/* * net/dsa/dsa.c - Hardware switch handling * Copyright (c) 2008-2009 Marvell Semiconductor * Copyright (c) 2013 Florian Fainelli * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dsa_priv.h" char dsa_driver_version[] = "0.1"; /* switch driver registration ***********************************************/ static DEFINE_MUTEX(dsa_switch_drivers_mutex); static LIST_HEAD(dsa_switch_drivers); void register_switch_driver(struct dsa_switch_driver *drv) { mutex_lock(&dsa_switch_drivers_mutex); list_add_tail(&drv->list, &dsa_switch_drivers); mutex_unlock(&dsa_switch_drivers_mutex); } EXPORT_SYMBOL_GPL(register_switch_driver); void unregister_switch_driver(struct dsa_switch_driver *drv) { mutex_lock(&dsa_switch_drivers_mutex); list_del_init(&drv->list); mutex_unlock(&dsa_switch_drivers_mutex); } EXPORT_SYMBOL_GPL(unregister_switch_driver); static struct dsa_switch_driver * dsa_switch_probe(struct device *host_dev, int sw_addr, char **_name) { struct dsa_switch_driver *ret; struct list_head *list; char *name; ret = NULL; name = NULL; mutex_lock(&dsa_switch_drivers_mutex); list_for_each(list, &dsa_switch_drivers) { struct dsa_switch_driver *drv; drv = list_entry(list, struct dsa_switch_driver, list); name = drv->probe(host_dev, sw_addr); if (name != NULL) { ret = drv; break; } } mutex_unlock(&dsa_switch_drivers_mutex); *_name = name; return ret; } /* hwmon support ************************************************************/ #ifdef CONFIG_NET_DSA_HWMON static ssize_t temp1_input_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dsa_switch *ds = dev_get_drvdata(dev); int temp, ret; ret = ds->drv->get_temp(ds, &temp); if (ret < 0) return ret; return sprintf(buf, "%d\n", temp * 1000); } static DEVICE_ATTR_RO(temp1_input); static ssize_t temp1_max_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dsa_switch *ds = dev_get_drvdata(dev); int temp, ret; ret = ds->drv->get_temp_limit(ds, &temp); if (ret < 0) return ret; return sprintf(buf, "%d\n", temp * 1000); } static ssize_t temp1_max_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct dsa_switch *ds = dev_get_drvdata(dev); int temp, ret; ret = kstrtoint(buf, 0, &temp); if (ret < 0) return ret; ret = ds->drv->set_temp_limit(ds, DIV_ROUND_CLOSEST(temp, 1000)); if (ret < 0) return ret; return count; } static DEVICE_ATTR_RW(temp1_max); static ssize_t temp1_max_alarm_show(struct device *dev, struct device_attribute *attr, char *buf) { struct dsa_switch *ds = dev_get_drvdata(dev); bool alarm; int ret; ret = ds->drv->get_temp_alarm(ds, &alarm); if (ret < 0) return ret; return sprintf(buf, "%d\n", alarm); } static DEVICE_ATTR_RO(temp1_max_alarm); static struct attribute *dsa_hwmon_attrs[] = { &dev_attr_temp1_input.attr, /* 0 */ &dev_attr_temp1_max.attr, /* 1 */ &dev_attr_temp1_max_alarm.attr, /* 2 */ NULL }; static umode_t dsa_hwmon_attrs_visible(struct kobject *kobj, struct attribute *attr, int index) { struct device *dev = container_of(kobj, struct device, kobj); struct dsa_switch *ds = dev_get_drvdata(dev); struct dsa_switch_driver *drv = ds->drv; umode_t mode = attr->mode; if (index == 1) { if (!drv->get_temp_limit) mode = 0; else if (!drv->set_temp_limit) mode &= ~S_IWUSR; } else if (index == 2 && !drv->get_temp_alarm) { mode = 0; } return mode; } static const struct attribute_group dsa_hwmon_group = { .attrs = dsa_hwmon_attrs, .is_visible = dsa_hwmon_attrs_visible, }; __ATTRIBUTE_GROUPS(dsa_hwmon); #endif /* CONFIG_NET_DSA_HWMON */ /* basic switch operations **************************************************/ static int dsa_cpu_dsa_setup(struct dsa_switch *ds, struct net_device *master) { struct dsa_chip_data *cd = ds->pd; struct device_node *port_dn; struct phy_device *phydev; int ret, port, mode; for (port = 0; port < DSA_MAX_PORTS; port++) { if (!(dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port))) continue; port_dn = cd->port_dn[port]; if (of_phy_is_fixed_link(port_dn)) { ret = of_phy_register_fixed_link(port_dn); if (ret) { netdev_err(master, "failed to register fixed PHY\n"); return ret; } phydev = of_phy_find_device(port_dn); mode = of_get_phy_mode(port_dn); if (mode < 0) mode = PHY_INTERFACE_MODE_NA; phydev->interface = mode; genphy_config_init(phydev); genphy_read_status(phydev); if (ds->drv->adjust_link) ds->drv->adjust_link(ds, port, phydev); } } return 0; } static int dsa_switch_setup_one(struct dsa_switch *ds, struct device *parent) { struct dsa_switch_driver *drv = ds->drv; struct dsa_switch_tree *dst = ds->dst; struct dsa_chip_data *pd = ds->pd; bool valid_name_found = false; int index = ds->index; int i, ret; /* * Validate supplied switch configuration. */ for (i = 0; i < DSA_MAX_PORTS; i++) { char *name; name = pd->port_names[i]; if (name == NULL) continue; if (!strcmp(name, "cpu")) { if (dst->cpu_switch != -1) { netdev_err(dst->master_netdev, "multiple cpu ports?!\n"); ret = -EINVAL; goto out; } dst->cpu_switch = index; dst->cpu_port = i; } else if (!strcmp(name, "dsa")) { ds->dsa_port_mask |= 1 << i; } else { ds->phys_port_mask |= 1 << i; } valid_name_found = true; } if (!valid_name_found && i == DSA_MAX_PORTS) { ret = -EINVAL; goto out; } /* Make the built-in MII bus mask match the number of ports, * switch drivers can override this later */ ds->phys_mii_mask = ds->phys_port_mask; /* * If the CPU connects to this switch, set the switch tree * tagging protocol to the preferred tagging format of this * switch. */ if (dst->cpu_switch == index) { switch (ds->tag_protocol) { #ifdef CONFIG_NET_DSA_TAG_DSA case DSA_TAG_PROTO_DSA: dst->rcv = dsa_netdev_ops.rcv; break; #endif #ifdef CONFIG_NET_DSA_TAG_EDSA case DSA_TAG_PROTO_EDSA: dst->rcv = edsa_netdev_ops.rcv; break; #endif #ifdef CONFIG_NET_DSA_TAG_TRAILER case DSA_TAG_PROTO_TRAILER: dst->rcv = trailer_netdev_ops.rcv; break; #endif #ifdef CONFIG_NET_DSA_TAG_BRCM case DSA_TAG_PROTO_BRCM: dst->rcv = brcm_netdev_ops.rcv; break; #endif case DSA_TAG_PROTO_NONE: break; default: ret = -ENOPROTOOPT; goto out; } dst->tag_protocol = ds->tag_protocol; } /* * Do basic register setup. */ ret = drv->setup(ds); if (ret < 0) goto out; ret = drv->set_addr(ds, dst->master_netdev->dev_addr); if (ret < 0) goto out; ds->slave_mii_bus = mdiobus_alloc(); if (ds->slave_mii_bus == NULL) { ret = -ENOMEM; goto out; } dsa_slave_mii_bus_init(ds); ret = mdiobus_register(ds->slave_mii_bus); if (ret < 0) goto out_free; /* * Create network devices for physical switch ports. */ for (i = 0; i < DSA_MAX_PORTS; i++) { if (!(ds->phys_port_mask & (1 << i))) continue; ret = dsa_slave_create(ds, parent, i, pd->port_names[i]); if (ret < 0) { netdev_err(dst->master_netdev, "[%d]: can't create dsa slave device for port %d(%s)\n", index, i, pd->port_names[i]); ret = 0; } } /* Perform configuration of the CPU and DSA ports */ ret = dsa_cpu_dsa_setup(ds, dst->master_netdev); if (ret < 0) { netdev_err(dst->master_netdev, "[%d] : can't configure CPU and DSA ports\n", index); ret = 0; } #ifdef CONFIG_NET_DSA_HWMON /* If the switch provides a temperature sensor, * register with hardware monitoring subsystem. * Treat registration error as non-fatal and ignore it. */ if (drv->get_temp) { const char *netname = netdev_name(dst->master_netdev); char hname[IFNAMSIZ + 1]; int i, j; /* Create valid hwmon 'name' attribute */ for (i = j = 0; i < IFNAMSIZ && netname[i]; i++) { if (isalnum(netname[i])) hname[j++] = netname[i]; } hname[j] = '\0'; scnprintf(ds->hwmon_name, sizeof(ds->hwmon_name), "%s_dsa%d", hname, index); ds->hwmon_dev = hwmon_device_register_with_groups(NULL, ds->hwmon_name, ds, dsa_hwmon_groups); if (IS_ERR(ds->hwmon_dev)) ds->hwmon_dev = NULL; } #endif /* CONFIG_NET_DSA_HWMON */ return ret; out_free: mdiobus_free(ds->slave_mii_bus); out: kfree(ds); return ret; } static struct dsa_switch * dsa_switch_setup(struct dsa_switch_tree *dst, int index, struct device *parent, struct device *host_dev) { struct dsa_chip_data *pd = dst->pd->chip + index; struct dsa_switch_driver *drv; struct dsa_switch *ds; int ret; char *name; /* * Probe for switch model. */ drv = dsa_switch_probe(host_dev, pd->sw_addr, &name); if (drv == NULL) { netdev_err(dst->master_netdev, "[%d]: could not detect attached switch\n", index); return ERR_PTR(-EINVAL); } netdev_info(dst->master_netdev, "[%d]: detected a %s switch\n", index, name); /* * Allocate and initialise switch state. */ ds = kzalloc(sizeof(*ds) + drv->priv_size, GFP_KERNEL); if (ds == NULL) return ERR_PTR(-ENOMEM); ds->dst = dst; ds->index = index; ds->pd = pd; ds->drv = drv; ds->tag_protocol = drv->tag_protocol; ds->master_dev = host_dev; ret = dsa_switch_setup_one(ds, parent); if (ret) return ERR_PTR(ret); return ds; } static void dsa_switch_destroy(struct dsa_switch *ds) { #ifdef CONFIG_NET_DSA_HWMON if (ds->hwmon_dev) hwmon_device_unregister(ds->hwmon_dev); #endif } #ifdef CONFIG_PM_SLEEP static int dsa_switch_suspend(struct dsa_switch *ds) { int i, ret = 0; /* Suspend slave network devices */ for (i = 0; i < DSA_MAX_PORTS; i++) { if (!dsa_is_port_initialized(ds, i)) continue; ret = dsa_slave_suspend(ds->ports[i]); if (ret) return ret; } if (ds->drv->suspend) ret = ds->drv->suspend(ds); return ret; } static int dsa_switch_resume(struct dsa_switch *ds) { int i, ret = 0; if (ds->drv->resume) ret = ds->drv->resume(ds); if (ret) return ret; /* Resume slave network devices */ for (i = 0; i < DSA_MAX_PORTS; i++) { if (!dsa_is_port_initialized(ds, i)) continue; ret = dsa_slave_resume(ds->ports[i]); if (ret) return ret; } return 0; } #endif /* link polling *************************************************************/ static void dsa_link_poll_work(struct work_struct *ugly) { struct dsa_switch_tree *dst; int i; dst = container_of(ugly, struct dsa_switch_tree, link_poll_work); for (i = 0; i < dst->pd->nr_chips; i++) { struct dsa_switch *ds = dst->ds[i]; if (ds != NULL && ds->drv->poll_link != NULL) ds->drv->poll_link(ds); } mod_timer(&dst->link_poll_timer, round_jiffies(jiffies + HZ)); } static void dsa_link_poll_timer(unsigned long _dst) { struct dsa_switch_tree *dst = (void *)_dst; schedule_work(&dst->link_poll_work); } /* platform driver init and cleanup *****************************************/ static int dev_is_class(struct device *dev, void *class) { if (dev->class != NULL && !strcmp(dev->class->name, class)) return 1; return 0; } static struct device *dev_find_class(struct device *parent, char *class) { if (dev_is_class(parent, class)) { get_device(parent); return parent; } return device_find_child(parent, class, dev_is_class); } struct mii_bus *dsa_host_dev_to_mii_bus(struct device *dev) { struct device *d; d = dev_find_class(dev, "mdio_bus"); if (d != NULL) { struct mii_bus *bus; bus = to_mii_bus(d); put_device(d); return bus; } return NULL; } EXPORT_SYMBOL_GPL(dsa_host_dev_to_mii_bus); static struct net_device *dev_to_net_device(struct device *dev) { struct device *d; d = dev_find_class(dev, "net"); if (d != NULL) { struct net_device *nd; nd = to_net_dev(d); dev_hold(nd); put_device(d); return nd; } return NULL; } #ifdef CONFIG_OF static int dsa_of_setup_routing_table(struct dsa_platform_data *pd, struct dsa_chip_data *cd, int chip_index, int port_index, struct device_node *link) { const __be32 *reg; int link_sw_addr; struct device_node *parent_sw; int len; parent_sw = of_get_parent(link); if (!parent_sw) return -EINVAL; reg = of_get_property(parent_sw, "reg", &len); if (!reg || (len != sizeof(*reg) * 2)) return -EINVAL; /* * Get the destination switch number from the second field of its 'reg' * property, i.e. for "reg = <0x19 1>" sw_addr is '1'. */ link_sw_addr = be32_to_cpup(reg + 1); if (link_sw_addr >= pd->nr_chips) return -EINVAL; /* First time routing table allocation */ if (!cd->rtable) { cd->rtable = kmalloc_array(pd->nr_chips, sizeof(s8), GFP_KERNEL); if (!cd->rtable) return -ENOMEM; /* default to no valid uplink/downlink */ memset(cd->rtable, -1, pd->nr_chips * sizeof(s8)); } cd->rtable[link_sw_addr] = port_index; return 0; } static int dsa_of_probe_links(struct dsa_platform_data *pd, struct dsa_chip_data *cd, int chip_index, int port_index, struct device_node *port, const char *port_name) { struct device_node *link; int link_index; int ret; for (link_index = 0;; link_index++) { link = of_parse_phandle(port, "link", link_index); if (!link) break; if (!strcmp(port_name, "dsa") && pd->nr_chips > 1) { ret = dsa_of_setup_routing_table(pd, cd, chip_index, port_index, link); if (ret) return ret; } } return 0; } static void dsa_of_free_platform_data(struct dsa_platform_data *pd) { int i; int port_index; for (i = 0; i < pd->nr_chips; i++) { port_index = 0; while (port_index < DSA_MAX_PORTS) { kfree(pd->chip[i].port_names[port_index]); port_index++; } kfree(pd->chip[i].rtable); /* Drop our reference to the MDIO bus device */ if (pd->chip[i].host_dev) put_device(pd->chip[i].host_dev); } kfree(pd->chip); } static int dsa_of_probe(struct device *dev) { struct device_node *np = dev->of_node; struct device_node *child, *mdio, *ethernet, *port; struct mii_bus *mdio_bus, *mdio_bus_switch; struct net_device *ethernet_dev; struct dsa_platform_data *pd; struct dsa_chip_data *cd; const char *port_name; int chip_index, port_index; const unsigned int *sw_addr, *port_reg; u32 eeprom_len; int ret; mdio = of_parse_phandle(np, "dsa,mii-bus", 0); if (!mdio) return -EINVAL; mdio_bus = of_mdio_find_bus(mdio); if (!mdio_bus) return -EPROBE_DEFER; ethernet = of_parse_phandle(np, "dsa,ethernet", 0); if (!ethernet) { ret = -EINVAL; goto out_put_mdio; } ethernet_dev = of_find_net_device_by_node(ethernet); if (!ethernet_dev) { ret = -EPROBE_DEFER; goto out_put_mdio; } pd = kzalloc(sizeof(*pd), GFP_KERNEL); if (!pd) { ret = -ENOMEM; goto out_put_ethernet; } dev->platform_data = pd; pd->of_netdev = ethernet_dev; pd->nr_chips = of_get_available_child_count(np); if (pd->nr_chips > DSA_MAX_SWITCHES) pd->nr_chips = DSA_MAX_SWITCHES; pd->chip = kcalloc(pd->nr_chips, sizeof(struct dsa_chip_data), GFP_KERNEL); if (!pd->chip) { ret = -ENOMEM; goto out_free; } chip_index = -1; for_each_available_child_of_node(np, child) { chip_index++; cd = &pd->chip[chip_index]; cd->of_node = child; /* When assigning the host device, increment its refcount */ cd->host_dev = get_device(&mdio_bus->dev); sw_addr = of_get_property(child, "reg", NULL); if (!sw_addr) continue; cd->sw_addr = be32_to_cpup(sw_addr); if (cd->sw_addr >= PHY_MAX_ADDR) continue; if (!of_property_read_u32(child, "eeprom-length", &eeprom_len)) cd->eeprom_len = eeprom_len; mdio = of_parse_phandle(child, "mii-bus", 0); if (mdio) { mdio_bus_switch = of_mdio_find_bus(mdio); if (!mdio_bus_switch) { ret = -EPROBE_DEFER; goto out_free_chip; } /* Drop the mdio_bus device ref, replacing the host * device with the mdio_bus_switch device, keeping * the refcount from of_mdio_find_bus() above. */ put_device(cd->host_dev); cd->host_dev = &mdio_bus_switch->dev; } for_each_available_child_of_node(child, port) { port_reg = of_get_property(port, "reg", NULL); if (!port_reg) continue; port_index = be32_to_cpup(port_reg); if (port_index >= DSA_MAX_PORTS) break; port_name = of_get_property(port, "label", NULL); if (!port_name) continue; cd->port_dn[port_index] = port; cd->port_names[port_index] = kstrdup(port_name, GFP_KERNEL); if (!cd->port_names[port_index]) { ret = -ENOMEM; goto out_free_chip; } ret = dsa_of_probe_links(pd, cd, chip_index, port_index, port, port_name); if (ret) goto out_free_chip; } } /* The individual chips hold their own refcount on the mdio bus, * so drop ours */ put_device(&mdio_bus->dev); return 0; out_free_chip: dsa_of_free_platform_data(pd); out_free: kfree(pd); dev->platform_data = NULL; out_put_ethernet: put_device(ðernet_dev->dev); out_put_mdio: put_device(&mdio_bus->dev); return ret; } static void dsa_of_remove(struct device *dev) { struct dsa_platform_data *pd = dev->platform_data; if (!dev->of_node) return; dsa_of_free_platform_data(pd); put_device(&pd->of_netdev->dev); kfree(pd); } #else static inline int dsa_of_probe(struct device *dev) { return 0; } static inline void dsa_of_remove(struct device *dev) { } #endif static void dsa_setup_dst(struct dsa_switch_tree *dst, struct net_device *dev, struct device *parent, struct dsa_platform_data *pd) { int i; dst->pd = pd; dst->master_netdev = dev; dst->cpu_switch = -1; dst->cpu_port = -1; for (i = 0; i < pd->nr_chips; i++) { struct dsa_switch *ds; ds = dsa_switch_setup(dst, i, parent, pd->chip[i].host_dev); if (IS_ERR(ds)) { netdev_err(dev, "[%d]: couldn't create dsa switch instance (error %ld)\n", i, PTR_ERR(ds)); continue; } dst->ds[i] = ds; if (ds->drv->poll_link != NULL) dst->link_poll_needed = 1; } /* * If we use a tagging format that doesn't have an ethertype * field, make sure that all packets from this point on get * sent to the tag format's receive function. */ wmb(); dev->dsa_ptr = (void *)dst; if (dst->link_poll_needed) { INIT_WORK(&dst->link_poll_work, dsa_link_poll_work); init_timer(&dst->link_poll_timer); dst->link_poll_timer.data = (unsigned long)dst; dst->link_poll_timer.function = dsa_link_poll_timer; dst->link_poll_timer.expires = round_jiffies(jiffies + HZ); add_timer(&dst->link_poll_timer); } } static int dsa_probe(struct platform_device *pdev) { struct dsa_platform_data *pd = pdev->dev.platform_data; struct net_device *dev; struct dsa_switch_tree *dst; int ret; pr_notice_once("Distributed Switch Architecture driver version %s\n", dsa_driver_version); if (pdev->dev.of_node) { ret = dsa_of_probe(&pdev->dev); if (ret) return ret; pd = pdev->dev.platform_data; } if (pd == NULL || (pd->netdev == NULL && pd->of_netdev == NULL)) return -EINVAL; if (pd->of_netdev) { dev = pd->of_netdev; dev_hold(dev); } else { dev = dev_to_net_device(pd->netdev); } if (dev == NULL) { ret = -EPROBE_DEFER; goto out; } if (dev->dsa_ptr != NULL) { dev_put(dev); ret = -EEXIST; goto out; } dst = kzalloc(sizeof(*dst), GFP_KERNEL); if (dst == NULL) { dev_put(dev); ret = -ENOMEM; goto out; } platform_set_drvdata(pdev, dst); dsa_setup_dst(dst, dev, &pdev->dev, pd); return 0; out: dsa_of_remove(&pdev->dev); return ret; } static void dsa_remove_dst(struct dsa_switch_tree *dst) { int i; if (dst->link_poll_needed) del_timer_sync(&dst->link_poll_timer); flush_work(&dst->link_poll_work); for (i = 0; i < dst->pd->nr_chips; i++) { struct dsa_switch *ds = dst->ds[i]; if (ds) { dsa_switch_destroy(ds); kfree(ds); } } } static int dsa_remove(struct platform_device *pdev) { struct dsa_switch_tree *dst = platform_get_drvdata(pdev); dsa_remove_dst(dst); kfree(dst); dsa_of_remove(&pdev->dev); return 0; } static void dsa_shutdown(struct platform_device *pdev) { } static int dsa_switch_rcv(struct sk_buff *skb, struct net_device *dev, struct packet_type *pt, struct net_device *orig_dev) { struct dsa_switch_tree *dst = dev->dsa_ptr; if (unlikely(dst == NULL)) { kfree_skb(skb); return 0; } return dst->rcv(skb, dev, pt, orig_dev); } static struct packet_type dsa_pack_type __read_mostly = { .type = cpu_to_be16(ETH_P_XDSA), .func = dsa_switch_rcv, }; static struct notifier_block dsa_netdevice_nb __read_mostly = { .notifier_call = dsa_slave_netdevice_event, }; #ifdef CONFIG_PM_SLEEP static int dsa_suspend(struct device *d) { struct platform_device *pdev = to_platform_device(d); struct dsa_switch_tree *dst = platform_get_drvdata(pdev); int i, ret = 0; for (i = 0; i < dst->pd->nr_chips; i++) { struct dsa_switch *ds = dst->ds[i]; if (ds != NULL) ret = dsa_switch_suspend(ds); } return ret; } static int dsa_resume(struct device *d) { struct platform_device *pdev = to_platform_device(d); struct dsa_switch_tree *dst = platform_get_drvdata(pdev); int i, ret = 0; for (i = 0; i < dst->pd->nr_chips; i++) { struct dsa_switch *ds = dst->ds[i]; if (ds != NULL) ret = dsa_switch_resume(ds); } return ret; } #endif static SIMPLE_DEV_PM_OPS(dsa_pm_ops, dsa_suspend, dsa_resume); static const struct of_device_id dsa_of_match_table[] = { { .compatible = "brcm,bcm7445-switch-v4.0" }, { .compatible = "marvell,dsa", }, {} }; MODULE_DEVICE_TABLE(of, dsa_of_match_table); static struct platform_driver dsa_driver = { .probe = dsa_probe, .remove = dsa_remove, .shutdown = dsa_shutdown, .driver = { .name = "dsa", .of_match_table = dsa_of_match_table, .pm = &dsa_pm_ops, }, }; static int __init dsa_init_module(void) { int rc; register_netdevice_notifier(&dsa_netdevice_nb); rc = platform_driver_register(&dsa_driver); if (rc) return rc; dev_add_pack(&dsa_pack_type); return 0; } module_init(dsa_init_module); static void __exit dsa_cleanup_module(void) { unregister_netdevice_notifier(&dsa_netdevice_nb); dev_remove_pack(&dsa_pack_type); platform_driver_unregister(&dsa_driver); } module_exit(dsa_cleanup_module); MODULE_AUTHOR("Lennert Buytenhek "); MODULE_DESCRIPTION("Driver for Distributed Switch Architecture switch chips"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:dsa");