all the fragments and * chain them (using skb as the first fragment) to skb->next. * During transmission, we will remove the successfully transmitted * fragments from this list. When the low-level driver rejects one * of the fragments then we will simply pretend to accept the skb * but store it away as pending. */ if (ieee80211_fragment(tx, skb, hdrlen, frag_threshold)) return TX_DROP; /* update duration/seq/flags of fragments */ fragnum = 0; skb_queue_walk(&tx->skbs, skb) { const __le16 morefrags = cpu_to_le16(IEEE80211_FCTL_MOREFRAGS); hdr = (void *)skb->data; info = IEEE80211_SKB_CB(skb); if (!skb_queue_is_last(&tx->skbs, skb)) { hdr->frame_control |= morefrags; /* * No multi-rate retries for fragmented frames, that * would completely throw off the NAV at other STAs. */ info->control.rates[1].idx = -1; info->control.rates[2].idx = -1; info->control.rates[3].idx = -1; BUILD_BUG_ON(IEEE80211_TX_MAX_RATES != 4); info->flags &= ~IEEE80211_TX_CTL_RATE_CTRL_PROBE; } else { hdr->frame_control &= ~morefrags; } hdr->seq_ctrl |= cpu_to_le16(fragnum & IEEE80211_SCTL_FRAG); fragnum++; } return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_stats(struct ieee80211_tx_data *tx) { struct sk_buff *skb; int ac = -1; if (!tx->sta) return TX_CONTINUE; skb_queue_walk(&tx->skbs, skb) { ac = skb_get_queue_mapping(skb); tx->sta->tx_stats.bytes[ac] += skb->len; } if (ac >= 0) tx->sta->tx_stats.packets[ac]++; return TX_CONTINUE; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_encrypt(struct ieee80211_tx_data *tx) { if (!tx->key) return TX_CONTINUE; switch (tx->key->conf.cipher) { case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: return ieee80211_crypto_wep_encrypt(tx); case WLAN_CIPHER_SUITE_TKIP: return ieee80211_crypto_tkip_encrypt(tx); case WLAN_CIPHER_SUITE_CCMP: return ieee80211_crypto_ccmp_encrypt( tx, IEEE80211_CCMP_MIC_LEN); case WLAN_CIPHER_SUITE_CCMP_256: return ieee80211_crypto_ccmp_encrypt( tx, IEEE80211_CCMP_256_MIC_LEN); case WLAN_CIPHER_SUITE_AES_CMAC: return ieee80211_crypto_aes_cmac_encrypt(tx); case WLAN_CIPHER_SUITE_BIP_CMAC_256: return ieee80211_crypto_aes_cmac_256_encrypt(tx); case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: return ieee80211_crypto_aes_gmac_encrypt(tx); case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: return ieee80211_crypto_gcmp_encrypt(tx); default: return ieee80211_crypto_hw_encrypt(tx); } return TX_DROP; } static ieee80211_tx_result debug_noinline ieee80211_tx_h_calculate_duration(struct ieee80211_tx_data *tx) { struct sk_buff *skb; struct ieee80211_hdr *hdr; int next_len; bool group_addr; skb_queue_walk(&tx->skbs, skb) { hdr = (void *) skb->data; if (unlikely(ieee80211_is_pspoll(hdr->frame_control))) break; /* must not overwrite AID */ if (!skb_queue_is_last(&tx->skbs, skb)) { struct sk_buff *next = skb_queue_next(&tx->skbs, skb); next_len = next->len; } else next_len = 0; group_addr = is_multicast_ether_addr(hdr->addr1); hdr->duration_id = ieee80211_duration(tx, skb, group_addr, next_len); } return TX_CONTINUE; } /* actual transmit path */ static bool ieee80211_tx_prep_agg(struct ieee80211_tx_data *tx, struct sk_buff *skb, struct ieee80211_tx_info *info, struct tid_ampdu_tx *tid_tx, int tid) { bool queued = false; bool reset_agg_timer = false; struct sk_buff *purge_skb = NULL; if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { info->flags |= IEEE80211_TX_CTL_AMPDU; reset_agg_timer = true; } else if (test_bit(HT_AGG_STATE_WANT_START, &tid_tx->state)) { /* * nothing -- this aggregation session is being started * but that might still fail with the driver */ } else if (!tx->sta->sta.txq[tid]) { spin_lock(&tx->sta->lock); /* * Need to re-check now, because we may get here * * 1) in the window during which the setup is actually * already done, but not marked yet because not all * packets are spliced over to the driver pending * queue yet -- if this happened we acquire the lock * either before or after the splice happens, but * need to recheck which of these cases happened. * * 2) during session teardown, if the OPERATIONAL bit * was cleared due to the teardown but the pointer * hasn't been assigned NULL yet (or we loaded it * before it was assigned) -- in this case it may * now be NULL which means we should just let the * packet pass through because splicing the frames * back is already done. */ tid_tx = rcu_dereference_protected_tid_tx(tx->sta, tid); if (!tid_tx) { /* do nothing, let packet pass through */ } else if (test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) { info->flags |= IEEE80211_TX_CTL_AMPDU; reset_agg_timer = true; } else { queued = true; if (info->flags & IEEE80211_TX_CTL_NO_PS_BUFFER) { clear_sta_flag(tx->sta, WLAN_STA_SP); ps_dbg(tx->sta->sdata, "STA %pM aid %d: SP frame queued, close the SP w/o telling the peer\n", tx->sta->sta.addr, tx->sta->sta.aid); } info->control.vif = &tx->sdata->vif; info->flags |= IEEE80211_TX_INTFL_NEED_TXPROCESSING; info->flags &= ~IEEE80211_TX_TEMPORARY_FLAGS; __skb_queue_tail(&tid_tx->pending, skb); if (skb_queue_len(&tid_tx->pending) > STA_MAX_TX_BUFFER) purge_skb = __skb_dequeue(&tid_tx->pending); } spin_unlock(&tx->sta->lock); if (purge_skb) ieee80211_free_txskb(&tx->local->hw, purge_skb); } /* reset session timer */ if (reset_agg_timer && tid_tx->timeout) tid_tx->last_tx = jiffies; return queued; } /* * initialises @tx * pass %NULL for the station if unknown, a valid pointer if known * or an ERR_PTR() if the station is known not to exist */ static ieee80211_tx_result ieee80211_tx_prepare(struct ieee80211_sub_if_data *sdata, struct ieee80211_tx_data *tx, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_hdr *hdr; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int tid; u8 *qc; memset(tx, 0, sizeof(*tx)); tx->skb = skb; tx->local = local; tx->sdata = sdata; __skb_queue_head_init(&tx->skbs); /* * If this flag is set to true anywhere, and we get here, * we are doing the needed processing, so remove the flag * now. */ info->flags &= ~IEEE80211_TX_INTFL_NEED_TXPROCESSING; hdr = (struct ieee80211_hdr *) skb->data; if (likely(sta)) { if (!IS_ERR(sta)) tx->sta = sta; } else { if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) { tx->sta = rcu_dereference(sdata->u.vlan.sta); if (!tx->sta && sdata->wdev.use_4addr) return TX_DROP; } else if (info->flags & (IEEE80211_TX_INTFL_NL80211_FRAME_TX | IEEE80211_TX_CTL_INJECTED) || tx->sdata->control_port_protocol == tx->skb->protocol) { tx->sta = sta_info_get_bss(sdata, hdr->addr1); } if (!tx->sta && !is_multicast_ether_addr(hdr->addr1)) tx->sta = sta_info_get(sdata, hdr->addr1); } if (tx->sta && ieee80211_is_data_qos(hdr->frame_control) && !ieee80211_is_qos_nullfunc(hdr->frame_control) && ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION) && !ieee80211_hw_check(&local->hw, TX_AMPDU_SETUP_IN_HW)) { struct tid_ampdu_tx *tid_tx; qc = ieee80211_get_qos_ctl(hdr); tid = *qc & IEEE80211_QOS_CTL_TID_MASK; tid_tx = rcu_dereference(tx->sta->ampdu_mlme.tid_tx[tid]); if (tid_tx) { bool queued; queued = ieee80211_tx_prep_agg(tx, skb, info, tid_tx, tid); if (unlikely(queued)) return TX_QUEUED; } } if (is_multicast_ether_addr(hdr->addr1)) { tx->flags &= ~IEEE80211_TX_UNICAST; info->flags |= IEEE80211_TX_CTL_NO_ACK; } else tx->flags |= IEEE80211_TX_UNICAST; if (!(info->flags & IEEE80211_TX_CTL_DONTFRAG)) { if (!(tx->flags & IEEE80211_TX_UNICAST) || skb->len + FCS_LEN <= local->hw.wiphy->frag_threshold || info->flags & IEEE80211_TX_CTL_AMPDU) info->flags |= IEEE80211_TX_CTL_DONTFRAG; } if (!tx->sta) info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; else if (test_and_clear_sta_flag(tx->sta, WLAN_STA_CLEAR_PS_FILT)) { info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; ieee80211_check_fast_xmit(tx->sta); } info->flags |= IEEE80211_TX_CTL_FIRST_FRAGMENT; return TX_CONTINUE; } static struct txq_info *ieee80211_get_txq(struct ieee80211_local *local, struct ieee80211_vif *vif, struct ieee80211_sta *pubsta, struct sk_buff *skb) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_txq *txq = NULL; if ((info->flags & IEEE80211_TX_CTL_SEND_AFTER_DTIM) || (info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE)) return NULL; if (!ieee80211_is_data(hdr->frame_control)) return NULL; if (pubsta) { u8 tid = skb->priority & IEEE80211_QOS_CTL_TID_MASK; txq = pubsta->txq[tid]; } else if (vif) { txq = vif->txq; } if (!txq) return NULL; return to_txq_info(txq); } static void ieee80211_set_skb_enqueue_time(struct sk_buff *skb) { IEEE80211_SKB_CB(skb)->control.enqueue_time = codel_get_time(); } static void ieee80211_set_skb_vif(struct sk_buff *skb, struct txq_info *txqi) { IEEE80211_SKB_CB(skb)->control.vif = txqi->txq.vif; } static u32 codel_skb_len_func(const struct sk_buff *skb) { return skb->len; } static codel_time_t codel_skb_time_func(const struct sk_buff *skb) { const struct ieee80211_tx_info *info; info = (const struct ieee80211_tx_info *)skb->cb; return info->control.enqueue_time; } static struct sk_buff *codel_dequeue_func(struct codel_vars *cvars, void *ctx) { struct ieee80211_local *local; struct txq_info *txqi; struct fq *fq; struct fq_flow *flow; txqi = ctx; local = vif_to_sdata(txqi->txq.vif)->local; fq = &local->fq; if (cvars == &txqi->def_cvars) flow = &txqi->def_flow; else flow = &fq->flows[cvars - local->cvars]; return fq_flow_dequeue(fq, flow); } static void codel_drop_func(struct sk_buff *skb, void *ctx) { struct ieee80211_local *local; struct ieee80211_hw *hw; struct txq_info *txqi; txqi = ctx; local = vif_to_sdata(txqi->txq.vif)->local; hw = &local->hw; ieee80211_free_txskb(hw, skb); } static struct sk_buff *fq_tin_dequeue_func(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow) { struct ieee80211_local *local; struct txq_info *txqi; struct codel_vars *cvars; struct codel_params *cparams; struct codel_stats *cstats; local = container_of(fq, struct ieee80211_local, fq); txqi = container_of(tin, struct txq_info, tin); cparams = &local->cparams; cstats = &txqi->cstats; if (flow == &txqi->def_flow) cvars = &txqi->def_cvars; else cvars = &local->cvars[flow - fq->flows]; return codel_dequeue(txqi, &flow->backlog, cparams, cvars, cstats, codel_skb_len_func, codel_skb_time_func, codel_drop_func, codel_dequeue_func); } static void fq_skb_free_func(struct fq *fq, struct fq_tin *tin, struct fq_flow *flow, struct sk_buff *skb) { struct ieee80211_local *local; local = container_of(fq, struct ieee80211_local, fq); ieee80211_free_txskb(&local->hw, skb); } static struct fq_flow *fq_flow_get_default_func(struct fq *fq, struct fq_tin *tin, int idx, struct sk_buff *skb) { struct txq_info *txqi; txqi = container_of(tin, struct txq_info, tin); return &txqi->def_flow; } static void ieee80211_txq_enqueue(struct ieee80211_local *local, struct txq_info *txqi, struct sk_buff *skb) { struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; ieee80211_set_skb_enqueue_time(skb); fq_tin_enqueue(fq, tin, skb, fq_skb_free_func, fq_flow_get_default_func); } void ieee80211_txq_init(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct txq_info *txqi, int tid) { fq_tin_init(&txqi->tin); fq_flow_init(&txqi->def_flow); codel_vars_init(&txqi->def_cvars); codel_stats_init(&txqi->cstats); __skb_queue_head_init(&txqi->frags); txqi->txq.vif = &sdata->vif; if (sta) { txqi->txq.sta = &sta->sta; sta->sta.txq[tid] = &txqi->txq; txqi->txq.tid = tid; txqi->txq.ac = ieee802_1d_to_ac[tid & 7]; } else { sdata->vif.txq = &txqi->txq; txqi->txq.tid = 0; txqi->txq.ac = IEEE80211_AC_BE; } } void ieee80211_txq_purge(struct ieee80211_local *local, struct txq_info *txqi) { struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; fq_tin_reset(fq, tin, fq_skb_free_func); ieee80211_purge_tx_queue(&local->hw, &txqi->frags); } int ieee80211_txq_setup_flows(struct ieee80211_local *local) { struct fq *fq = &local->fq; int ret; int i; bool supp_vht = false; enum nl80211_band band; if (!local->ops->wake_tx_queue) return 0; ret = fq_init(fq, 4096); if (ret) return ret; /* * If the hardware doesn't support VHT, it is safe to limit the maximum * queue size. 4 Mbytes is 64 max-size aggregates in 802.11n. */ for (band = 0; band < NUM_NL80211_BANDS; band++) { struct ieee80211_supported_band *sband; sband = local->hw.wiphy->bands[band]; if (!sband) continue; supp_vht = supp_vht || sband->vht_cap.vht_supported; } if (!supp_vht) fq->memory_limit = 4 << 20; /* 4 Mbytes */ codel_params_init(&local->cparams); local->cparams.interval = MS2TIME(100); local->cparams.target = MS2TIME(20); local->cparams.ecn = true; local->cvars = kcalloc(fq->flows_cnt, sizeof(local->cvars[0]), GFP_KERNEL); if (!local->cvars) { spin_lock_bh(&fq->lock); fq_reset(fq, fq_skb_free_func); spin_unlock_bh(&fq->lock); return -ENOMEM; } for (i = 0; i < fq->flows_cnt; i++) codel_vars_init(&local->cvars[i]); return 0; } void ieee80211_txq_teardown_flows(struct ieee80211_local *local) { struct fq *fq = &local->fq; if (!local->ops->wake_tx_queue) return; kfree(local->cvars); local->cvars = NULL; spin_lock_bh(&fq->lock); fq_reset(fq, fq_skb_free_func); spin_unlock_bh(&fq->lock); } static bool ieee80211_queue_skb(struct ieee80211_local *local, struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct fq *fq = &local->fq; struct ieee80211_vif *vif; struct txq_info *txqi; struct ieee80211_sta *pubsta; if (!local->ops->wake_tx_queue || sdata->vif.type == NL80211_IFTYPE_MONITOR) return false; if (sta && sta->uploaded) pubsta = &sta->sta; else pubsta = NULL; if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); vif = &sdata->vif; txqi = ieee80211_get_txq(local, vif, pubsta, skb); if (!txqi) return false; spin_lock_bh(&fq->lock); ieee80211_txq_enqueue(local, txqi, skb); spin_unlock_bh(&fq->lock); drv_wake_tx_queue(local, txqi); return true; } static bool ieee80211_tx_frags(struct ieee80211_local *local, struct ieee80211_vif *vif, struct ieee80211_sta *sta, struct sk_buff_head *skbs, bool txpending) { struct ieee80211_tx_control control = {}; struct sk_buff *skb, *tmp; unsigned long flags; skb_queue_walk_safe(skbs, skb, tmp) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); int q = info->hw_queue; #ifdef CONFIG_MAC80211_VERBOSE_DEBUG if (WARN_ON_ONCE(q >= local->hw.queues)) { __skb_unlink(skb, skbs); ieee80211_free_txskb(&local->hw, skb); continue; } #endif spin_lock_irqsave(&local->queue_stop_reason_lock, flags); if (local->queue_stop_reasons[q] || (!txpending && !skb_queue_empty(&local->pending[q]))) { if (unlikely(info->flags & IEEE80211_TX_INTFL_OFFCHAN_TX_OK)) { if (local->queue_stop_reasons[q] & ~BIT(IEEE80211_QUEUE_STOP_REASON_OFFCHANNEL)) { /* * Drop off-channel frames if queues * are stopped for any reason other * than off-channel operation. Never * queue them. */ spin_unlock_irqrestore( &local->queue_stop_reason_lock, flags); ieee80211_purge_tx_queue(&local->hw, skbs); return true; } } else { /* * Since queue is stopped, queue up frames for * later transmission from the tx-pending * tasklet when the queue is woken again. */ if (txpending) skb_queue_splice_init(skbs, &local->pending[q]); else skb_queue_splice_tail_init(skbs, &local->pending[q]); spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); return false; } } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); info->control.vif = vif; control.sta = sta; __skb_unlink(skb, skbs); drv_tx(local, &control, skb); } return true; } /* * Returns false if the frame couldn't be transmitted but was queued instead. */ static bool __ieee80211_tx(struct ieee80211_local *local, struct sk_buff_head *skbs, int led_len, struct sta_info *sta, bool txpending) { struct ieee80211_tx_info *info; struct ieee80211_sub_if_data *sdata; struct ieee80211_vif *vif; struct ieee80211_sta *pubsta; struct sk_buff *skb; bool result = true; __le16 fc; if (WARN_ON(skb_queue_empty(skbs))) return true; skb = skb_peek(skbs); fc = ((struct ieee80211_hdr *)skb->data)->frame_control; info = IEEE80211_SKB_CB(skb); sdata = vif_to_sdata(info->control.vif); if (sta && !sta->uploaded) sta = NULL; if (sta) pubsta = &sta->sta; else pubsta = NULL; switch (sdata->vif.type) { case NL80211_IFTYPE_MONITOR: if (sdata->u.mntr.flags & MONITOR_FLAG_ACTIVE) { vif = &sdata->vif; break; } sdata = rcu_dereference(local->monitor_sdata); if (sdata) { vif = &sdata->vif; info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; } else if (ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) { ieee80211_purge_tx_queue(&local->hw, skbs); return true; } else vif = NULL; break; case NL80211_IFTYPE_AP_VLAN: sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); /* fall through */ default: vif = &sdata->vif; break; } result = ieee80211_tx_frags(local, vif, pubsta, skbs, txpending); ieee80211_tpt_led_trig_tx(local, fc, led_len); WARN_ON_ONCE(!skb_queue_empty(skbs)); return result; } /* * Invoke TX handlers, return 0 on success and non-zero if the * frame was dropped or queued. * * The handlers are split into an early and late part. The latter is everything * that can be sensitive to reordering, and will be deferred to after packets * are dequeued from the intermediate queues (when they are enabled). */ static int invoke_tx_handlers_early(struct ieee80211_tx_data *tx) { ieee80211_tx_result res = TX_DROP; #define CALL_TXH(txh) \ do { \ res = txh(tx); \ if (res != TX_CONTINUE) \ goto txh_done; \ } while (0) CALL_TXH(ieee80211_tx_h_dynamic_ps); CALL_TXH(ieee80211_tx_h_check_assoc); CALL_TXH(ieee80211_tx_h_ps_buf); CALL_TXH(ieee80211_tx_h_check_control_port_protocol); CALL_TXH(ieee80211_tx_h_select_key); if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL)) CALL_TXH(ieee80211_tx_h_rate_ctrl); txh_done: if (unlikely(res == TX_DROP)) { I802_DEBUG_INC(tx->local->tx_handlers_drop); if (tx->skb) ieee80211_free_txskb(&tx->local->hw, tx->skb); else ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs); return -1; } else if (unlikely(res == TX_QUEUED)) { I802_DEBUG_INC(tx->local->tx_handlers_queued); return -1; } return 0; } /* * Late handlers can be called while the sta lock is held. Handlers that can * cause packets to be generated will cause deadlock! */ static int invoke_tx_handlers_late(struct ieee80211_tx_data *tx) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(tx->skb); ieee80211_tx_result res = TX_CONTINUE; if (unlikely(info->flags & IEEE80211_TX_INTFL_RETRANSMISSION)) { __skb_queue_tail(&tx->skbs, tx->skb); tx->skb = NULL; goto txh_done; } CALL_TXH(ieee80211_tx_h_michael_mic_add); CALL_TXH(ieee80211_tx_h_sequence); CALL_TXH(ieee80211_tx_h_fragment); /* handlers after fragment must be aware of tx info fragmentation! */ CALL_TXH(ieee80211_tx_h_stats); CALL_TXH(ieee80211_tx_h_encrypt); if (!ieee80211_hw_check(&tx->local->hw, HAS_RATE_CONTROL)) CALL_TXH(ieee80211_tx_h_calculate_duration); #undef CALL_TXH txh_done: if (unlikely(res == TX_DROP)) { I802_DEBUG_INC(tx->local->tx_handlers_drop); if (tx->skb) ieee80211_free_txskb(&tx->local->hw, tx->skb); else ieee80211_purge_tx_queue(&tx->local->hw, &tx->skbs); return -1; } else if (unlikely(res == TX_QUEUED)) { I802_DEBUG_INC(tx->local->tx_handlers_queued); return -1; } return 0; } static int invoke_tx_handlers(struct ieee80211_tx_data *tx) { int r = invoke_tx_handlers_early(tx); if (r) return r; return invoke_tx_handlers_late(tx); } bool ieee80211_tx_prepare_skb(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct sk_buff *skb, int band, struct ieee80211_sta **sta) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_tx_data tx; struct sk_buff *skb2; if (ieee80211_tx_prepare(sdata, &tx, NULL, skb) == TX_DROP) return false; info->band = band; info->control.vif = vif; info->hw_queue = vif->hw_queue[skb_get_queue_mapping(skb)]; if (invoke_tx_handlers(&tx)) return false; if (sta) { if (tx.sta) *sta = &tx.sta->sta; else *sta = NULL; } /* this function isn't suitable for fragmented data frames */ skb2 = __skb_dequeue(&tx.skbs); if (WARN_ON(skb2 != skb || !skb_queue_empty(&tx.skbs))) { ieee80211_free_txskb(hw, skb2); ieee80211_purge_tx_queue(hw, &tx.skbs); return false; } return true; } EXPORT_SYMBOL(ieee80211_tx_prepare_skb); /* * Returns false if the frame couldn't be transmitted but was queued instead. */ static bool ieee80211_tx(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb, bool txpending) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_data tx; ieee80211_tx_result res_prepare; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); bool result = true; int led_len; if (unlikely(skb->len < 10)) { dev_kfree_skb(skb); return true; } /* initialises tx */ led_len = skb->len; res_prepare = ieee80211_tx_prepare(sdata, &tx, sta, skb); if (unlikely(res_prepare == TX_DROP)) { ieee80211_free_txskb(&local->hw, skb); return true; } else if (unlikely(res_prepare == TX_QUEUED)) { return true; } /* set up hw_queue value early */ if (!(info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) || !ieee80211_hw_check(&local->hw, QUEUE_CONTROL)) info->hw_queue = sdata->vif.hw_queue[skb_get_queue_mapping(skb)]; if (invoke_tx_handlers_early(&tx)) return false; if (ieee80211_queue_skb(local, sdata, tx.sta, tx.skb)) return true; if (!invoke_tx_handlers_late(&tx)) result = __ieee80211_tx(local, &tx.skbs, led_len, tx.sta, txpending); return result; } /* device xmit handlers */ static int ieee80211_skb_resize(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int head_need, bool may_encrypt) { struct ieee80211_local *local = sdata->local; int tail_need = 0; if (may_encrypt && sdata->crypto_tx_tailroom_needed_cnt) { tail_need = IEEE80211_ENCRYPT_TAILROOM; tail_need -= skb_tailroom(skb); tail_need = max_t(int, tail_need, 0); } if (skb_cloned(skb) && (!ieee80211_hw_check(&local->hw, SUPPORTS_CLONED_SKBS) || !skb_clone_writable(skb, ETH_HLEN) || (may_encrypt && sdata->crypto_tx_tailroom_needed_cnt))) I802_DEBUG_INC(local->tx_expand_skb_head_cloned); else if (head_need || tail_need) I802_DEBUG_INC(local->tx_expand_skb_head); else return 0; if (pskb_expand_head(skb, head_need, tail_need, GFP_ATOMIC)) { wiphy_debug(local->hw.wiphy, "failed to reallocate TX buffer\n"); return -ENOMEM; } return 0; } void ieee80211_xmit(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; int headroom; bool may_encrypt; may_encrypt = !(info->flags & IEEE80211_TX_INTFL_DONT_ENCRYPT); headroom = local->tx_headroom; if (may_encrypt) headroom += sdata->encrypt_headroom; headroom -= skb_headroom(skb); headroom = max_t(int, 0, headroom); if (ieee80211_skb_resize(sdata, skb, headroom, may_encrypt)) { ieee80211_free_txskb(&local->hw, skb); return; } hdr = (struct ieee80211_hdr *) skb->data; info->control.vif = &sdata->vif; if (ieee80211_vif_is_mesh(&sdata->vif)) { if (ieee80211_is_data(hdr->frame_control) && is_unicast_ether_addr(hdr->addr1)) { if (mesh_nexthop_resolve(sdata, skb)) return; /* skb queued: don't free */ } else { ieee80211_mps_set_frame_flags(sdata, NULL, hdr); } } ieee80211_set_qos_hdr(sdata, skb); ieee80211_tx(sdata, sta, skb, false); } static bool ieee80211_parse_tx_radiotap(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_radiotap_iterator iterator; struct ieee80211_radiotap_header *rthdr = (struct ieee80211_radiotap_header *) skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_supported_band *sband = local->hw.wiphy->bands[info->band]; int ret = ieee80211_radiotap_iterator_init(&iterator, rthdr, skb->len, NULL); u16 txflags; u16 rate = 0; bool rate_found = false; u8 rate_retries = 0; u16 rate_flags = 0; u8 mcs_known, mcs_flags, mcs_bw; u16 vht_known; u8 vht_mcs = 0, vht_nss = 0; int i; info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT | IEEE80211_TX_CTL_DONTFRAG; /* * for every radiotap entry that is present * (ieee80211_radiotap_iterator_next returns -ENOENT when no more * entries present, or -EINVAL on error) */ while (!ret) { ret = ieee80211_radiotap_iterator_next(&iterator); if (ret) continue; /* see if this argument is something we can use */ switch (iterator.this_arg_index) { /* * You must take care when dereferencing iterator.this_arg * for multibyte types... the pointer is not aligned. Use * get_unaligned((type *)iterator.this_arg) to dereference * iterator.this_arg for type "type" safely on all arches. */ case IEEE80211_RADIOTAP_FLAGS: if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FCS) { /* * this indicates that the skb we have been * handed has the 32-bit FCS CRC at the end... * we should react to that by snipping it off * because it will be recomputed and added * on transmission */ if (skb->len < (iterator._max_length + FCS_LEN)) return false; skb_trim(skb, skb->len - FCS_LEN); } if (*iterator.this_arg & IEEE80211_RADIOTAP_F_WEP) info->flags &= ~IEEE80211_TX_INTFL_DONT_ENCRYPT; if (*iterator.this_arg & IEEE80211_RADIOTAP_F_FRAG) info->flags &= ~IEEE80211_TX_CTL_DONTFRAG; break; case IEEE80211_RADIOTAP_TX_FLAGS: txflags = get_unaligned_le16(iterator.this_arg); if (txflags & IEEE80211_RADIOTAP_F_TX_NOACK) info->flags |= IEEE80211_TX_CTL_NO_ACK; break; case IEEE80211_RADIOTAP_RATE: rate = *iterator.this_arg; rate_flags = 0; rate_found = true; break; case IEEE80211_RADIOTAP_DATA_RETRIES: rate_retries = *iterator.this_arg; break; case IEEE80211_RADIOTAP_MCS: mcs_known = iterator.this_arg[0]; mcs_flags = iterator.this_arg[1]; if (!(mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_MCS)) break; rate_found = true; rate = iterator.this_arg[2]; rate_flags = IEEE80211_TX_RC_MCS; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_GI && mcs_flags & IEEE80211_RADIOTAP_MCS_SGI) rate_flags |= IEEE80211_TX_RC_SHORT_GI; mcs_bw = mcs_flags & IEEE80211_RADIOTAP_MCS_BW_MASK; if (mcs_known & IEEE80211_RADIOTAP_MCS_HAVE_BW && mcs_bw == IEEE80211_RADIOTAP_MCS_BW_40) rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; break; case IEEE80211_RADIOTAP_VHT: vht_known = get_unaligned_le16(iterator.this_arg); rate_found = true; rate_flags = IEEE80211_TX_RC_VHT_MCS; if ((vht_known & IEEE80211_RADIOTAP_VHT_KNOWN_GI) && (iterator.this_arg[2] & IEEE80211_RADIOTAP_VHT_FLAG_SGI)) rate_flags |= IEEE80211_TX_RC_SHORT_GI; if (vht_known & IEEE80211_RADIOTAP_VHT_KNOWN_BANDWIDTH) { if (iterator.this_arg[3] == 1) rate_flags |= IEEE80211_TX_RC_40_MHZ_WIDTH; else if (iterator.this_arg[3] == 4) rate_flags |= IEEE80211_TX_RC_80_MHZ_WIDTH; else if (iterator.this_arg[3] == 11) rate_flags |= IEEE80211_TX_RC_160_MHZ_WIDTH; } vht_mcs = iterator.this_arg[4] >> 4; vht_nss = iterator.this_arg[4] & 0xF; break; /* * Please update the file * Documentation/networking/mac80211-injection.txt * when parsing new fields here. */ default: break; } } if (ret != -ENOENT) /* ie, if we didn't simply run out of fields */ return false; if (rate_found) { info->control.flags |= IEEE80211_TX_CTRL_RATE_INJECT; for (i = 0; i < IEEE80211_TX_MAX_RATES; i++) { info->control.rates[i].idx = -1; info->control.rates[i].flags = 0; info->control.rates[i].count = 0; } if (rate_flags & IEEE80211_TX_RC_MCS) { info->control.rates[0].idx = rate; } else if (rate_flags & IEEE80211_TX_RC_VHT_MCS) { ieee80211_rate_set_vht(info->control.rates, vht_mcs, vht_nss); } else { for (i = 0; i < sband->n_bitrates; i++) { if (rate * 5 != sband->bitrates[i].bitrate) continue; info->control.rates[0].idx = i; break; } } if (info->control.rates[0].idx < 0) info->control.flags &= ~IEEE80211_TX_CTRL_RATE_INJECT; info->control.rates[0].flags = rate_flags; info->control.rates[0].count = min_t(u8, rate_retries + 1, local->hw.max_rate_tries); } /* * remove the radiotap header * iterator->_max_length was sanity-checked against * skb->len by iterator init */ skb_pull(skb, iterator._max_length); return true; } netdev_tx_t ieee80211_monitor_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr); struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_radiotap_header *prthdr = (struct ieee80211_radiotap_header *)skb->data; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; struct ieee80211_sub_if_data *tmp_sdata, *sdata; struct cfg80211_chan_def *chandef; u16 len_rthdr; int hdrlen; /* check for not even having the fixed radiotap header part */ if (unlikely(skb->len < sizeof(struct ieee80211_radiotap_header))) goto fail; /* too short to be possibly valid */ /* is it a header version we can trust to find length from? */ if (unlikely(prthdr->it_version)) goto fail; /* only version 0 is supported */ /* then there must be a radiotap header with a length we can use */ len_rthdr = ieee80211_get_radiotap_len(skb->data); /* does the skb contain enough to deliver on the alleged length? */ if (unlikely(skb->len < len_rthdr)) goto fail; /* skb too short for claimed rt header extent */ /* * fix up the pointers accounting for the radiotap * header still being in there. We are being given * a precooked IEEE80211 header so no need for * normal processing */ skb_set_mac_header(skb, len_rthdr); /* * these are just fixed to the end of the rt area since we * don't have any better information and at this point, nobody cares */ skb_set_network_header(skb, len_rthdr); skb_set_transport_header(skb, len_rthdr); if (skb->len < len_rthdr + 2) goto fail; hdr = (struct ieee80211_hdr *)(skb->data + len_rthdr); hdrlen = ieee80211_hdrlen(hdr->frame_control); if (skb->len < len_rthdr + hdrlen) goto fail; /* * Initialize skb->protocol if the injected frame is a data frame * carrying a rfc1042 header */ if (ieee80211_is_data(hdr->frame_control) && skb->len >= len_rthdr + hdrlen + sizeof(rfc1042_header) + 2) { u8 *payload = (u8 *)hdr + hdrlen; if (ether_addr_equal(payload, rfc1042_header)) skb->protocol = cpu_to_be16((payload[6] << 8) | payload[7]); } memset(info, 0, sizeof(*info)); info->flags = IEEE80211_TX_CTL_REQ_TX_STATUS | IEEE80211_TX_CTL_INJECTED; rcu_read_lock(); /* * We process outgoing injected frames that have a local address * we handle as though they are non-injected frames. * This code here isn't entirely correct, the local MAC address * isn't always enough to find the interface to use; for proper * VLAN/WDS support we will need a different mechanism (which * likely isn't going to be monitor interfaces). */ sdata = IEEE80211_DEV_TO_SUB_IF(dev); list_for_each_entry_rcu(tmp_sdata, &local->interfaces, list) { if (!ieee80211_sdata_running(tmp_sdata)) continue; if (tmp_sdata->vif.type == NL80211_IFTYPE_MONITOR || tmp_sdata->vif.type == NL80211_IFTYPE_AP_VLAN || tmp_sdata->vif.type == NL80211_IFTYPE_WDS) continue; if (ether_addr_equal(tmp_sdata->vif.addr, hdr->addr2)) { sdata = tmp_sdata; break; } } chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!chanctx_conf) { tmp_sdata = rcu_dereference(local->monitor_sdata); if (tmp_sdata) chanctx_conf = rcu_dereference(tmp_sdata->vif.chanctx_conf); } if (chanctx_conf) chandef = &chanctx_conf->def; else if (!local->use_chanctx) chandef = &local->_oper_chandef; else goto fail_rcu; /* * Frame injection is not allowed if beaconing is not allowed * or if we need radar detection. Beaconing is usually not allowed when * the mode or operation (Adhoc, AP, Mesh) does not support DFS. * Passive scan is also used in world regulatory domains where * your country is not known and as such it should be treated as * NO TX unless the channel is explicitly allowed in which case * your current regulatory domain would not have the passive scan * flag. * * Since AP mode uses monitor interfaces to inject/TX management * frames we can make AP mode the exception to this rule once it * supports radar detection as its implementation can deal with * radar detection by itself. We can do that later by adding a * monitor flag interfaces used for AP support. */ if (!cfg80211_reg_can_beacon(local->hw.wiphy, chandef, sdata->vif.type)) goto fail_rcu; info->band = chandef->chan->band; /* process and remove the injection radiotap header */ if (!ieee80211_parse_tx_radiotap(local, skb)) goto fail_rcu; ieee80211_xmit(sdata, NULL, skb); rcu_read_unlock(); return NETDEV_TX_OK; fail_rcu: rcu_read_unlock(); fail: dev_kfree_skb(skb); return NETDEV_TX_OK; /* meaning, we dealt with the skb */ } static inline bool ieee80211_is_tdls_setup(struct sk_buff *skb) { u16 ethertype = (skb->data[12] << 8) | skb->data[13]; return ethertype == ETH_P_TDLS && skb->len > 14 && skb->data[14] == WLAN_TDLS_SNAP_RFTYPE; } static int ieee80211_lookup_ra_sta(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, struct sta_info **sta_out) { struct sta_info *sta; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: sta = rcu_dereference(sdata->u.vlan.sta); if (sta) { *sta_out = sta; return 0; } else if (sdata->wdev.use_4addr) { return -ENOLINK; } /* fall through */ case NL80211_IFTYPE_AP: case NL80211_IFTYPE_OCB: case NL80211_IFTYPE_ADHOC: if (is_multicast_ether_addr(skb->data)) { *sta_out = ERR_PTR(-ENOENT); return 0; } sta = sta_info_get_bss(sdata, skb->data); break; case NL80211_IFTYPE_WDS: sta = sta_info_get(sdata, sdata->u.wds.remote_addr); break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: /* determined much later */ *sta_out = NULL; return 0; #endif case NL80211_IFTYPE_STATION: if (sdata->wdev.wiphy->flags & WIPHY_FLAG_SUPPORTS_TDLS) { sta = sta_info_get(sdata, skb->data); if (sta && test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { if (test_sta_flag(sta, WLAN_STA_TDLS_PEER_AUTH)) { *sta_out = sta; return 0; } /* * TDLS link during setup - throw out frames to * peer. Allow TDLS-setup frames to unauthorized * peers for the special case of a link teardown * after a TDLS sta is removed due to being * unreachable. */ if (!ieee80211_is_tdls_setup(skb)) return -EINVAL; } } sta = sta_info_get(sdata, sdata->u.mgd.bssid); if (!sta) return -ENOLINK; break; default: return -EINVAL; } *sta_out = sta ?: ERR_PTR(-ENOENT); return 0; } /** * ieee80211_build_hdr - build 802.11 header in the given frame * @sdata: virtual interface to build the header for * @skb: the skb to build the header in * @info_flags: skb flags to set * * This function takes the skb with 802.3 header and reformats the header to * the appropriate IEEE 802.11 header based on which interface the packet is * being transmitted on. * * Note that this function also takes care of the TX status request and * potential unsharing of the SKB - this needs to be interleaved with the * header building. * * The function requires the read-side RCU lock held * * Returns: the (possibly reallocated) skb or an ERR_PTR() code */ static struct sk_buff *ieee80211_build_hdr(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 info_flags, struct sta_info *sta) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info; int head_need; u16 ethertype, hdrlen, meshhdrlen = 0; __le16 fc; struct ieee80211_hdr hdr; struct ieee80211s_hdr mesh_hdr __maybe_unused; struct mesh_path __maybe_unused *mppath = NULL, *mpath = NULL; const u8 *encaps_data; int encaps_len, skip_header_bytes; bool wme_sta = false, authorized = false; bool tdls_peer; bool multicast; u16 info_id = 0; struct ieee80211_chanctx_conf *chanctx_conf; struct ieee80211_sub_if_data *ap_sdata; enum nl80211_band band; int ret; if (IS_ERR(sta)) sta = NULL; /* convert Ethernet header to proper 802.11 header (based on * operation mode) */ ethertype = (skb->data[12] << 8) | skb->data[13]; fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: if (sdata->wdev.use_4addr) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr.addr1, sta->sta.addr, ETH_ALEN); memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 30; authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); wme_sta = sta->sta.wme; } ap_sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); chanctx_conf = rcu_dereference(ap_sdata->vif.chanctx_conf); if (!chanctx_conf) { ret = -ENOTCONN; goto free; } band = chanctx_conf->def.chan->band; if (sdata->wdev.use_4addr) break; /* fall through */ case NL80211_IFTYPE_AP: if (sdata->vif.type == NL80211_IFTYPE_AP) chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!chanctx_conf) { ret = -ENOTCONN; goto free; } fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA BSSID SA */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 24; band = chanctx_conf->def.chan->band; break; case NL80211_IFTYPE_WDS: fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN); memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 30; /* * This is the exception! WDS style interfaces are prohibited * when channel contexts are in used so this must be valid */ band = local->hw.conf.chandef.chan->band; break; #ifdef CONFIG_MAC80211_MESH case NL80211_IFTYPE_MESH_POINT: if (!is_multicast_ether_addr(skb->data)) { struct sta_info *next_hop; bool mpp_lookup = true; mpath = mesh_path_lookup(sdata, skb->data); if (mpath) { mpp_lookup = false; next_hop = rcu_dereference(mpath->next_hop); if (!next_hop || !(mpath->flags & (MESH_PATH_ACTIVE | MESH_PATH_RESOLVING))) mpp_lookup = true; } if (mpp_lookup) { mppath = mpp_path_lookup(sdata, skb->data); if (mppath) mppath->exp_time = jiffies; } if (mppath && mpath) mesh_path_del(sdata, mpath->dst); } /* * Use address extension if it is a packet from * another interface or if we know the destination * is being proxied by a portal (i.e. portal address * differs from proxied address) */ if (ether_addr_equal(sdata->vif.addr, skb->data + ETH_ALEN) && !(mppath && !ether_addr_equal(mppath->mpp, skb->data))) { hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, skb->data, skb->data + ETH_ALEN); meshhdrlen = ieee80211_new_mesh_header(sdata, &mesh_hdr, NULL, NULL); } else { /* DS -> MBSS (802.11-2012 13.11.3.3). * For unicast with unknown forwarding information, * destination might be in the MBSS or if that fails * forwarded to another mesh gate. In either case * resolution will be handled in ieee80211_xmit(), so * leave the original DA. This also works for mcast */ const u8 *mesh_da = skb->data; if (mppath) mesh_da = mppath->mpp; else if (mpath) mesh_da = mpath->dst; hdrlen = ieee80211_fill_mesh_addresses(&hdr, &fc, mesh_da, sdata->vif.addr); if (is_multicast_ether_addr(mesh_da)) /* DA TA mSA AE:SA */ meshhdrlen = ieee80211_new_mesh_header( sdata, &mesh_hdr, skb->data + ETH_ALEN, NULL); else /* RA TA mDA mSA AE:DA SA */ meshhdrlen = ieee80211_new_mesh_header( sdata, &mesh_hdr, skb->data, skb->data + ETH_ALEN); } chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!chanctx_conf) { ret = -ENOTCONN; goto free; } band = chanctx_conf->def.chan->band; break; #endif case NL80211_IFTYPE_STATION: /* we already did checks when looking up the RA STA */ tdls_peer = test_sta_flag(sta, WLAN_STA_TDLS_PEER); if (tdls_peer) { /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, sdata->u.mgd.bssid, ETH_ALEN); hdrlen = 24; } else if (sdata->u.mgd.use_4addr && cpu_to_be16(ethertype) != sdata->control_port_protocol) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); memcpy(hdr.addr2, sdata->vif.addr, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN); hdrlen = 30; } else { fc |= cpu_to_le16(IEEE80211_FCTL_TODS); /* BSSID SA DA */ memcpy(hdr.addr1, sdata->u.mgd.bssid, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, skb->data, ETH_ALEN); hdrlen = 24; } chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!chanctx_conf) { ret = -ENOTCONN; goto free; } band = chanctx_conf->def.chan->band; break; case NL80211_IFTYPE_OCB: /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); eth_broadcast_addr(hdr.addr3); hdrlen = 24; chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!chanctx_conf) { ret = -ENOTCONN; goto free; } band = chanctx_conf->def.chan->band; break; case NL80211_IFTYPE_ADHOC: /* DA SA BSSID */ memcpy(hdr.addr1, skb->data, ETH_ALEN); memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN); memcpy(hdr.addr3, sdata->u.ibss.bssid, ETH_ALEN); hdrlen = 24; chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!chanctx_conf) { ret = -ENOTCONN; goto free; } band = chanctx_conf->def.chan->band; break; default: ret = -EINVAL; goto free; } multicast = is_multicast_ether_addr(hdr.addr1); /* sta is always NULL for mesh */ if (sta) { authorized = test_sta_flag(sta, WLAN_STA_AUTHORIZED); wme_sta = sta->sta.wme; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { /* For mesh, the use of the QoS header is mandatory */ wme_sta = true; } /* receiver does QoS (which also means we do) use it */ if (wme_sta) { fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); hdrlen += 2; } /* * Drop unicast frames to unauthorised stations unless they are * EAPOL frames from the local station. */ if (unlikely(!ieee80211_vif_is_mesh(&sdata->vif) && (sdata->vif.type != NL80211_IFTYPE_OCB) && !multicast && !authorized && (cpu_to_be16(ethertype) != sdata->control_port_protocol || !ether_addr_equal(sdata->vif.addr, skb->data + ETH_ALEN)))) { #ifdef CONFIG_MAC80211_VERBOSE_DEBUG net_info_ratelimited("%s: dropped frame to %pM (unauthorized port)\n", sdata->name, hdr.addr1); #endif I802_DEBUG_INC(local->tx_handlers_drop_unauth_port); ret = -EPERM; goto free; } if (unlikely(!multicast && skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS)) { struct sk_buff *ack_skb = skb_clone_sk(skb); if (ack_skb) { unsigned long flags; int id; spin_lock_irqsave(&local->ack_status_lock, flags); id = idr_alloc(&local->ack_status_frames, ack_skb, 1, 0x10000, GFP_ATOMIC); spin_unlock_irqrestore(&local->ack_status_lock, flags); if (id >= 0) { info_id = id; info_flags |= IEEE80211_TX_CTL_REQ_TX_STATUS; } else { kfree_skb(ack_skb); } } } /* * If the skb is shared we need to obtain our own copy. */ if (skb_shared(skb)) { struct sk_buff *tmp_skb = skb; /* can't happen -- skb is a clone if info_id != 0 */ WARN_ON(info_id); skb = skb_clone(skb, GFP_ATOMIC); kfree_skb(tmp_skb); if (!skb) { ret = -ENOMEM; goto free; } } hdr.frame_control = fc; hdr.duration_id = 0; hdr.seq_ctrl = 0; skip_header_bytes = ETH_HLEN; if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) { encaps_data = bridge_tunnel_header; encaps_len = sizeof(bridge_tunnel_header); skip_header_bytes -= 2; } else if (ethertype >= ETH_P_802_3_MIN) { encaps_data = rfc1042_header; encaps_len = sizeof(rfc1042_header); skip_header_bytes -= 2; } else { encaps_data = NULL; encaps_len = 0; } skb_pull(skb, skip_header_bytes); head_need = hdrlen + encaps_len + meshhdrlen - skb_headroom(skb); /* * So we need to modify the skb header and hence need a copy of * that. The head_need variable above doesn't, so far, include * the needed header space that we don't need right away. If we * can, then we don't reallocate right now but only after the * frame arrives at the master device (if it does...) * * If we cannot, however, then we will reallocate to include all * the ever needed space. Also, if we need to reallocate it anyway, * make it big enough for everything we may ever need. */ if (head_need > 0 || skb_cloned(skb)) { head_need += sdata->encrypt_headroom; head_need += local->tx_headroom; head_need = max_t(int, 0, head_need); if (ieee80211_skb_resize(sdata, skb, head_need, true)) { ieee80211_free_txskb(&local->hw, skb); skb = NULL; return ERR_PTR(-ENOMEM); } } if (encaps_data) memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len); #ifdef CONFIG_MAC80211_MESH if (meshhdrlen > 0) memcpy(skb_push(skb, meshhdrlen), &mesh_hdr, meshhdrlen); #endif if (ieee80211_is_data_qos(fc)) { __le16 *qos_control; qos_control = (__le16 *) skb_push(skb, 2); memcpy(skb_push(skb, hdrlen - 2), &hdr, hdrlen - 2); /* * Maybe we could actually set some fields here, for now just * initialise to zero to indicate no special operation. */ *qos_control = 0; } else memcpy(skb_push(skb, hdrlen), &hdr, hdrlen); skb_reset_mac_header(skb); info = IEEE80211_SKB_CB(skb); memset(info, 0, sizeof(*info)); info->flags = info_flags; info->ack_frame_id = info_id; info->band = band; return skb; free: kfree_skb(skb); return ERR_PTR(ret); } /* * fast-xmit overview * * The core idea of this fast-xmit is to remove per-packet checks by checking * them out of band. ieee80211_check_fast_xmit() implements the out-of-band * checks that are needed to get the sta->fast_tx pointer assigned, after which * much less work can be done per packet. For example, fragmentation must be * disabled or the fast_tx pointer will not be set. All the conditions are seen * in the code here. * * Once assigned, the fast_tx data structure also caches the per-packet 802.11 * header and other data to aid packet processing in ieee80211_xmit_fast(). * * The most difficult part of this is that when any of these assumptions * change, an external trigger (i.e. a call to ieee80211_clear_fast_xmit(), * ieee80211_check_fast_xmit() or friends) is required to reset the data, * since the per-packet code no longer checks the conditions. This is reflected * by the calls to these functions throughout the rest of the code, and must be * maintained if any of the TX path checks change. */ void ieee80211_check_fast_xmit(struct sta_info *sta) { struct ieee80211_fast_tx build = {}, *fast_tx = NULL, *old; struct ieee80211_local *local = sta->local; struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_hdr *hdr = (void *)build.hdr; struct ieee80211_chanctx_conf *chanctx_conf; __le16 fc; if (!ieee80211_hw_check(&local->hw, SUPPORT_FAST_XMIT)) return; /* Locking here protects both the pointer itself, and against concurrent * invocations winning data access races to, e.g., the key pointer that * is used. * Without it, the invocation of this function right after the key * pointer changes wouldn't be sufficient, as another CPU could access * the pointer, then stall, and then do the cache update after the CPU * that invalidated the key. * With the locking, such scenarios cannot happen as the check for the * key and the fast-tx assignment are done atomically, so the CPU that * modifies the key will either wait or other one will see the key * cleared/changed already. */ spin_lock_bh(&sta->lock); if (ieee80211_hw_check(&local->hw, SUPPORTS_PS) && !ieee80211_hw_check(&local->hw, SUPPORTS_DYNAMIC_PS) && sdata->vif.type == NL80211_IFTYPE_STATION) goto out; if (!test_sta_flag(sta, WLAN_STA_AUTHORIZED)) goto out; if (test_sta_flag(sta, WLAN_STA_PS_STA) || test_sta_flag(sta, WLAN_STA_PS_DRIVER) || test_sta_flag(sta, WLAN_STA_PS_DELIVER) || test_sta_flag(sta, WLAN_STA_CLEAR_PS_FILT)) goto out; if (sdata->noack_map) goto out; /* fast-xmit doesn't handle fragmentation at all */ if (local->hw.wiphy->frag_threshold != (u32)-1 && !ieee80211_hw_check(&local->hw, SUPPORTS_TX_FRAG)) goto out; rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!chanctx_conf) { rcu_read_unlock(); goto out; } build.band = chanctx_conf->def.chan->band; rcu_read_unlock(); fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA); switch (sdata->vif.type) { case NL80211_IFTYPE_ADHOC: /* DA SA BSSID */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); memcpy(hdr->addr3, sdata->u.ibss.bssid, ETH_ALEN); build.hdr_len = 24; break; case NL80211_IFTYPE_STATION: if (test_sta_flag(sta, WLAN_STA_TDLS_PEER)) { /* DA SA BSSID */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); memcpy(hdr->addr3, sdata->u.mgd.bssid, ETH_ALEN); build.hdr_len = 24; break; } if (sdata->u.mgd.use_4addr) { /* non-regular ethertype cannot use the fastpath */ fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr->addr1, sdata->u.mgd.bssid, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr4); build.hdr_len = 30; break; } fc |= cpu_to_le16(IEEE80211_FCTL_TODS); /* BSSID SA DA */ memcpy(hdr->addr1, sdata->u.mgd.bssid, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr2); build.hdr_len = 24; break; case NL80211_IFTYPE_AP_VLAN: if (sdata->wdev.use_4addr) { fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS); /* RA TA DA SA */ memcpy(hdr->addr1, sta->sta.addr, ETH_ALEN); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); build.da_offs = offsetof(struct ieee80211_hdr, addr3); build.sa_offs = offsetof(struct ieee80211_hdr, addr4); build.hdr_len = 30; break; } /* fall through */ case NL80211_IFTYPE_AP: fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS); /* DA BSSID SA */ build.da_offs = offsetof(struct ieee80211_hdr, addr1); memcpy(hdr->addr2, sdata->vif.addr, ETH_ALEN); build.sa_offs = offsetof(struct ieee80211_hdr, addr3); build.hdr_len = 24; break; default: /* not handled on fast-xmit */ goto out; } if (sta->sta.wme) { build.hdr_len += 2; fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA); } /* We store the key here so there's no point in using rcu_dereference() * but that's fine because the code that changes the pointers will call * this function after doing so. For a single CPU that would be enough, * for multiple see the comment above. */ build.key = rcu_access_pointer(sta->ptk[sta->ptk_idx]); if (!build.key) build.key = rcu_access_pointer(sdata->default_unicast_key); if (build.key) { bool gen_iv, iv_spc, mmic; gen_iv = build.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV; iv_spc = build.key->conf.flags & IEEE80211_KEY_FLAG_PUT_IV_SPACE; mmic = build.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_MMIC; /* don't handle software crypto */ if (!(build.key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE)) goto out; switch (build.key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: /* add fixed key ID */ if (gen_iv) { (build.hdr + build.hdr_len)[3] = 0x20 | (build.key->conf.keyidx << 6); build.pn_offs = build.hdr_len; } if (gen_iv || iv_spc) build.hdr_len += IEEE80211_CCMP_HDR_LEN; break; case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: /* add fixed key ID */ if (gen_iv) { (build.hdr + build.hdr_len)[3] = 0x20 | (build.key->conf.keyidx << 6); build.pn_offs = build.hdr_len; } if (gen_iv || iv_spc) build.hdr_len += IEEE80211_GCMP_HDR_LEN; break; case WLAN_CIPHER_SUITE_TKIP: /* cannot handle MMIC or IV generation in xmit-fast */ if (mmic || gen_iv) goto out; if (iv_spc) build.hdr_len += IEEE80211_TKIP_IV_LEN; break; case WLAN_CIPHER_SUITE_WEP40: case WLAN_CIPHER_SUITE_WEP104: /* cannot handle IV generation in fast-xmit */ if (gen_iv) goto out; if (iv_spc) build.hdr_len += IEEE80211_WEP_IV_LEN; break; case WLAN_CIPHER_SUITE_AES_CMAC: case WLAN_CIPHER_SUITE_BIP_CMAC_256: case WLAN_CIPHER_SUITE_BIP_GMAC_128: case WLAN_CIPHER_SUITE_BIP_GMAC_256: WARN(1, "management cipher suite 0x%x enabled for data\n", build.key->conf.cipher); goto out; default: /* we don't know how to generate IVs for this at all */ if (WARN_ON(gen_iv)) goto out; /* pure hardware keys are OK, of course */ if (!(build.key->flags & KEY_FLAG_CIPHER_SCHEME)) break; /* cipher scheme might require space allocation */ if (iv_spc && build.key->conf.iv_len > IEEE80211_FAST_XMIT_MAX_IV) goto out; if (iv_spc) build.hdr_len += build.key->conf.iv_len; } fc |= cpu_to_le16(IEEE80211_FCTL_PROTECTED); } hdr->frame_control = fc; memcpy(build.hdr + build.hdr_len, rfc1042_header, sizeof(rfc1042_header)); build.hdr_len += sizeof(rfc1042_header); fast_tx = kmemdup(&build, sizeof(build), GFP_ATOMIC); /* if the kmemdup fails, continue w/o fast_tx */ if (!fast_tx) goto out; out: /* we might have raced against another call to this function */ old = rcu_dereference_protected(sta->fast_tx, lockdep_is_held(&sta->lock)); rcu_assign_pointer(sta->fast_tx, fast_tx); if (old) kfree_rcu(old, rcu_head); spin_unlock_bh(&sta->lock); } void ieee80211_check_fast_xmit_all(struct ieee80211_local *local) { struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) ieee80211_check_fast_xmit(sta); rcu_read_unlock(); } void ieee80211_check_fast_xmit_iface(struct ieee80211_sub_if_data *sdata) { struct ieee80211_local *local = sdata->local; struct sta_info *sta; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata && (!sta->sdata->bss || sta->sdata->bss != sdata->bss)) continue; ieee80211_check_fast_xmit(sta); } rcu_read_unlock(); } void ieee80211_clear_fast_xmit(struct sta_info *sta) { struct ieee80211_fast_tx *fast_tx; spin_lock_bh(&sta->lock); fast_tx = rcu_dereference_protected(sta->fast_tx, lockdep_is_held(&sta->lock)); RCU_INIT_POINTER(sta->fast_tx, NULL); spin_unlock_bh(&sta->lock); if (fast_tx) kfree_rcu(fast_tx, rcu_head); } static bool ieee80211_amsdu_realloc_pad(struct ieee80211_local *local, struct sk_buff *skb, int headroom, int *subframe_len) { int amsdu_len = *subframe_len + sizeof(struct ethhdr); int padding = (4 - amsdu_len) & 3; if (skb_headroom(skb) < headroom || skb_tailroom(skb) < padding) { I802_DEBUG_INC(local->tx_expand_skb_head); if (pskb_expand_head(skb, headroom, padding, GFP_ATOMIC)) { wiphy_debug(local->hw.wiphy, "failed to reallocate TX buffer\n"); return false; } } if (padding) { *subframe_len += padding; memset(skb_put(skb, padding), 0, padding); } return true; } static bool ieee80211_amsdu_prepare_head(struct ieee80211_sub_if_data *sdata, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr; struct ethhdr *amsdu_hdr; int hdr_len = fast_tx->hdr_len - sizeof(rfc1042_header); int subframe_len = skb->len - hdr_len; void *data; u8 *qc, *h_80211_src, *h_80211_dst; const u8 *bssid; if (info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) return false; if (info->control.flags & IEEE80211_TX_CTRL_AMSDU) return true; if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(*amsdu_hdr), &subframe_len)) return false; data = skb_push(skb, sizeof(*amsdu_hdr)); memmove(data, data + sizeof(*amsdu_hdr), hdr_len); hdr = data; amsdu_hdr = data + hdr_len; /* h_80211_src/dst is addr* field within hdr */ h_80211_src = data + fast_tx->sa_offs; h_80211_dst = data + fast_tx->da_offs; amsdu_hdr->h_proto = cpu_to_be16(subframe_len); ether_addr_copy(amsdu_hdr->h_source, h_80211_src); ether_addr_copy(amsdu_hdr->h_dest, h_80211_dst); /* according to IEEE 802.11-2012 8.3.2 table 8-19, the outer SA/DA * fields needs to be changed to BSSID for A-MSDU frames depending * on FromDS/ToDS values. */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: bssid = sdata->u.mgd.bssid; break; case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: bssid = sdata->vif.addr; break; default: bssid = NULL; } if (bssid && ieee80211_has_fromds(hdr->frame_control)) ether_addr_copy(h_80211_src, bssid); if (bssid && ieee80211_has_tods(hdr->frame_control)) ether_addr_copy(h_80211_dst, bssid); qc = ieee80211_get_qos_ctl(hdr); *qc |= IEEE80211_QOS_CTL_A_MSDU_PRESENT; info->control.flags |= IEEE80211_TX_CTRL_AMSDU; return true; } static bool ieee80211_amsdu_aggregate(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; struct fq *fq = &local->fq; struct fq_tin *tin; struct fq_flow *flow; u8 tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; struct ieee80211_txq *txq = sta->sta.txq[tid]; struct txq_info *txqi; struct sk_buff **frag_tail, *head; int subframe_len = skb->len - ETH_ALEN; u8 max_subframes = sta->sta.max_amsdu_subframes; int max_frags = local->hw.max_tx_fragments; int max_amsdu_len = sta->sta.max_amsdu_len; __be16 len; void *data; bool ret = false; unsigned int orig_len; int n = 1, nfrags; if (!ieee80211_hw_check(&local->hw, TX_AMSDU)) return false; if (!txq) return false; txqi = to_txq_info(txq); if (test_bit(IEEE80211_TXQ_NO_AMSDU, &txqi->flags)) return false; if (sta->sta.max_rc_amsdu_len) max_amsdu_len = min_t(int, max_amsdu_len, sta->sta.max_rc_amsdu_len); spin_lock_bh(&fq->lock); /* TODO: Ideally aggregation should be done on dequeue to remain * responsive to environment changes. */ tin = &txqi->tin; flow = fq_flow_classify(fq, tin, skb, fq_flow_get_default_func); head = skb_peek_tail(&flow->queue); if (!head) goto out; orig_len = head->len; if (skb->len + head->len > max_amsdu_len) goto out; if (!ieee80211_amsdu_prepare_head(sdata, fast_tx, head)) goto out; nfrags = 1 + skb_shinfo(skb)->nr_frags; nfrags += 1 + skb_shinfo(head)->nr_frags; frag_tail = &skb_shinfo(head)->frag_list; while (*frag_tail) { nfrags += 1 + skb_shinfo(*frag_tail)->nr_frags; frag_tail = &(*frag_tail)->next; n++; } if (max_subframes && n > max_subframes) goto out; if (max_frags && nfrags > max_frags) goto out; if (!ieee80211_amsdu_realloc_pad(local, skb, sizeof(rfc1042_header) + 2, &subframe_len)) goto out; ret = true; data = skb_push(skb, ETH_ALEN + 2); memmove(data, data + ETH_ALEN + 2, 2 * ETH_ALEN); data += 2 * ETH_ALEN; len = cpu_to_be16(subframe_len); memcpy(data, &len, 2); memcpy(data + 2, rfc1042_header, sizeof(rfc1042_header)); head->len += skb->len; head->data_len += skb->len; *frag_tail = skb; flow->backlog += head->len - orig_len; tin->backlog_bytes += head->len - orig_len; fq_recalc_backlog(fq, tin, flow); out: spin_unlock_bh(&fq->lock); return ret; } /* * Can be called while the sta lock is held. Anything that can cause packets to * be generated will cause deadlock! */ static void ieee80211_xmit_fast_finish(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, u8 pn_offs, struct ieee80211_key *key, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_hdr *hdr = (void *)skb->data; u8 tid = IEEE80211_NUM_TIDS; if (key) info->control.hw_key = &key->conf; ieee80211_tx_stats(skb->dev, skb->len); if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; hdr->seq_ctrl = ieee80211_tx_next_seq(sta, tid); } else { info->flags |= IEEE80211_TX_CTL_ASSIGN_SEQ; hdr->seq_ctrl = cpu_to_le16(sdata->sequence_number); sdata->sequence_number += 0x10; } if (skb_shinfo(skb)->gso_size) sta->tx_stats.msdu[tid] += DIV_ROUND_UP(skb->len, skb_shinfo(skb)->gso_size); else sta->tx_stats.msdu[tid]++; info->hw_queue = sdata->vif.hw_queue[skb_get_queue_mapping(skb)]; /* statistics normally done by ieee80211_tx_h_stats (but that * has to consider fragmentation, so is more complex) */ sta->tx_stats.bytes[skb_get_queue_mapping(skb)] += skb->len; sta->tx_stats.packets[skb_get_queue_mapping(skb)]++; if (pn_offs) { u64 pn; u8 *crypto_hdr = skb->data + pn_offs; switch (key->conf.cipher) { case WLAN_CIPHER_SUITE_CCMP: case WLAN_CIPHER_SUITE_CCMP_256: case WLAN_CIPHER_SUITE_GCMP: case WLAN_CIPHER_SUITE_GCMP_256: pn = atomic64_inc_return(&key->conf.tx_pn); crypto_hdr[0] = pn; crypto_hdr[1] = pn >> 8; crypto_hdr[4] = pn >> 16; crypto_hdr[5] = pn >> 24; crypto_hdr[6] = pn >> 32; crypto_hdr[7] = pn >> 40; break; } } } static bool ieee80211_xmit_fast(struct ieee80211_sub_if_data *sdata, struct sta_info *sta, struct ieee80211_fast_tx *fast_tx, struct sk_buff *skb) { struct ieee80211_local *local = sdata->local; u16 ethertype = (skb->data[12] << 8) | skb->data[13]; int extra_head = fast_tx->hdr_len - (ETH_HLEN - 2); int hw_headroom = sdata->local->hw.extra_tx_headroom; struct ethhdr eth; struct ieee80211_tx_info *info; struct ieee80211_hdr *hdr = (void *)fast_tx->hdr; struct ieee80211_tx_data tx; ieee80211_tx_result r; struct tid_ampdu_tx *tid_tx = NULL; u8 tid = IEEE80211_NUM_TIDS; /* control port protocol needs a lot of special handling */ if (cpu_to_be16(ethertype) == sdata->control_port_protocol) return false; /* only RFC 1042 SNAP */ if (ethertype < ETH_P_802_3_MIN) return false; /* don't handle TX status request here either */ if (skb->sk && skb_shinfo(skb)->tx_flags & SKBTX_WIFI_STATUS) return false; if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; tid_tx = rcu_dereference(sta->ampdu_mlme.tid_tx[tid]); if (tid_tx) { if (!test_bit(HT_AGG_STATE_OPERATIONAL, &tid_tx->state)) return false; if (tid_tx->timeout) tid_tx->last_tx = jiffies; } } /* after this point (skb is modified) we cannot return false */ if (skb_shared(skb)) { struct sk_buff *tmp_skb = skb; skb = skb_clone(skb, GFP_ATOMIC); kfree_skb(tmp_skb); if (!skb) return true; } if ((hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) && ieee80211_amsdu_aggregate(sdata, sta, fast_tx, skb)) return true; /* will not be crypto-handled beyond what we do here, so use false * as the may-encrypt argument for the resize to not account for * more room than we already have in 'extra_head' */ if (unlikely(ieee80211_skb_resize(sdata, skb, max_t(int, extra_head + hw_headroom - skb_headroom(skb), 0), false))) { kfree_skb(skb); return true; } memcpy(ð, skb->data, ETH_HLEN - 2); hdr = (void *)skb_push(skb, extra_head); memcpy(skb->data, fast_tx->hdr, fast_tx->hdr_len); memcpy(skb->data + fast_tx->da_offs, eth.h_dest, ETH_ALEN); memcpy(skb->data + fast_tx->sa_offs, eth.h_source, ETH_ALEN); info = IEEE80211_SKB_CB(skb); memset(info, 0, sizeof(*info)); info->band = fast_tx->band; info->control.vif = &sdata->vif; info->flags = IEEE80211_TX_CTL_FIRST_FRAGMENT | IEEE80211_TX_CTL_DONTFRAG | (tid_tx ? IEEE80211_TX_CTL_AMPDU : 0); info->control.flags = IEEE80211_TX_CTRL_FAST_XMIT; if (hdr->frame_control & cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) { tid = skb->priority & IEEE80211_QOS_CTL_TAG1D_MASK; *ieee80211_get_qos_ctl(hdr) = tid; } __skb_queue_head_init(&tx.skbs); tx.flags = IEEE80211_TX_UNICAST; tx.local = local; tx.sdata = sdata; tx.sta = sta; tx.key = fast_tx->key; if (!ieee80211_hw_check(&local->hw, HAS_RATE_CONTROL)) { tx.skb = skb; r = ieee80211_tx_h_rate_ctrl(&tx); skb = tx.skb; tx.skb = NULL; if (r != TX_CONTINUE) { if (r != TX_QUEUED) kfree_skb(skb); return true; } } if (ieee80211_queue_skb(local, sdata, sta, skb)) return true; ieee80211_xmit_fast_finish(sdata, sta, fast_tx->pn_offs, fast_tx->key, skb); if (sdata->vif.type == NL80211_IFTYPE_AP_VLAN) sdata = container_of(sdata->bss, struct ieee80211_sub_if_data, u.ap); __skb_queue_tail(&tx.skbs, skb); ieee80211_tx_frags(local, &sdata->vif, &sta->sta, &tx.skbs, false); return true; } struct sk_buff *ieee80211_tx_dequeue(struct ieee80211_hw *hw, struct ieee80211_txq *txq) { struct ieee80211_local *local = hw_to_local(hw); struct txq_info *txqi = container_of(txq, struct txq_info, txq); struct ieee80211_hdr *hdr; struct sk_buff *skb = NULL; struct fq *fq = &local->fq; struct fq_tin *tin = &txqi->tin; struct ieee80211_tx_info *info; struct ieee80211_tx_data tx; ieee80211_tx_result r; spin_lock_bh(&fq->lock); if (test_bit(IEEE80211_TXQ_STOP, &txqi->flags)) goto out; /* Make sure fragments stay together. */ skb = __skb_dequeue(&txqi->frags); if (skb) goto out; begin: skb = fq_tin_dequeue(fq, tin, fq_tin_dequeue_func); if (!skb) goto out; ieee80211_set_skb_vif(skb, txqi); hdr = (struct ieee80211_hdr *)skb->data; info = IEEE80211_SKB_CB(skb); memset(&tx, 0, sizeof(tx)); __skb_queue_head_init(&tx.skbs); tx.local = local; tx.skb = skb; tx.sdata = vif_to_sdata(info->control.vif); if (txq->sta) tx.sta = container_of(txq->sta, struct sta_info, sta); /* * The key can be removed while the packet was queued, so need to call * this here to get the current key. */ r = ieee80211_tx_h_select_key(&tx); if (r != TX_CONTINUE) { ieee80211_free_txskb(&local->hw, skb); goto begin; } if (test_bit(IEEE80211_TXQ_AMPDU, &txqi->flags)) info->flags |= IEEE80211_TX_CTL_AMPDU; else info->flags &= ~IEEE80211_TX_CTL_AMPDU; if (info->control.flags & IEEE80211_TX_CTRL_FAST_XMIT) { struct sta_info *sta = container_of(txq->sta, struct sta_info, sta); u8 pn_offs = 0; if (tx.key && (tx.key->conf.flags & IEEE80211_KEY_FLAG_GENERATE_IV)) pn_offs = ieee80211_hdrlen(hdr->frame_control); ieee80211_xmit_fast_finish(sta->sdata, sta, pn_offs, tx.key, skb); } else { if (invoke_tx_handlers_late(&tx)) goto begin; skb = __skb_dequeue(&tx.skbs); if (!skb_queue_empty(&tx.skbs)) skb_queue_splice_tail(&tx.skbs, &txqi->frags); } if (skb && skb_has_frag_list(skb) && !ieee80211_hw_check(&local->hw, TX_FRAG_LIST)) { if (skb_linearize(skb)) { ieee80211_free_txskb(&local->hw, skb); goto begin; } } out: spin_unlock_bh(&fq->lock); return skb; } EXPORT_SYMBOL(ieee80211_tx_dequeue); void __ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev, u32 info_flags) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct sta_info *sta; struct sk_buff *next; if (unlikely(skb->len < ETH_HLEN)) { kfree_skb(skb); return; } rcu_read_lock(); if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) goto out_free; if (!IS_ERR_OR_NULL(sta)) { struct ieee80211_fast_tx *fast_tx; fast_tx = rcu_dereference(sta->fast_tx); if (fast_tx && ieee80211_xmit_fast(sdata, sta, fast_tx, skb)) goto out; } if (skb_is_gso(skb)) { struct sk_buff *segs; segs = skb_gso_segment(skb, 0); if (IS_ERR(segs)) { goto out_free; } else if (segs) { consume_skb(skb); skb = segs; } } else { /* we cannot process non-linear frames on this path */ if (skb_linearize(skb)) { kfree_skb(skb); goto out; } /* the frame could be fragmented, software-encrypted, and other * things so we cannot really handle checksum offload with it - * fix it up in software before we handle anything else. */ if (skb->ip_summed == CHECKSUM_PARTIAL) { skb_set_transport_header(skb, skb_checksum_start_offset(skb)); if (skb_checksum_help(skb)) goto out_free; } } next = skb; while (next) { skb = next; next = skb->next; skb->prev = NULL; skb->next = NULL; skb = ieee80211_build_hdr(sdata, skb, info_flags, sta); if (IS_ERR(skb)) goto out; ieee80211_tx_stats(dev, skb->len); ieee80211_xmit(sdata, sta, skb); } goto out; out_free: kfree_skb(skb); out: rcu_read_unlock(); } static int ieee80211_change_da(struct sk_buff *skb, struct sta_info *sta) { struct ethhdr *eth; int err; err = skb_ensure_writable(skb, ETH_HLEN); if (unlikely(err)) return err; eth = (void *)skb->data; ether_addr_copy(eth->h_dest, sta->sta.addr); return 0; } static bool ieee80211_multicast_to_unicast(struct sk_buff *skb, struct net_device *dev) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); const struct ethhdr *eth = (void *)skb->data; const struct vlan_ethhdr *ethvlan = (void *)skb->data; __be16 ethertype; if (likely(!is_multicast_ether_addr(eth->h_dest))) return false; switch (sdata->vif.type) { case NL80211_IFTYPE_AP_VLAN: if (sdata->u.vlan.sta) return false; if (sdata->wdev.use_4addr) return false; /* fall through */ case NL80211_IFTYPE_AP: /* check runtime toggle for this bss */ if (!sdata->bss->multicast_to_unicast) return false; break; default: return false; } /* multicast to unicast conversion only for some payload */ ethertype = eth->h_proto; if (ethertype == htons(ETH_P_8021Q) && skb->len >= VLAN_ETH_HLEN) ethertype = ethvlan->h_vlan_encapsulated_proto; switch (ethertype) { case htons(ETH_P_ARP): case htons(ETH_P_IP): case htons(ETH_P_IPV6): break; default: return false; } return true; } static void ieee80211_convert_to_unicast(struct sk_buff *skb, struct net_device *dev, struct sk_buff_head *queue) { struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev); struct ieee80211_local *local = sdata->local; const struct ethhdr *eth = (struct ethhdr *)skb->data; struct sta_info *sta, *first = NULL; struct sk_buff *cloned_skb; rcu_read_lock(); list_for_each_entry_rcu(sta, &local->sta_list, list) { if (sdata != sta->sdata) /* AP-VLAN mismatch */ continue; if (unlikely(ether_addr_equal(eth->h_source, sta->sta.addr))) /* do not send back to source */ continue; if (!first) { first = sta; continue; } cloned_skb = skb_clone(skb, GFP_ATOMIC); if (!cloned_skb) goto multicast; if (unlikely(ieee80211_change_da(cloned_skb, sta))) { dev_kfree_skb(cloned_skb); goto multicast; } __skb_queue_tail(queue, cloned_skb); } if (likely(first)) { if (unlikely(ieee80211_change_da(skb, first))) goto multicast; __skb_queue_tail(queue, skb); } else { /* no STA connected, drop */ kfree_skb(skb); skb = NULL; } goto out; multicast: __skb_queue_purge(queue); __skb_queue_tail(queue, skb); out: rcu_read_unlock(); } /** * ieee80211_subif_start_xmit - netif start_xmit function for 802.3 vifs * @skb: packet to be sent * @dev: incoming interface * * On failure skb will be freed. */ netdev_tx_t ieee80211_subif_start_xmit(struct sk_buff *skb, struct net_device *dev) { if (unlikely(ieee80211_multicast_to_unicast(skb, dev))) { struct sk_buff_head queue; __skb_queue_head_init(&queue); ieee80211_convert_to_unicast(skb, dev, &queue); while ((skb = __skb_dequeue(&queue))) __ieee80211_subif_start_xmit(skb, dev, 0); } else { __ieee80211_subif_start_xmit(skb, dev, 0); } return NETDEV_TX_OK; } struct sk_buff * ieee80211_build_data_template(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, u32 info_flags) { struct ieee80211_hdr *hdr; struct ieee80211_tx_data tx = { .local = sdata->local, .sdata = sdata, }; struct sta_info *sta; rcu_read_lock(); if (ieee80211_lookup_ra_sta(sdata, skb, &sta)) { kfree_skb(skb); skb = ERR_PTR(-EINVAL); goto out; } skb = ieee80211_build_hdr(sdata, skb, info_flags, sta); if (IS_ERR(skb)) goto out; hdr = (void *)skb->data; tx.sta = sta_info_get(sdata, hdr->addr1); tx.skb = skb; if (ieee80211_tx_h_select_key(&tx) != TX_CONTINUE) { rcu_read_unlock(); kfree_skb(skb); return ERR_PTR(-EINVAL); } out: rcu_read_unlock(); return skb; } /* * ieee80211_clear_tx_pending may not be called in a context where * it is possible that it packets could come in again. */ void ieee80211_clear_tx_pending(struct ieee80211_local *local) { struct sk_buff *skb; int i; for (i = 0; i < local->hw.queues; i++) { while ((skb = skb_dequeue(&local->pending[i])) != NULL) ieee80211_free_txskb(&local->hw, skb); } } /* * Returns false if the frame couldn't be transmitted but was queued instead, * which in this case means re-queued -- take as an indication to stop sending * more pending frames. */ static bool ieee80211_tx_pending_skb(struct ieee80211_local *local, struct sk_buff *skb) { struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); struct ieee80211_sub_if_data *sdata; struct sta_info *sta; struct ieee80211_hdr *hdr; bool result; struct ieee80211_chanctx_conf *chanctx_conf; sdata = vif_to_sdata(info->control.vif); if (info->flags & IEEE80211_TX_INTFL_NEED_TXPROCESSING) { chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (unlikely(!chanctx_conf)) { dev_kfree_skb(skb); return true; } info->band = chanctx_conf->def.chan->band; result = ieee80211_tx(sdata, NULL, skb, true); } else { struct sk_buff_head skbs; __skb_queue_head_init(&skbs); __skb_queue_tail(&skbs, skb); hdr = (struct ieee80211_hdr *)skb->data; sta = sta_info_get(sdata, hdr->addr1); result = __ieee80211_tx(local, &skbs, skb->len, sta, true); } return result; } /* * Transmit all pending packets. Called from tasklet. */ void ieee80211_tx_pending(unsigned long data) { struct ieee80211_local *local = (struct ieee80211_local *)data; unsigned long flags; int i; bool txok; rcu_read_lock(); spin_lock_irqsave(&local->queue_stop_reason_lock, flags); for (i = 0; i < local->hw.queues; i++) { /* * If queue is stopped by something other than due to pending * frames, or we have no pending frames, proceed to next queue. */ if (local->queue_stop_reasons[i] || skb_queue_empty(&local->pending[i])) continue; while (!skb_queue_empty(&local->pending[i])) { struct sk_buff *skb = __skb_dequeue(&local->pending[i]); struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); if (WARN_ON(!info->control.vif)) { ieee80211_free_txskb(&local->hw, skb); continue; } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); txok = ieee80211_tx_pending_skb(local, skb); spin_lock_irqsave(&local->queue_stop_reason_lock, flags); if (!txok) break; } if (skb_queue_empty(&local->pending[i])) ieee80211_propagate_queue_wake(local, i); } spin_unlock_irqrestore(&local->queue_stop_reason_lock, flags); rcu_read_unlock(); } /* functions for drivers to get certain frames */ static void __ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata, struct ps_data *ps, struct sk_buff *skb, bool is_template) { u8 *pos, *tim; int aid0 = 0; int i, have_bits = 0, n1, n2; /* Generate bitmap for TIM only if there are any STAs in power save * mode. */ if (atomic_read(&ps->num_sta_ps) > 0) /* in the hope that this is faster than * checking byte-for-byte */ have_bits = !bitmap_empty((unsigned long *)ps->tim, IEEE80211_MAX_AID+1); if (!is_template) { if (ps->dtim_count == 0) ps->dtim_count = sdata->vif.bss_conf.dtim_period - 1; else ps->dtim_count--; } tim = pos = (u8 *) skb_put(skb, 6); *pos++ = WLAN_EID_TIM; *pos++ = 4; *pos++ = ps->dtim_count; *pos++ = sdata->vif.bss_conf.dtim_period; if (ps->dtim_count == 0 && !skb_queue_empty(&ps->bc_buf)) aid0 = 1; ps->dtim_bc_mc = aid0 == 1; if (have_bits) { /* Find largest even number N1 so that bits numbered 1 through * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits * (N2 + 1) x 8 through 2007 are 0. */ n1 = 0; for (i = 0; i < IEEE80211_MAX_TIM_LEN; i++) { if (ps->tim[i]) { n1 = i & 0xfe; break; } } n2 = n1; for (i = IEEE80211_MAX_TIM_LEN - 1; i >= n1; i--) { if (ps->tim[i]) { n2 = i; break; } } /* Bitmap control */ *pos++ = n1 | aid0; /* Part Virt Bitmap */ skb_put(skb, n2 - n1); memcpy(pos, ps->tim + n1, n2 - n1 + 1); tim[1] = n2 - n1 + 4; } else { *pos++ = aid0; /* Bitmap control */ *pos++ = 0; /* Part Virt Bitmap */ } } static int ieee80211_beacon_add_tim(struct ieee80211_sub_if_data *sdata, struct ps_data *ps, struct sk_buff *skb, bool is_template) { struct ieee80211_local *local = sdata->local; /* * Not very nice, but we want to allow the driver to call * ieee80211_beacon_get() as a response to the set_tim() * callback. That, however, is already invoked under the * sta_lock to guarantee consistent and race-free update * of the tim bitmap in mac80211 and the driver. */ if (local->tim_in_locked_section) { __ieee80211_beacon_add_tim(sdata, ps, skb, is_template); } else { spin_lock_bh(&local->tim_lock); __ieee80211_beacon_add_tim(sdata, ps, skb, is_template); spin_unlock_bh(&local->tim_lock); } return 0; } static void ieee80211_set_csa(struct ieee80211_sub_if_data *sdata, struct beacon_data *beacon) { struct probe_resp *resp; u8 *beacon_data; size_t beacon_data_len; int i; u8 count = beacon->csa_current_counter; switch (sdata->vif.type) { case NL80211_IFTYPE_AP: beacon_data = beacon->tail; beacon_data_len = beacon->tail_len; break; case NL80211_IFTYPE_ADHOC: beacon_data = beacon->head; beacon_data_len = beacon->head_len; break; case NL80211_IFTYPE_MESH_POINT: beacon_data = beacon->head; beacon_data_len = beacon->head_len; break; default: return; } rcu_read_lock(); for (i = 0; i < IEEE80211_MAX_CSA_COUNTERS_NUM; ++i) { resp = rcu_dereference(sdata->u.ap.probe_resp); if (beacon->csa_counter_offsets[i]) { if (WARN_ON_ONCE(beacon->csa_counter_offsets[i] >= beacon_data_len)) { rcu_read_unlock(); return; } beacon_data[beacon->csa_counter_offsets[i]] = count; } if (sdata->vif.type == NL80211_IFTYPE_AP && resp) resp->data[resp->csa_counter_offsets[i]] = count; } rcu_read_unlock(); } static u8 __ieee80211_csa_update_counter(struct beacon_data *beacon) { beacon->csa_current_counter--; /* the counter should never reach 0 */ WARN_ON_ONCE(!beacon->csa_current_counter); return beacon->csa_current_counter; } u8 ieee80211_csa_update_counter(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct beacon_data *beacon = NULL; u8 count = 0; rcu_read_lock(); if (sdata->vif.type == NL80211_IFTYPE_AP) beacon = rcu_dereference(sdata->u.ap.beacon); else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) beacon = rcu_dereference(sdata->u.ibss.presp); else if (ieee80211_vif_is_mesh(&sdata->vif)) beacon = rcu_dereference(sdata->u.mesh.beacon); if (!beacon) goto unlock; count = __ieee80211_csa_update_counter(beacon); unlock: rcu_read_unlock(); return count; } EXPORT_SYMBOL(ieee80211_csa_update_counter); bool ieee80211_csa_is_complete(struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); struct beacon_data *beacon = NULL; u8 *beacon_data; size_t beacon_data_len; int ret = false; if (!ieee80211_sdata_running(sdata)) return false; rcu_read_lock(); if (vif->type == NL80211_IFTYPE_AP) { struct ieee80211_if_ap *ap = &sdata->u.ap; beacon = rcu_dereference(ap->beacon); if (WARN_ON(!beacon || !beacon->tail)) goto out; beacon_data = beacon->tail; beacon_data_len = beacon->tail_len; } else if (vif->type == NL80211_IFTYPE_ADHOC) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; beacon = rcu_dereference(ifibss->presp); if (!beacon) goto out; beacon_data = beacon->head; beacon_data_len = beacon->head_len; } else if (vif->type == NL80211_IFTYPE_MESH_POINT) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; beacon = rcu_dereference(ifmsh->beacon); if (!beacon) goto out; beacon_data = beacon->head; beacon_data_len = beacon->head_len; } else { WARN_ON(1); goto out; } if (!beacon->csa_counter_offsets[0]) goto out; if (WARN_ON_ONCE(beacon->csa_counter_offsets[0] > beacon_data_len)) goto out; if (beacon_data[beacon->csa_counter_offsets[0]] == 1) ret = true; out: rcu_read_unlock(); return ret; } EXPORT_SYMBOL(ieee80211_csa_is_complete); static struct sk_buff * __ieee80211_beacon_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs, bool is_template) { struct ieee80211_local *local = hw_to_local(hw); struct beacon_data *beacon = NULL; struct sk_buff *skb = NULL; struct ieee80211_tx_info *info; struct ieee80211_sub_if_data *sdata = NULL; enum nl80211_band band; struct ieee80211_tx_rate_control txrc; struct ieee80211_chanctx_conf *chanctx_conf; int csa_off_base = 0; rcu_read_lock(); sdata = vif_to_sdata(vif); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!ieee80211_sdata_running(sdata) || !chanctx_conf) goto out; if (offs) memset(offs, 0, sizeof(*offs)); if (sdata->vif.type == NL80211_IFTYPE_AP) { struct ieee80211_if_ap *ap = &sdata->u.ap; beacon = rcu_dereference(ap->beacon); if (beacon) { if (beacon->csa_counter_offsets[0]) { if (!is_template) __ieee80211_csa_update_counter(beacon); ieee80211_set_csa(sdata, beacon); } /* * headroom, head length, * tail length and maximum TIM length */ skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + beacon->tail_len + 256 + local->hw.extra_beacon_tailroom); if (!skb) goto out; skb_reserve(skb, local->tx_headroom); memcpy(skb_put(skb, beacon->head_len), beacon->head, beacon->head_len); ieee80211_beacon_add_tim(sdata, &ap->ps, skb, is_template); if (offs) { offs->tim_offset = beacon->head_len; offs->tim_length = skb->len - beacon->head_len; /* for AP the csa offsets are from tail */ csa_off_base = skb->len; } if (beacon->tail) memcpy(skb_put(skb, beacon->tail_len), beacon->tail, beacon->tail_len); } else goto out; } else if (sdata->vif.type == NL80211_IFTYPE_ADHOC) { struct ieee80211_if_ibss *ifibss = &sdata->u.ibss; struct ieee80211_hdr *hdr; beacon = rcu_dereference(ifibss->presp); if (!beacon) goto out; if (beacon->csa_counter_offsets[0]) { if (!is_template) __ieee80211_csa_update_counter(beacon); ieee80211_set_csa(sdata, beacon); } skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + local->hw.extra_beacon_tailroom); if (!skb) goto out; skb_reserve(skb, local->tx_headroom); memcpy(skb_put(skb, beacon->head_len), beacon->head, beacon->head_len); hdr = (struct ieee80211_hdr *) skb->data; hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_BEACON); } else if (ieee80211_vif_is_mesh(&sdata->vif)) { struct ieee80211_if_mesh *ifmsh = &sdata->u.mesh; beacon = rcu_dereference(ifmsh->beacon); if (!beacon) goto out; if (beacon->csa_counter_offsets[0]) { if (!is_template) /* TODO: For mesh csa_counter is in TU, so * decrementing it by one isn't correct, but * for now we leave it consistent with overall * mac80211's behavior. */ __ieee80211_csa_update_counter(beacon); ieee80211_set_csa(sdata, beacon); } if (ifmsh->sync_ops) ifmsh->sync_ops->adjust_tsf(sdata, beacon); skb = dev_alloc_skb(local->tx_headroom + beacon->head_len + 256 + /* TIM IE */ beacon->tail_len + local->hw.extra_beacon_tailroom); if (!skb) goto out; skb_reserve(skb, local->tx_headroom); memcpy(skb_put(skb, beacon->head_len), beacon->head, beacon->head_len); ieee80211_beacon_add_tim(sdata, &ifmsh->ps, skb, is_template); if (offs) { offs->tim_offset = beacon->head_len; offs->tim_length = skb->len - beacon->head_len; } memcpy(skb_put(skb, beacon->tail_len), beacon->tail, beacon->tail_len); } else { WARN_ON(1); goto out; } /* CSA offsets */ if (offs && beacon) { int i; for (i = 0; i < IEEE80211_MAX_CSA_COUNTERS_NUM; i++) { u16 csa_off = beacon->csa_counter_offsets[i]; if (!csa_off) continue; offs->csa_counter_offs[i] = csa_off_base + csa_off; } } band = chanctx_conf->def.chan->band; info = IEEE80211_SKB_CB(skb); info->flags |= IEEE80211_TX_INTFL_DONT_ENCRYPT; info->flags |= IEEE80211_TX_CTL_NO_ACK; info->band = band; memset(&txrc, 0, sizeof(txrc)); txrc.hw = hw; txrc.sband = local->hw.wiphy->bands[band]; txrc.bss_conf = &sdata->vif.bss_conf; txrc.skb = skb; txrc.reported_rate.idx = -1; txrc.rate_idx_mask = sdata->rc_rateidx_mask[band]; if (txrc.rate_idx_mask == (1 << txrc.sband->n_bitrates) - 1) txrc.max_rate_idx = -1; else txrc.max_rate_idx = fls(txrc.rate_idx_mask) - 1; txrc.bss = true; rate_control_get_rate(sdata, NULL, &txrc); info->control.vif = vif; info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT | IEEE80211_TX_CTL_ASSIGN_SEQ | IEEE80211_TX_CTL_FIRST_FRAGMENT; out: rcu_read_unlock(); return skb; } struct sk_buff * ieee80211_beacon_get_template(struct ieee80211_hw *hw, struct ieee80211_vif *vif, struct ieee80211_mutable_offsets *offs) { return __ieee80211_beacon_get(hw, vif, offs, true); } EXPORT_SYMBOL(ieee80211_beacon_get_template); struct sk_buff *ieee80211_beacon_get_tim(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 *tim_offset, u16 *tim_length) { struct ieee80211_mutable_offsets offs = {}; struct sk_buff *bcn = __ieee80211_beacon_get(hw, vif, &offs, false); struct sk_buff *copy; struct ieee80211_supported_band *sband; int shift; if (!bcn) return bcn; if (tim_offset) *tim_offset = offs.tim_offset; if (tim_length) *tim_length = offs.tim_length; if (ieee80211_hw_check(hw, BEACON_TX_STATUS) || !hw_to_local(hw)->monitors) return bcn; /* send a copy to monitor interfaces */ copy = skb_copy(bcn, GFP_ATOMIC); if (!copy) return bcn; shift = ieee80211_vif_get_shift(vif); sband = hw->wiphy->bands[ieee80211_get_sdata_band(vif_to_sdata(vif))]; ieee80211_tx_monitor(hw_to_local(hw), copy, sband, 1, shift, false); return bcn; } EXPORT_SYMBOL(ieee80211_beacon_get_tim); struct sk_buff *ieee80211_proberesp_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_if_ap *ap = NULL; struct sk_buff *skb = NULL; struct probe_resp *presp = NULL; struct ieee80211_hdr *hdr; struct ieee80211_sub_if_data *sdata = vif_to_sdata(vif); if (sdata->vif.type != NL80211_IFTYPE_AP) return NULL; rcu_read_lock(); ap = &sdata->u.ap; presp = rcu_dereference(ap->probe_resp); if (!presp) goto out; skb = dev_alloc_skb(presp->len); if (!skb) goto out; memcpy(skb_put(skb, presp->len), presp->data, presp->len); hdr = (struct ieee80211_hdr *) skb->data; memset(hdr->addr1, 0, sizeof(hdr->addr1)); out: rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_proberesp_get); struct sk_buff *ieee80211_pspoll_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_sub_if_data *sdata; struct ieee80211_if_managed *ifmgd; struct ieee80211_pspoll *pspoll; struct ieee80211_local *local; struct sk_buff *skb; if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return NULL; sdata = vif_to_sdata(vif); ifmgd = &sdata->u.mgd; local = sdata->local; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*pspoll)); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); pspoll = (struct ieee80211_pspoll *) skb_put(skb, sizeof(*pspoll)); memset(pspoll, 0, sizeof(*pspoll)); pspoll->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_PSPOLL); pspoll->aid = cpu_to_le16(ifmgd->aid); /* aid in PS-Poll has its two MSBs each set to 1 */ pspoll->aid |= cpu_to_le16(1 << 15 | 1 << 14); memcpy(pspoll->bssid, ifmgd->bssid, ETH_ALEN); memcpy(pspoll->ta, vif->addr, ETH_ALEN); return skb; } EXPORT_SYMBOL(ieee80211_pspoll_get); struct sk_buff *ieee80211_nullfunc_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_hdr_3addr *nullfunc; struct ieee80211_sub_if_data *sdata; struct ieee80211_if_managed *ifmgd; struct ieee80211_local *local; struct sk_buff *skb; if (WARN_ON(vif->type != NL80211_IFTYPE_STATION)) return NULL; sdata = vif_to_sdata(vif); ifmgd = &sdata->u.mgd; local = sdata->local; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*nullfunc)); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); nullfunc = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*nullfunc)); memset(nullfunc, 0, sizeof(*nullfunc)); nullfunc->frame_control = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC | IEEE80211_FCTL_TODS); memcpy(nullfunc->addr1, ifmgd->bssid, ETH_ALEN); memcpy(nullfunc->addr2, vif->addr, ETH_ALEN); memcpy(nullfunc->addr3, ifmgd->bssid, ETH_ALEN); return skb; } EXPORT_SYMBOL(ieee80211_nullfunc_get); struct sk_buff *ieee80211_probereq_get(struct ieee80211_hw *hw, const u8 *src_addr, const u8 *ssid, size_t ssid_len, size_t tailroom) { struct ieee80211_local *local = hw_to_local(hw); struct ieee80211_hdr_3addr *hdr; struct sk_buff *skb; size_t ie_ssid_len; u8 *pos; ie_ssid_len = 2 + ssid_len; skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*hdr) + ie_ssid_len + tailroom); if (!skb) return NULL; skb_reserve(skb, local->hw.extra_tx_headroom); hdr = (struct ieee80211_hdr_3addr *) skb_put(skb, sizeof(*hdr)); memset(hdr, 0, sizeof(*hdr)); hdr->frame_control = cpu_to_le16(IEEE80211_FTYPE_MGMT | IEEE80211_STYPE_PROBE_REQ); eth_broadcast_addr(hdr->addr1); memcpy(hdr->addr2, src_addr, ETH_ALEN); eth_broadcast_addr(hdr->addr3); pos = skb_put(skb, ie_ssid_len); *pos++ = WLAN_EID_SSID; *pos++ = ssid_len; if (ssid_len) memcpy(pos, ssid, ssid_len); pos += ssid_len; return skb; } EXPORT_SYMBOL(ieee80211_probereq_get); void ieee80211_rts_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_rts *rts) { const struct ieee80211_hdr *hdr = frame; rts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_RTS); rts->duration = ieee80211_rts_duration(hw, vif, frame_len, frame_txctl); memcpy(rts->ra, hdr->addr1, sizeof(rts->ra)); memcpy(rts->ta, hdr->addr2, sizeof(rts->ta)); } EXPORT_SYMBOL(ieee80211_rts_get); void ieee80211_ctstoself_get(struct ieee80211_hw *hw, struct ieee80211_vif *vif, const void *frame, size_t frame_len, const struct ieee80211_tx_info *frame_txctl, struct ieee80211_cts *cts) { const struct ieee80211_hdr *hdr = frame; cts->frame_control = cpu_to_le16(IEEE80211_FTYPE_CTL | IEEE80211_STYPE_CTS); cts->duration = ieee80211_ctstoself_duration(hw, vif, frame_len, frame_txctl); memcpy(cts->ra, hdr->addr1, sizeof(cts->ra)); } EXPORT_SYMBOL(ieee80211_ctstoself_get); struct sk_buff * ieee80211_get_buffered_bc(struct ieee80211_hw *hw, struct ieee80211_vif *vif) { struct ieee80211_local *local = hw_to_local(hw); struct sk_buff *skb = NULL; struct ieee80211_tx_data tx; struct ieee80211_sub_if_data *sdata; struct ps_data *ps; struct ieee80211_tx_info *info; struct ieee80211_chanctx_conf *chanctx_conf; sdata = vif_to_sdata(vif); rcu_read_lock(); chanctx_conf = rcu_dereference(sdata->vif.chanctx_conf); if (!chanctx_conf) goto out; if (sdata->vif.type == NL80211_IFTYPE_AP) { struct beacon_data *beacon = rcu_dereference(sdata->u.ap.beacon); if (!beacon || !beacon->head) goto out; ps = &sdata->u.ap.ps; } else if (ieee80211_vif_is_mesh(&sdata->vif)) { ps = &sdata->u.mesh.ps; } else { goto out; } if (ps->dtim_count != 0 || !ps->dtim_bc_mc) goto out; /* send buffered bc/mc only after DTIM beacon */ while (1) { skb = skb_dequeue(&ps->bc_buf); if (!skb) goto out; local->total_ps_buffered--; if (!skb_queue_empty(&ps->bc_buf) && skb->len >= 2) { struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; /* more buffered multicast/broadcast frames ==> set * MoreData flag in IEEE 802.11 header to inform PS * STAs */ hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_MOREDATA); } if (sdata->vif.type == NL80211_IFTYPE_AP) sdata = IEEE80211_DEV_TO_SUB_IF(skb->dev); if (!ieee80211_tx_prepare(sdata, &tx, NULL, skb)) break; ieee80211_free_txskb(hw, skb); } info = IEEE80211_SKB_CB(skb); tx.flags |= IEEE80211_TX_PS_BUFFERED; info->band = chanctx_conf->def.chan->band; if (invoke_tx_handlers(&tx)) skb = NULL; out: rcu_read_unlock(); return skb; } EXPORT_SYMBOL(ieee80211_get_buffered_bc); int ieee80211_reserve_tid(struct ieee80211_sta *pubsta, u8 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; struct ieee80211_local *local = sdata->local; int ret; u32 queues; lockdep_assert_held(&local->sta_mtx); /* only some cases are supported right now */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: break; default: WARN_ON(1); return -EINVAL; } if (WARN_ON(tid >= IEEE80211_NUM_UPS)) return -EINVAL; if (sta->reserved_tid == tid) { ret = 0; goto out; } if (sta->reserved_tid != IEEE80211_TID_UNRESERVED) { sdata_err(sdata, "TID reservation already active\n"); ret = -EALREADY; goto out; } ieee80211_stop_vif_queues(sdata->local, sdata, IEEE80211_QUEUE_STOP_REASON_RESERVE_TID); synchronize_net(); /* Tear down BA sessions so we stop aggregating on this TID */ if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) { set_sta_flag(sta, WLAN_STA_BLOCK_BA); __ieee80211_stop_tx_ba_session(sta, tid, AGG_STOP_LOCAL_REQUEST); } queues = BIT(sdata->vif.hw_queue[ieee802_1d_to_ac[tid]]); __ieee80211_flush_queues(local, sdata, queues, false); sta->reserved_tid = tid; ieee80211_wake_vif_queues(local, sdata, IEEE80211_QUEUE_STOP_REASON_RESERVE_TID); if (ieee80211_hw_check(&local->hw, AMPDU_AGGREGATION)) clear_sta_flag(sta, WLAN_STA_BLOCK_BA); ret = 0; out: return ret; } EXPORT_SYMBOL(ieee80211_reserve_tid); void ieee80211_unreserve_tid(struct ieee80211_sta *pubsta, u8 tid) { struct sta_info *sta = container_of(pubsta, struct sta_info, sta); struct ieee80211_sub_if_data *sdata = sta->sdata; lockdep_assert_held(&sdata->local->sta_mtx); /* only some cases are supported right now */ switch (sdata->vif.type) { case NL80211_IFTYPE_STATION: case NL80211_IFTYPE_AP: case NL80211_IFTYPE_AP_VLAN: break; default: WARN_ON(1); return; } if (tid != sta->reserved_tid) { sdata_err(sdata, "TID to unreserve (%d) isn't reserved\n", tid); return; } sta->reserved_tid = IEEE80211_TID_UNRESERVED; } EXPORT_SYMBOL(ieee80211_unreserve_tid); void __ieee80211_tx_skb_tid_band(struct ieee80211_sub_if_data *sdata, struct sk_buff *skb, int tid, enum nl80211_band band) { int ac = ieee802_1d_to_ac[tid & 7]; skb_reset_mac_header(skb); skb_set_queue_mapping(skb, ac); skb->priority = tid; skb->dev = sdata->dev; /* * The other path calling ieee80211_xmit is from the tasklet, * and while we can handle concurrent transmissions locking * requirements are that we do not come into tx with bhs on. */ local_bh_disable(); IEEE80211_SKB_CB(skb)->band = band; ieee80211_xmit(sdata, NULL, skb); local_bh_enable(); }