/* * DECnet An implementation of the DECnet protocol suite for the LINUX * operating system. DECnet is implemented using the BSD Socket * interface as the means of communication with the user level. * * DECnet Socket Layer Interface * * Authors: Eduardo Marcelo Serrat * Patrick Caulfield * * Changes: * Steve Whitehouse: Copied from Eduardo Serrat and Patrick Caulfield's * version of the code. Original copyright preserved * below. * Steve Whitehouse: Some bug fixes, cleaning up some code to make it * compatible with my routing layer. * Steve Whitehouse: Merging changes from Eduardo Serrat and Patrick * Caulfield. * Steve Whitehouse: Further bug fixes, checking module code still works * with new routing layer. * Steve Whitehouse: Additional set/get_sockopt() calls. * Steve Whitehouse: Fixed TIOCINQ ioctl to be same as Eduardo's new * code. * Steve Whitehouse: recvmsg() changed to try and behave in a POSIX like * way. Didn't manage it entirely, but its better. * Steve Whitehouse: ditto for sendmsg(). * Steve Whitehouse: A selection of bug fixes to various things. * Steve Whitehouse: Added TIOCOUTQ ioctl. * Steve Whitehouse: Fixes to username2sockaddr & sockaddr2username. * Steve Whitehouse: Fixes to connect() error returns. * Patrick Caulfield: Fixes to delayed acceptance logic. * David S. Miller: New socket locking * Steve Whitehouse: Socket list hashing/locking * Arnaldo C. Melo: use capable, not suser * Steve Whitehouse: Removed unused code. Fix to use sk->allocation * when required. * Patrick Caulfield: /proc/net/decnet now has object name/number * Steve Whitehouse: Fixed local port allocation, hashed sk list * Matthew Wilcox: Fixes for dn_ioctl() * Steve Whitehouse: New connect/accept logic to allow timeouts and * prepare for sendpage etc. */ /****************************************************************************** (c) 1995-1998 E.M. Serrat emserrat@geocities.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. HISTORY: Version Kernel Date Author/Comments ------- ------ ---- --------------- Version 0.0.1 2.0.30 01-dic-97 Eduardo Marcelo Serrat (emserrat@geocities.com) First Development of DECnet Socket La- yer for Linux. Only supports outgoing connections. Version 0.0.2 2.1.105 20-jun-98 Patrick J. Caulfield (patrick@pandh.demon.co.uk) Port to new kernel development version. Version 0.0.3 2.1.106 25-jun-98 Eduardo Marcelo Serrat (emserrat@geocities.com) _ Added support for incoming connections so we can start developing server apps on Linux. - Module Support Version 0.0.4 2.1.109 21-jul-98 Eduardo Marcelo Serrat (emserrat@geocities.com) _ Added support for X11R6.4. Now we can use DECnet transport for X on Linux!!! - Version 0.0.5 2.1.110 01-aug-98 Eduardo Marcelo Serrat (emserrat@geocities.com) Removed bugs on flow control Removed bugs on incoming accessdata order - Version 0.0.6 2.1.110 07-aug-98 Eduardo Marcelo Serrat dn_recvmsg fixes Patrick J. Caulfield dn_bind fixes *******************************************************************************/ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct dn_sock { struct sock sk; struct dn_scp scp; }; static void dn_keepalive(struct sock *sk); #define DN_SK_HASH_SHIFT 8 #define DN_SK_HASH_SIZE (1 << DN_SK_HASH_SHIFT) #define DN_SK_HASH_MASK (DN_SK_HASH_SIZE - 1) static const struct proto_ops dn_proto_ops; static DEFINE_RWLOCK(dn_hash_lock); static struct hlist_head dn_sk_hash[DN_SK_HASH_SIZE]; static struct hlist_head dn_wild_sk; static atomic_long_t decnet_memory_allocated; static int __dn_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen, int flags); static int __dn_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen, int flags); static struct hlist_head *dn_find_list(struct sock *sk) { struct dn_scp *scp = DN_SK(sk); if (scp->addr.sdn_flags & SDF_WILD) return hlist_empty(&dn_wild_sk) ? &dn_wild_sk : NULL; return &dn_sk_hash[le16_to_cpu(scp->addrloc) & DN_SK_HASH_MASK]; } /* * Valid ports are those greater than zero and not already in use. */ static int check_port(__le16 port) { struct sock *sk; struct hlist_node *node; if (port == 0) return -1; sk_for_each(sk, node, &dn_sk_hash[le16_to_cpu(port) & DN_SK_HASH_MASK]) { struct dn_scp *scp = DN_SK(sk); if (scp->addrloc == port) return -1; } return 0; } static unsigned short port_alloc(struct sock *sk) { struct dn_scp *scp = DN_SK(sk); static unsigned short port = 0x2000; unsigned short i_port = port; while(check_port(cpu_to_le16(++port)) != 0) { if (port == i_port) return 0; } scp->addrloc = cpu_to_le16(port); return 1; } /* * Since this is only ever called from user * level, we don't need a write_lock() version * of this. */ static int dn_hash_sock(struct sock *sk) { struct dn_scp *scp = DN_SK(sk); struct hlist_head *list; int rv = -EUSERS; BUG_ON(sk_hashed(sk)); write_lock_bh(&dn_hash_lock); if (!scp->addrloc && !port_alloc(sk)) goto out; rv = -EADDRINUSE; if ((list = dn_find_list(sk)) == NULL) goto out; sk_add_node(sk, list); rv = 0; out: write_unlock_bh(&dn_hash_lock); return rv; } static void dn_unhash_sock(struct sock *sk) { write_lock(&dn_hash_lock); sk_del_node_init(sk); write_unlock(&dn_hash_lock); } static void dn_unhash_sock_bh(struct sock *sk) { write_lock_bh(&dn_hash_lock); sk_del_node_init(sk); write_unlock_bh(&dn_hash_lock); } static struct hlist_head *listen_hash(struct sockaddr_dn *addr) { int i; unsigned hash = addr->sdn_objnum; if (hash == 0) { hash = addr->sdn_objnamel; for(i = 0; i < le16_to_cpu(addr->sdn_objnamel); i++) { hash ^= addr->sdn_objname[i]; hash ^= (hash << 3); } } return &dn_sk_hash[hash & DN_SK_HASH_MASK]; } /* * Called to transform a socket from bound (i.e. with a local address) * into a listening socket (doesn't need a local port number) and rehashes * based upon the object name/number. */ static void dn_rehash_sock(struct sock *sk) { struct hlist_head *list; struct dn_scp *scp = DN_SK(sk); if (scp->addr.sdn_flags & SDF_WILD) return; write_lock_bh(&dn_hash_lock); sk_del_node_init(sk); DN_SK(sk)->addrloc = 0; list = listen_hash(&DN_SK(sk)->addr); sk_add_node(sk, list); write_unlock_bh(&dn_hash_lock); } int dn_sockaddr2username(struct sockaddr_dn *sdn, unsigned char *buf, unsigned char type) { int len = 2; *buf++ = type; switch (type) { case 0: *buf++ = sdn->sdn_objnum; break; case 1: *buf++ = 0; *buf++ = le16_to_cpu(sdn->sdn_objnamel); memcpy(buf, sdn->sdn_objname, le16_to_cpu(sdn->sdn_objnamel)); len = 3 + le16_to_cpu(sdn->sdn_objnamel); break; case 2: memset(buf, 0, 5); buf += 5; *buf++ = le16_to_cpu(sdn->sdn_objnamel); memcpy(buf, sdn->sdn_objname, le16_to_cpu(sdn->sdn_objnamel)); len = 7 + le16_to_cpu(sdn->sdn_objnamel); break; } return len; } /* * On reception of usernames, we handle types 1 and 0 for destination * addresses only. Types 2 and 4 are used for source addresses, but the * UIC, GIC are ignored and they are both treated the same way. Type 3 * is never used as I've no idea what its purpose might be or what its * format is. */ int dn_username2sockaddr(unsigned char *data, int len, struct sockaddr_dn *sdn, unsigned char *fmt) { unsigned char type; int size = len; int namel = 12; sdn->sdn_objnum = 0; sdn->sdn_objnamel = cpu_to_le16(0); memset(sdn->sdn_objname, 0, DN_MAXOBJL); if (len < 2) return -1; len -= 2; *fmt = *data++; type = *data++; switch (*fmt) { case 0: sdn->sdn_objnum = type; return 2; case 1: namel = 16; break; case 2: len -= 4; data += 4; break; case 4: len -= 8; data += 8; break; default: return -1; } len -= 1; if (len < 0) return -1; sdn->sdn_objnamel = cpu_to_le16(*data++); len -= le16_to_cpu(sdn->sdn_objnamel); if ((len < 0) || (le16_to_cpu(sdn->sdn_objnamel) > namel)) return -1; memcpy(sdn->sdn_objname, data, le16_to_cpu(sdn->sdn_objnamel)); return size - len; } struct sock *dn_sklist_find_listener(struct sockaddr_dn *addr) { struct hlist_head *list = listen_hash(addr); struct hlist_node *node; struct sock *sk; read_lock(&dn_hash_lock); sk_for_each(sk, node, list) { struct dn_scp *scp = DN_SK(sk); if (sk->sk_state != TCP_LISTEN) continue; if (scp->addr.sdn_objnum) { if (scp->addr.sdn_objnum != addr->sdn_objnum) continue; } else { if (addr->sdn_objnum) continue; if (scp->addr.sdn_objnamel != addr->sdn_objnamel) continue; if (memcmp(scp->addr.sdn_objname, addr->sdn_objname, le16_to_cpu(addr->sdn_objnamel)) != 0) continue; } sock_hold(sk); read_unlock(&dn_hash_lock); return sk; } sk = sk_head(&dn_wild_sk); if (sk) { if (sk->sk_state == TCP_LISTEN) sock_hold(sk); else sk = NULL; } read_unlock(&dn_hash_lock); return sk; } struct sock *dn_find_by_skb(struct sk_buff *skb) { struct dn_skb_cb *cb = DN_SKB_CB(skb); struct sock *sk; struct hlist_node *node; struct dn_scp *scp; read_lock(&dn_hash_lock); sk_for_each(sk, node, &dn_sk_hash[le16_to_cpu(cb->dst_port) & DN_SK_HASH_MASK]) { scp = DN_SK(sk); if (cb->src != dn_saddr2dn(&scp->peer)) continue; if (cb->dst_port != scp->addrloc) continue; if (scp->addrrem && (cb->src_port != scp->addrrem)) continue; sock_hold(sk); goto found; } sk = NULL; found: read_unlock(&dn_hash_lock); return sk; } static void dn_destruct(struct sock *sk) { struct dn_scp *scp = DN_SK(sk); skb_queue_purge(&scp->data_xmit_queue); skb_queue_purge(&scp->other_xmit_queue); skb_queue_purge(&scp->other_receive_queue); dst_release(rcu_dereference_check(sk->sk_dst_cache, 1)); } static int dn_memory_pressure; static void dn_enter_memory_pressure(struct sock *sk) { if (!dn_memory_pressure) { dn_memory_pressure = 1; } } static struct proto dn_proto = { .name = "NSP", .owner = THIS_MODULE, .enter_memory_pressure = dn_enter_memory_pressure, .memory_pressure = &dn_memory_pressure, .memory_allocated = &decnet_memory_allocated, .sysctl_mem = sysctl_decnet_mem, .sysctl_wmem = sysctl_decnet_wmem, .sysctl_rmem = sysctl_decnet_rmem, .max_header = DN_MAX_NSP_DATA_HEADER + 64, .obj_size = sizeof(struct dn_sock), }; static struct sock *dn_alloc_sock(struct net *net, struct socket *sock, gfp_t gfp) { struct dn_scp *scp; struct sock *sk = sk_alloc(net, PF_DECnet, gfp, &dn_proto); if (!sk) goto out; if (sock) sock->ops = &dn_proto_ops; sock_init_data(sock, sk); sk->sk_backlog_rcv = dn_nsp_backlog_rcv; sk->sk_destruct = dn_destruct; sk->sk_no_check = 1; sk->sk_family = PF_DECnet; sk->sk_protocol = 0; sk->sk_allocation = gfp; sk->sk_sndbuf = sysctl_decnet_wmem[1]; sk->sk_rcvbuf = sysctl_decnet_rmem[1]; /* Initialization of DECnet Session Control Port */ scp = DN_SK(sk); scp->state = DN_O; /* Open */ scp->numdat = 1; /* Next data seg to tx */ scp->numoth = 1; /* Next oth data to tx */ scp->ackxmt_dat = 0; /* Last data seg ack'ed */ scp->ackxmt_oth = 0; /* Last oth data ack'ed */ scp->ackrcv_dat = 0; /* Highest data ack recv*/ scp->ackrcv_oth = 0; /* Last oth data ack rec*/ scp->flowrem_sw = DN_SEND; scp->flowloc_sw = DN_SEND; scp->flowrem_dat = 0; scp->flowrem_oth = 1; scp->flowloc_dat = 0; scp->flowloc_oth = 1; scp->services_rem = 0; scp->services_loc = 1 | NSP_FC_NONE; scp->info_rem = 0; scp->info_loc = 0x03; /* NSP version 4.1 */ scp->segsize_rem = 230 - DN_MAX_NSP_DATA_HEADER; /* Default: Updated by remote segsize */ scp->nonagle = 0; scp->multi_ireq = 1; scp->accept_mode = ACC_IMMED; scp->addr.sdn_family = AF_DECnet; scp->peer.sdn_family = AF_DECnet; scp->accessdata.acc_accl = 5; memcpy(scp->accessdata.acc_acc, "LINUX", 5); scp->max_window = NSP_MAX_WINDOW; scp->snd_window = NSP_MIN_WINDOW; scp->nsp_srtt = NSP_INITIAL_SRTT; scp->nsp_rttvar = NSP_INITIAL_RTTVAR; scp->nsp_rxtshift = 0; skb_queue_head_init(&scp->data_xmit_queue); skb_queue_head_init(&scp->other_xmit_queue); skb_queue_head_init(&scp->other_receive_queue); scp->persist = 0; scp->persist_fxn = NULL; scp->keepalive = 10 * HZ; scp->keepalive_fxn = dn_keepalive; init_timer(&scp->delack_timer); scp->delack_pending = 0; scp->delack_fxn = dn_nsp_delayed_ack; dn_start_slow_timer(sk); out: return sk; } /* * Keepalive timer. * FIXME: Should respond to SO_KEEPALIVE etc. */ static void dn_keepalive(struct sock *sk) { struct dn_scp *scp = DN_SK(sk); /* * By checking the other_data transmit queue is empty * we are double checking that we are not sending too * many of these keepalive frames. */ if (skb_queue_empty(&scp->other_xmit_queue)) dn_nsp_send_link(sk, DN_NOCHANGE, 0); } /* * Timer for shutdown/destroyed sockets. * When socket is dead & no packets have been sent for a * certain amount of time, they are removed by this * routine. Also takes care of sending out DI & DC * frames at correct times. */ int dn_destroy_timer(struct sock *sk) { struct dn_scp *scp = DN_SK(sk); scp->persist = dn_nsp_persist(sk); switch (scp->state) { case DN_DI: dn_nsp_send_disc(sk, NSP_DISCINIT, 0, GFP_ATOMIC); if (scp->nsp_rxtshift >= decnet_di_count) scp->state = DN_CN; return 0; case DN_DR: dn_nsp_send_disc(sk, NSP_DISCINIT, 0, GFP_ATOMIC); if (scp->nsp_rxtshift >= decnet_dr_count) scp->state = DN_DRC; return 0; case DN_DN: if (scp->nsp_rxtshift < decnet_dn_count) { /* printk(KERN_DEBUG "dn_destroy_timer: DN\n"); */ dn_nsp_send_disc(sk, NSP_DISCCONF, NSP_REASON_DC, GFP_ATOMIC); return 0; } } scp->persist = (HZ * decnet_time_wait); if (sk->sk_socket) return 0; if ((jiffies - scp->stamp) >= (HZ * decnet_time_wait)) { dn_unhash_sock(sk); sock_put(sk); return 1; } return 0; } static void dn_destroy_sock(struct sock *sk) { struct dn_scp *scp = DN_SK(sk); scp->nsp_rxtshift = 0; /* reset back off */ if (sk->sk_socket) { if (sk->sk_socket->state != SS_UNCONNECTED) sk->sk_socket->state = SS_DISCONNECTING; } sk->sk_state = TCP_CLOSE; switch (scp->state) { case DN_DN: dn_nsp_send_disc(sk, NSP_DISCCONF, NSP_REASON_DC, sk->sk_allocation); scp->persist_fxn = dn_destroy_timer; scp->persist = dn_nsp_persist(sk); break; case DN_CR: scp->state = DN_DR; goto disc_reject; case DN_RUN: scp->state = DN_DI; case DN_DI: case DN_DR: disc_reject: dn_nsp_send_disc(sk, NSP_DISCINIT, 0, sk->sk_allocation); case DN_NC: case DN_NR: case DN_RJ: case DN_DIC: case DN_CN: case DN_DRC: case DN_CI: case DN_CD: scp->persist_fxn = dn_destroy_timer; scp->persist = dn_nsp_persist(sk); break; default: printk(KERN_DEBUG "DECnet: dn_destroy_sock passed socket in invalid state\n"); case DN_O: dn_stop_slow_timer(sk); dn_unhash_sock_bh(sk); sock_put(sk); break; } } char *dn_addr2asc(__u16 addr, char *buf) { unsigned short node, area; node = addr & 0x03ff; area = addr >> 10; sprintf(buf, "%hd.%hd", area, node); return buf; } static int dn_create(struct net *net, struct socket *sock, int protocol, int kern) { struct sock *sk; if (protocol < 0 || protocol > SK_PROTOCOL_MAX) return -EINVAL; if (!net_eq(net, &init_net)) return -EAFNOSUPPORT; switch (sock->type) { case SOCK_SEQPACKET: if (protocol != DNPROTO_NSP) return -EPROTONOSUPPORT; break; case SOCK_STREAM: break; default: return -ESOCKTNOSUPPORT; } if ((sk = dn_alloc_sock(net, sock, GFP_KERNEL)) == NULL) return -ENOBUFS; sk->sk_protocol = protocol; return 0; } static int dn_release(struct socket *sock) { struct sock *sk = sock->sk; if (sk) { sock_orphan(sk); sock_hold(sk); lock_sock(sk); dn_destroy_sock(sk); release_sock(sk); sock_put(sk); } return 0; } static int dn_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len) { struct sock *sk = sock->sk; struct dn_scp *scp = DN_SK(sk); struct sockaddr_dn *saddr = (struct sockaddr_dn *)uaddr; struct net_device *dev, *ldev; int rv; if (addr_len != sizeof(struct sockaddr_dn)) return -EINVAL; if (saddr->sdn_family != AF_DECnet) return -EINVAL; if (le16_to_cpu(saddr->sdn_nodeaddrl) && (le16_to_cpu(saddr->sdn_nodeaddrl) != 2)) return -EINVAL; if (le16_to_cpu(saddr->sdn_objnamel) > DN_MAXOBJL) return -EINVAL; if (saddr->sdn_flags & ~SDF_WILD) return -EINVAL; if (!capable(CAP_NET_BIND_SERVICE) && (saddr->sdn_objnum || (saddr->sdn_flags & SDF_WILD))) return -EACCES; if (!(saddr->sdn_flags & SDF_WILD)) { if (le16_to_cpu(saddr->sdn_nodeaddrl)) { rcu_read_lock(); ldev = NULL; for_each_netdev_rcu(&init_net, dev) { if (!dev->dn_ptr) continue; if (dn_dev_islocal(dev, dn_saddr2dn(saddr))) { ldev = dev; break; } } rcu_read_unlock(); if (ldev == NULL) return -EADDRNOTAVAIL; } } rv = -EINVAL; lock_sock(sk); if (sock_flag(sk, SOCK_ZAPPED)) { memcpy(&scp->addr, saddr, addr_len); sock_reset_flag(sk, SOCK_ZAPPED); rv = dn_hash_sock(sk); if (rv) sock_set_flag(sk, SOCK_ZAPPED); } release_sock(sk); return rv; } static int dn_auto_bind(struct socket *sock) { struct sock *sk = sock->sk; struct dn_scp *scp = DN_SK(sk); int rv; sock_reset_flag(sk, SOCK_ZAPPED); scp->addr.sdn_flags = 0; scp->addr.sdn_objnum = 0; /* * This stuff is to keep compatibility with Eduardo's * patch. I hope I can dispense with it shortly... */ if ((scp->accessdata.acc_accl != 0) && (scp->accessdata.acc_accl <= 12)) { scp->addr.sdn_objnamel = cpu_to_le16(scp->accessdata.acc_accl); memcpy(scp->addr.sdn_objname, scp->accessdata.acc_acc, le16_to_cpu(scp->addr.sdn_objnamel)); scp->accessdata.acc_accl = 0; memset(scp->accessdata.acc_acc, 0, 40); } /* End of compatibility stuff */ scp->addr.sdn_add.a_len = cpu_to_le16(2); rv = dn_dev_bind_default((__le16 *)scp->addr.sdn_add.a_addr); if (rv == 0) { rv = dn_hash_sock(sk); if (rv) sock_set_flag(sk, SOCK_ZAPPED); } return rv; } static int dn_confirm_accept(struct sock *sk, long *timeo, gfp_t allocation) { struct dn_scp *scp = DN_SK(sk); DEFINE_WAIT(wait); int err; if (scp->state != DN_CR) return -EINVAL; scp->state = DN_CC; scp->segsize_loc = dst_metric_advmss(__sk_dst_get(sk)); dn_send_conn_conf(sk, allocation); prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); for(;;) { release_sock(sk); if (scp->state == DN_CC) *timeo = schedule_timeout(*timeo); lock_sock(sk); err = 0; if (scp->state == DN_RUN) break; err = sock_error(sk); if (err) break; err = sock_intr_errno(*timeo); if (signal_pending(current)) break; err = -EAGAIN; if (!*timeo) break; prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); } finish_wait(sk_sleep(sk), &wait); if (err == 0) { sk->sk_socket->state = SS_CONNECTED; } else if (scp->state != DN_CC) { sk->sk_socket->state = SS_UNCONNECTED; } return err; } static int dn_wait_run(struct sock *sk, long *timeo) { struct dn_scp *scp = DN_SK(sk); DEFINE_WAIT(wait); int err = 0; if (scp->state == DN_RUN) goto out; if (!*timeo) return -EALREADY; prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); for(;;) { release_sock(sk); if (scp->state == DN_CI || scp->state == DN_CC) *timeo = schedule_timeout(*timeo); lock_sock(sk); err = 0; if (scp->state == DN_RUN) break; err = sock_error(sk); if (err) break; err = sock_intr_errno(*timeo); if (signal_pending(current)) break; err = -ETIMEDOUT; if (!*timeo) break; prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); } finish_wait(sk_sleep(sk), &wait); out: if (err == 0) { sk->sk_socket->state = SS_CONNECTED; } else if (scp->state != DN_CI && scp->state != DN_CC) { sk->sk_socket->state = SS_UNCONNECTED; } return err; } static int __dn_connect(struct sock *sk, struct sockaddr_dn *addr, int addrlen, long *timeo, int flags) { struct socket *sock = sk->sk_socket; struct dn_scp *scp = DN_SK(sk); int err = -EISCONN; struct flowidn fld; if (sock->state == SS_CONNECTED) goto out; if (sock->state == SS_CONNECTING) { err = 0; if (scp->state == DN_RUN) { sock->state = SS_CONNECTED; goto out; } err = -ECONNREFUSED; if (scp->state != DN_CI && scp->state != DN_CC) { sock->state = SS_UNCONNECTED; goto out; } return dn_wait_run(sk, timeo); } err = -EINVAL; if (scp->state != DN_O) goto out; if (addr == NULL || addrlen != sizeof(struct sockaddr_dn)) goto out; if (addr->sdn_family != AF_DECnet) goto out; if (addr->sdn_flags & SDF_WILD) goto out; if (sock_flag(sk, SOCK_ZAPPED)) { err = dn_auto_bind(sk->sk_socket); if (err) goto out; } memcpy(&scp->peer, addr, sizeof(struct sockaddr_dn)); err = -EHOSTUNREACH; memset(&fld, 0, sizeof(fld)); fld.flowidn_oif = sk->sk_bound_dev_if; fld.daddr = dn_saddr2dn(&scp->peer); fld.saddr = dn_saddr2dn(&scp->addr); dn_sk_ports_copy(&fld, scp); fld.flowidn_proto = DNPROTO_NSP; if (dn_route_output_sock(&sk->sk_dst_cache, &fld, sk, flags) < 0) goto out; sk->sk_route_caps = sk->sk_dst_cache->dev->features; sock->state = SS_CONNECTING; scp->state = DN_CI; scp->segsize_loc = dst_metric_advmss(sk->sk_dst_cache); dn_nsp_send_conninit(sk, NSP_CI); err = -EINPROGRESS; if (*timeo) { err = dn_wait_run(sk, timeo); } out: return err; } static int dn_connect(struct socket *sock, struct sockaddr *uaddr, int addrlen, int flags) { struct sockaddr_dn *addr = (struct sockaddr_dn *)uaddr; struct sock *sk = sock->sk; int err; long timeo = sock_sndtimeo(sk, flags & O_NONBLOCK); lock_sock(sk); err = __dn_connect(sk, addr, addrlen, &timeo, 0); release_sock(sk); return err; } static inline int dn_check_state(struct sock *sk, struct sockaddr_dn *addr, int addrlen, long *timeo, int flags) { struct dn_scp *scp = DN_SK(sk); switch (scp->state) { case DN_RUN: return 0; case DN_CR: return dn_confirm_accept(sk, timeo, sk->sk_allocation); case DN_CI: case DN_CC: return dn_wait_run(sk, timeo); case DN_O: return __dn_connect(sk, addr, addrlen, timeo, flags); } return -EINVAL; } static void dn_access_copy(struct sk_buff *skb, struct accessdata_dn *acc) { unsigned char *ptr = skb->data; acc->acc_userl = *ptr++; memcpy(&acc->acc_user, ptr, acc->acc_userl); ptr += acc->acc_userl; acc->acc_passl = *ptr++; memcpy(&acc->acc_pass, ptr, acc->acc_passl); ptr += acc->acc_passl; acc->acc_accl = *ptr++; memcpy(&acc->acc_acc, ptr, acc->acc_accl); skb_pull(skb, acc->acc_accl + acc->acc_passl + acc->acc_userl + 3); } static void dn_user_copy(struct sk_buff *skb, struct optdata_dn *opt) { unsigned char *ptr = skb->data; u16 len = *ptr++; /* yes, it's 8bit on the wire */ BUG_ON(len > 16); /* we've checked the contents earlier */ opt->opt_optl = cpu_to_le16(len); opt->opt_status = 0; memcpy(opt->opt_data, ptr, len); skb_pull(skb, len + 1); } static struct sk_buff *dn_wait_for_connect(struct sock *sk, long *timeo) { DEFINE_WAIT(wait); struct sk_buff *skb = NULL; int err = 0; prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); for(;;) { release_sock(sk); skb = skb_dequeue(&sk->sk_receive_queue); if (skb == NULL) { *timeo = schedule_timeout(*timeo); skb = skb_dequeue(&sk->sk_receive_queue); } lock_sock(sk); if (skb != NULL) break; err = -EINVAL; if (sk->sk_state != TCP_LISTEN) break; err = sock_intr_errno(*timeo); if (signal_pending(current)) break; err = -EAGAIN; if (!*timeo) break; prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); } finish_wait(sk_sleep(sk), &wait); return skb == NULL ? ERR_PTR(err) : skb; } static int dn_accept(struct socket *sock, struct socket *newsock, int flags) { struct sock *sk = sock->sk, *newsk; struct sk_buff *skb = NULL; struct dn_skb_cb *cb; unsigned char menuver; int err = 0; unsigned char type; long timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK); struct dst_entry *dst; lock_sock(sk); if (sk->sk_state != TCP_LISTEN || DN_SK(sk)->state != DN_O) { release_sock(sk); return -EINVAL; } skb = skb_dequeue(&sk->sk_receive_queue); if (skb == NULL) { skb = dn_wait_for_connect(sk, &timeo); if (IS_ERR(skb)) { release_sock(sk); return PTR_ERR(skb); } } cb = DN_SKB_CB(skb); sk->sk_ack_backlog--; newsk = dn_alloc_sock(sock_net(sk), newsock, sk->sk_allocation); if (newsk == NULL) { release_sock(sk); kfree_skb(skb); return -ENOBUFS; } release_sock(sk); dst = skb_dst(skb); sk_dst_set(newsk, dst); skb_dst_set(skb, NULL); DN_SK(newsk)->state = DN_CR; DN_SK(newsk)->addrrem = cb->src_port; DN_SK(newsk)->services_rem = cb->services; DN_SK(newsk)->info_rem = cb->info; DN_SK(newsk)->segsize_rem = cb->segsize; DN_SK(newsk)->accept_mode = DN_SK(sk)->accept_mode; if (DN_SK(newsk)->segsize_rem < 230) DN_SK(newsk)->segsize_rem = 230; if ((DN_SK(newsk)->services_rem & NSP_FC_MASK) == NSP_FC_NONE) DN_SK(newsk)->max_window = decnet_no_fc_max_cwnd; newsk->sk_state = TCP_LISTEN; memcpy(&(DN_SK(newsk)->addr), &(DN_SK(sk)->addr), sizeof(struct sockaddr_dn)); /* * If we are listening on a wild socket, we don't want * the newly created socket on the wrong hash queue. */ DN_SK(newsk)->addr.sdn_flags &= ~SDF_WILD; skb_pull(skb, dn_username2sockaddr(skb->data, skb->len, &(DN_SK(newsk)->addr), &type)); skb_pull(skb, dn_username2sockaddr(skb->data, skb->len, &(DN_SK(newsk)->peer), &type)); *(__le16 *)(DN_SK(newsk)->peer.sdn_add.a_addr) = cb->src; *(__le16 *)(DN_SK(newsk)->addr.sdn_add.a_addr) = cb->dst; menuver = *skb->data; skb_pull(skb, 1); if (menuver & DN_MENUVER_ACC) dn_access_copy(skb, &(DN_SK(newsk)->accessdata)); if (menuver & DN_MENUVER_USR) dn_user_copy(skb, &(DN_SK(newsk)->conndata_in)); if (menuver & DN_MENUVER_PRX) DN_SK(newsk)->peer.sdn_flags |= SDF_PROXY; if (menuver & DN_MENUVER_UIC) DN_SK(newsk)->peer.sdn_flags |= SDF_UICPROXY; kfree_skb(skb); memcpy(&(DN_SK(newsk)->conndata_out), &(DN_SK(sk)->conndata_out), sizeof(struct optdata_dn)); memcpy(&(DN_SK(newsk)->discdata_out), &(DN_SK(sk)->discdata_out), sizeof(struct optdata_dn)); lock_sock(newsk); err = dn_hash_sock(newsk); if (err == 0) { sock_reset_flag(newsk, SOCK_ZAPPED); dn_send_conn_ack(newsk); /* * Here we use sk->sk_allocation since although the conn conf is * for the newsk, the context is the old socket. */ if (DN_SK(newsk)->accept_mode == ACC_IMMED) err = dn_confirm_accept(newsk, &timeo, sk->sk_allocation); } release_sock(newsk); return err; } static int dn_getname(struct socket *sock, struct sockaddr *uaddr,int *uaddr_len,int peer) { struct sockaddr_dn *sa = (struct sockaddr_dn *)uaddr; struct sock *sk = sock->sk; struct dn_scp *scp = DN_SK(sk); *uaddr_len = sizeof(struct sockaddr_dn); lock_sock(sk); if (peer) { if ((sock->state != SS_CONNECTED && sock->state != SS_CONNECTING) && scp->accept_mode == ACC_IMMED) { release_sock(sk); return -ENOTCONN; } memcpy(sa, &scp->peer, sizeof(struct sockaddr_dn)); } else { memcpy(sa, &scp->addr, sizeof(struct sockaddr_dn)); } release_sock(sk); return 0; } static unsigned int dn_poll(struct file *file, struct socket *sock, poll_table *wait) { struct sock *sk = sock->sk; struct dn_scp *scp = DN_SK(sk); int mask = datagram_poll(file, sock, wait); if (!skb_queue_empty(&scp->other_receive_queue)) mask |= POLLRDBAND; return mask; } static int dn_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg) { struct sock *sk = sock->sk; struct dn_scp *scp = DN_SK(sk); int err = -EOPNOTSUPP; long amount = 0; struct sk_buff *skb; int val; switch(cmd) { case SIOCGIFADDR: case SIOCSIFADDR: return dn_dev_ioctl(cmd, (void __user *)arg); case SIOCATMARK: lock_sock(sk); val = !skb_queue_empty(&scp->other_receive_queue); if (scp->state != DN_RUN) val = -ENOTCONN; release_sock(sk); return val; case TIOCOUTQ: amount = sk->sk_sndbuf - sk_wmem_alloc_get(sk); if (amount < 0) amount = 0; err = put_user(amount, (int __user *)arg); break; case TIOCINQ: lock_sock(sk); skb = skb_peek(&scp->other_receive_queue); if (skb) { amount = skb->len; } else { skb_queue_walk(&sk->sk_receive_queue, skb) amount += skb->len; } release_sock(sk); err = put_user(amount, (int __user *)arg); break; default: err = -ENOIOCTLCMD; break; } return err; } static int dn_listen(struct socket *sock, int backlog) { struct sock *sk = sock->sk; int err = -EINVAL; lock_sock(sk); if (sock_flag(sk, SOCK_ZAPPED)) goto out; if ((DN_SK(sk)->state != DN_O) || (sk->sk_state == TCP_LISTEN)) goto out; sk->sk_max_ack_backlog = backlog; sk->sk_ack_backlog = 0; sk->sk_state = TCP_LISTEN; err = 0; dn_rehash_sock(sk); out: release_sock(sk); return err; } static int dn_shutdown(struct socket *sock, int how) { struct sock *sk = sock->sk; struct dn_scp *scp = DN_SK(sk); int err = -ENOTCONN; lock_sock(sk); if (sock->state == SS_UNCONNECTED) goto out; err = 0; if (sock->state == SS_DISCONNECTING) goto out; err = -EINVAL; if (scp->state == DN_O) goto out; if (how != SHUTDOWN_MASK) goto out; sk->sk_shutdown = how; dn_destroy_sock(sk); err = 0; out: release_sock(sk); return err; } static int dn_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen) { struct sock *sk = sock->sk; int err; lock_sock(sk); err = __dn_setsockopt(sock, level, optname, optval, optlen, 0); release_sock(sk); return err; } static int __dn_setsockopt(struct socket *sock, int level,int optname, char __user *optval, unsigned int optlen, int flags) { struct sock *sk = sock->sk; struct dn_scp *scp = DN_SK(sk); long timeo; union { struct optdata_dn opt; struct accessdata_dn acc; int mode; unsigned long win; int val; unsigned char services; unsigned char info; } u; int err; if (optlen && !optval) return -EINVAL; if (optlen > sizeof(u)) return -EINVAL; if (copy_from_user(&u, optval, optlen)) return -EFAULT; switch (optname) { case DSO_CONDATA: if (sock->state == SS_CONNECTED) return -EISCONN; if ((scp->state != DN_O) && (scp->state != DN_CR)) return -EINVAL; if (optlen != sizeof(struct optdata_dn)) return -EINVAL; if (le16_to_cpu(u.opt.opt_optl) > 16) return -EINVAL; memcpy(&scp->conndata_out, &u.opt, optlen); break; case DSO_DISDATA: if (sock->state != SS_CONNECTED && scp->accept_mode == ACC_IMMED) return -ENOTCONN; if (optlen != sizeof(struct optdata_dn)) return -EINVAL; if (le16_to_cpu(u.opt.opt_optl) > 16) return -EINVAL; memcpy(&scp->discdata_out, &u.opt, optlen); break; case DSO_CONACCESS: if (sock->state == SS_CONNECTED) return -EISCONN; if (scp->state != DN_O) return -EINVAL; if (optlen != sizeof(struct accessdata_dn)) return -EINVAL; if ((u.acc.acc_accl > DN_MAXACCL) || (u.acc.acc_passl > DN_MAXACCL) || (u.acc.acc_userl > DN_MAXACCL)) return -EINVAL; memcpy(&scp->accessdata, &u.acc, optlen); break; case DSO_ACCEPTMODE: if (sock->state == SS_CONNECTED) return -EISCONN; if (scp->state != DN_O) return -EINVAL; if (optlen != sizeof(int)) return -EINVAL; if ((u.mode != ACC_IMMED) && (u.mode != ACC_DEFER)) return -EINVAL; scp->accept_mode = (unsigned char)u.mode; break; case DSO_CONACCEPT: if (scp->state != DN_CR) return -EINVAL; timeo = sock_rcvtimeo(sk, 0); err = dn_confirm_accept(sk, &timeo, sk->sk_allocation); return err; case DSO_CONREJECT: if (scp->state != DN_CR) return -EINVAL; scp->state = DN_DR; sk->sk_shutdown = SHUTDOWN_MASK; dn_nsp_send_disc(sk, 0x38, 0, sk->sk_allocation); break; default: #ifdef CONFIG_NETFILTER return nf_setsockopt(sk, PF_DECnet, optname, optval, optlen); #endif case DSO_LINKINFO: case DSO_STREAM: case DSO_SEQPACKET: return -ENOPROTOOPT; case DSO_MAXWINDOW: if (optlen != sizeof(unsigned long)) return -EINVAL; if (u.win > NSP_MAX_WINDOW) u.win = NSP_MAX_WINDOW; if (u.win == 0) return -EINVAL; scp->max_window = u.win; if (scp->snd_window > u.win) scp->snd_window = u.win; break; case DSO_NODELAY: if (optlen != sizeof(int)) return -EINVAL; if (scp->nonagle == 2) return -EINVAL; scp->nonagle = (u.val == 0) ? 0 : 1; /* if (scp->nonagle == 1) { Push pending frames } */ break; case DSO_CORK: if (optlen != sizeof(int)) return -EINVAL; if (scp->nonagle == 1) return -EINVAL; scp->nonagle = (u.val == 0) ? 0 : 2; /* if (scp->nonagle == 0) { Push pending frames } */ break; case DSO_SERVICES: if (optlen != sizeof(unsigned char)) return -EINVAL; if ((u.services & ~NSP_FC_MASK) != 0x01) return -EINVAL; if ((u.services & NSP_FC_MASK) == NSP_FC_MASK) return -EINVAL; scp->services_loc = u.services; break; case DSO_INFO: if (optlen != sizeof(unsigned char)) return -EINVAL; if (u.info & 0xfc) return -EINVAL; scp->info_loc = u.info; break; } return 0; } static int dn_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen) { struct sock *sk = sock->sk; int err; lock_sock(sk); err = __dn_getsockopt(sock, level, optname, optval, optlen, 0); release_sock(sk); return err; } static int __dn_getsockopt(struct socket *sock, int level,int optname, char __user *optval,int __user *optlen, int flags) { struct sock *sk = sock->sk; struct dn_scp *scp = DN_SK(sk); struct linkinfo_dn link; unsigned int r_len; void *r_data = NULL; unsigned int val; if(get_user(r_len , optlen)) return -EFAULT; switch (optname) { case DSO_CONDATA: if (r_len > sizeof(struct optdata_dn)) r_len = sizeof(struct optdata_dn); r_data = &scp->conndata_in; break; case DSO_DISDATA: if (r_len > sizeof(struct optdata_dn)) r_len = sizeof(struct optdata_dn); r_data = &scp->discdata_in; break; case DSO_CONACCESS: if (r_len > sizeof(struct accessdata_dn)) r_len = sizeof(struct accessdata_dn); r_data = &scp->accessdata; break; case DSO_ACCEPTMODE: if (r_len > sizeof(unsigned char)) r_len = sizeof(unsigned char); r_data = &scp->accept_mode; break; case DSO_LINKINFO: if (r_len > sizeof(struct linkinfo_dn)) r_len = sizeof(struct linkinfo_dn); memset(&link, 0, sizeof(link)); switch (sock->state) { case SS_CONNECTING: link.idn_linkstate = LL_CONNECTING; break; case SS_DISCONNECTING: link.idn_linkstate = LL_DISCONNECTING; break; case SS_CONNECTED: link.idn_linkstate = LL_RUNNING; break; default: link.idn_linkstate = LL_INACTIVE; } link.idn_segsize = scp->segsize_rem; r_data = &link; break; default: #ifdef CONFIG_NETFILTER { int ret, len; if (get_user(len, optlen)) return -EFAULT; ret = nf_getsockopt(sk, PF_DECnet, optname, optval, &len); if (ret >= 0) ret = put_user(len, optlen); return ret; } #endif case DSO_STREAM: case DSO_SEQPACKET: case DSO_CONACCEPT: case DSO_CONREJECT: return -ENOPROTOOPT; case DSO_MAXWINDOW: if (r_len > sizeof(unsigned long)) r_len = sizeof(unsigned long); r_data = &scp->max_window; break; case DSO_NODELAY: if (r_len > sizeof(int)) r_len = sizeof(int); val = (scp->nonagle == 1); r_data = &val; break; case DSO_CORK: if (r_len > sizeof(int)) r_len = sizeof(int); val = (scp->nonagle == 2); r_data = &val; break; case DSO_SERVICES: if (r_len > sizeof(unsigned char)) r_len = sizeof(unsigned char); r_data = &scp->services_rem; break; case DSO_INFO: if (r_len > sizeof(unsigned char)) r_len = sizeof(unsigned char); r_data = &scp->info_rem; break; } if (r_data) { if (copy_to_user(optval, r_data, r_len)) return -EFAULT; if (put_user(r_len, optlen)) return -EFAULT; } return 0; } static int dn_data_ready(struct sock *sk, struct sk_buff_head *q, int flags, int target) { struct sk_buff *skb; int len = 0; if (flags & MSG_OOB) return !skb_queue_empty(q) ? 1 : 0; skb_queue_walk(q, skb) { struct dn_skb_cb *cb = DN_SKB_CB(skb); len += skb->len; if (cb->nsp_flags & 0x40) { /* SOCK_SEQPACKET reads to EOM */ if (sk->sk_type == SOCK_SEQPACKET) return 1; /* so does SOCK_STREAM unless WAITALL is specified */ if (!(flags & MSG_WAITALL)) return 1; } /* minimum data length for read exceeded */ if (len >= target) return 1; } return 0; } static int dn_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags) { struct sock *sk = sock->sk; struct dn_scp *scp = DN_SK(sk); struct sk_buff_head *queue = &sk->sk_receive_queue; size_t target = size > 1 ? 1 : 0; size_t copied = 0; int rv = 0; struct sk_buff *skb, *n; struct dn_skb_cb *cb = NULL; unsigned char eor = 0; long timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT); lock_sock(sk); if (sock_flag(sk, SOCK_ZAPPED)) { rv = -EADDRNOTAVAIL; goto out; } if (sk->sk_shutdown & RCV_SHUTDOWN) { rv = 0; goto out; } rv = dn_check_state(sk, NULL, 0, &timeo, flags); if (rv) goto out; if (flags & ~(MSG_CMSG_COMPAT|MSG_PEEK|MSG_OOB|MSG_WAITALL|MSG_DONTWAIT|MSG_NOSIGNAL)) { rv = -EOPNOTSUPP; goto out; } if (flags & MSG_OOB) queue = &scp->other_receive_queue; if (flags & MSG_WAITALL) target = size; /* * See if there is data ready to read, sleep if there isn't */ for(;;) { DEFINE_WAIT(wait); if (sk->sk_err) goto out; if (!skb_queue_empty(&scp->other_receive_queue)) { if (!(flags & MSG_OOB)) { msg->msg_flags |= MSG_OOB; if (!scp->other_report) { scp->other_report = 1; goto out; } } } if (scp->state != DN_RUN) goto out; if (signal_pending(current)) { rv = sock_intr_errno(timeo); goto out; } if (dn_data_ready(sk, queue, flags, target)) break; if (flags & MSG_DONTWAIT) { rv = -EWOULDBLOCK; goto out; } prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); sk_wait_event(sk, &timeo, dn_data_ready(sk, queue, flags, target)); clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); finish_wait(sk_sleep(sk), &wait); } skb_queue_walk_safe(queue, skb, n) { unsigned int chunk = skb->len; cb = DN_SKB_CB(skb); if ((chunk + copied) > size) chunk = size - copied; if (memcpy_toiovec(msg->msg_iov, skb->data, chunk)) { rv = -EFAULT; break; } copied += chunk; if (!(flags & MSG_PEEK)) skb_pull(skb, chunk); eor = cb->nsp_flags & 0x40; if (skb->len == 0) { skb_unlink(skb, queue); kfree_skb(skb); /* * N.B. Don't refer to skb or cb after this point * in loop. */ if ((scp->flowloc_sw == DN_DONTSEND) && !dn_congested(sk)) { scp->flowloc_sw = DN_SEND; dn_nsp_send_link(sk, DN_SEND, 0); } } if (eor) { if (sk->sk_type == SOCK_SEQPACKET) break; if (!(flags & MSG_WAITALL)) break; } if (flags & MSG_OOB) break; if (copied >= target) break; } rv = copied; if (eor && (sk->sk_type == SOCK_SEQPACKET)) msg->msg_flags |= MSG_EOR; out: if (rv == 0) rv = (flags & MSG_PEEK) ? -sk->sk_err : sock_error(sk); if ((rv >= 0) && msg->msg_name) { memcpy(msg->msg_name, &scp->peer, sizeof(struct sockaddr_dn)); msg->msg_namelen = sizeof(struct sockaddr_dn); } release_sock(sk); return rv; } static inline int dn_queue_too_long(struct dn_scp *scp, struct sk_buff_head *queue, int flags) { unsigned char fctype = scp->services_rem & NSP_FC_MASK; if (skb_queue_len(queue) >= scp->snd_window) return 1; if (fctype != NSP_FC_NONE) { if (flags & MSG_OOB) { if (scp->flowrem_oth == 0) return 1; } else { if (scp->flowrem_dat == 0) return 1; } } return 0; } /* * The DECnet spec requires that the "routing layer" accepts packets which * are at least 230 bytes in size. This excludes any headers which the NSP * layer might add, so we always assume that we'll be using the maximal * length header on data packets. The variation in length is due to the * inclusion (or not) of the two 16 bit acknowledgement fields so it doesn't * make much practical difference. */ unsigned dn_mss_from_pmtu(struct net_device *dev, int mtu) { unsigned mss = 230 - DN_MAX_NSP_DATA_HEADER; if (dev) { struct dn_dev *dn_db = rcu_dereference_raw(dev->dn_ptr); mtu -= LL_RESERVED_SPACE(dev); if (dn_db->use_long) mtu -= 21; else mtu -= 6; mtu -= DN_MAX_NSP_DATA_HEADER; } else { /* * 21 = long header, 16 = guess at MAC header length */ mtu -= (21 + DN_MAX_NSP_DATA_HEADER + 16); } if (mtu > mss) mss = mtu; return mss; } static inline unsigned int dn_current_mss(struct sock *sk, int flags) { struct dst_entry *dst = __sk_dst_get(sk); struct dn_scp *scp = DN_SK(sk); int mss_now = min_t(int, scp->segsize_loc, scp->segsize_rem); /* Other data messages are limited to 16 bytes per packet */ if (flags & MSG_OOB) return 16; /* This works out the maximum size of segment we can send out */ if (dst) { u32 mtu = dst_mtu(dst); mss_now = min_t(int, dn_mss_from_pmtu(dst->dev, mtu), mss_now); } return mss_now; } /* * N.B. We get the timeout wrong here, but then we always did get it * wrong before and this is another step along the road to correcting * it. It ought to get updated each time we pass through the routine, * but in practise it probably doesn't matter too much for now. */ static inline struct sk_buff *dn_alloc_send_pskb(struct sock *sk, unsigned long datalen, int noblock, int *errcode) { struct sk_buff *skb = sock_alloc_send_skb(sk, datalen, noblock, errcode); if (skb) { skb->protocol = htons(ETH_P_DNA_RT); skb->pkt_type = PACKET_OUTGOING; } return skb; } static int dn_sendmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size) { struct sock *sk = sock->sk; struct dn_scp *scp = DN_SK(sk); size_t mss; struct sk_buff_head *queue = &scp->data_xmit_queue; int flags = msg->msg_flags; int err = 0; size_t sent = 0; int addr_len = msg->msg_namelen; struct sockaddr_dn *addr = (struct sockaddr_dn *)msg->msg_name; struct sk_buff *skb = NULL; struct dn_skb_cb *cb; size_t len; unsigned char fctype; long timeo; if (flags & ~(MSG_TRYHARD|MSG_OOB|MSG_DONTWAIT|MSG_EOR|MSG_NOSIGNAL|MSG_MORE|MSG_CMSG_COMPAT)) return -EOPNOTSUPP; if (addr_len && (addr_len != sizeof(struct sockaddr_dn))) return -EINVAL; lock_sock(sk); timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT); /* * The only difference between stream sockets and sequenced packet * sockets is that the stream sockets always behave as if MSG_EOR * has been set. */ if (sock->type == SOCK_STREAM) { if (flags & MSG_EOR) { err = -EINVAL; goto out; } flags |= MSG_EOR; } err = dn_check_state(sk, addr, addr_len, &timeo, flags); if (err) goto out_err; if (sk->sk_shutdown & SEND_SHUTDOWN) { err = -EPIPE; if (!(flags & MSG_NOSIGNAL)) send_sig(SIGPIPE, current, 0); goto out_err; } if ((flags & MSG_TRYHARD) && sk->sk_dst_cache) dst_negative_advice(sk); mss = scp->segsize_rem; fctype = scp->services_rem & NSP_FC_MASK; mss = dn_current_mss(sk, flags); if (flags & MSG_OOB) { queue = &scp->other_xmit_queue; if (size > mss) { err = -EMSGSIZE; goto out; } } scp->persist_fxn = dn_nsp_xmit_timeout; while(sent < size) { err = sock_error(sk); if (err) goto out; if (signal_pending(current)) { err = sock_intr_errno(timeo); goto out; } /* * Calculate size that we wish to send. */ len = size - sent; if (len > mss) len = mss; /* * Wait for queue size to go down below the window * size. */ if (dn_queue_too_long(scp, queue, flags)) { DEFINE_WAIT(wait); if (flags & MSG_DONTWAIT) { err = -EWOULDBLOCK; goto out; } prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE); set_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); sk_wait_event(sk, &timeo, !dn_queue_too_long(scp, queue, flags)); clear_bit(SOCK_ASYNC_WAITDATA, &sk->sk_socket->flags); finish_wait(sk_sleep(sk), &wait); continue; } /* * Get a suitably sized skb. * 64 is a bit of a hack really, but its larger than any * link-layer headers and has served us well as a good * guess as to their real length. */ skb = dn_alloc_send_pskb(sk, len + 64 + DN_MAX_NSP_DATA_HEADER, flags & MSG_DONTWAIT, &err); if (err) break; if (!skb) continue; cb = DN_SKB_CB(skb); skb_reserve(skb, 64 + DN_MAX_NSP_DATA_HEADER); if (memcpy_fromiovec(skb_put(skb, len), msg->msg_iov, len)) { err = -EFAULT; goto out; } if (flags & MSG_OOB) { cb->nsp_flags = 0x30; if (fctype != NSP_FC_NONE) scp->flowrem_oth--; } else { cb->nsp_flags = 0x00; if (scp->seg_total == 0) cb->nsp_flags |= 0x20; scp->seg_total += len; if (((sent + len) == size) && (flags & MSG_EOR)) { cb->nsp_flags |= 0x40; scp->seg_total = 0; if (fctype == NSP_FC_SCMC) scp->flowrem_dat--; } if (fctype == NSP_FC_SRC) scp->flowrem_dat--; } sent += len; dn_nsp_queue_xmit(sk, skb, sk->sk_allocation, flags & MSG_OOB); skb = NULL; scp->persist = dn_nsp_persist(sk); } out: kfree_skb(skb); release_sock(sk); return sent ? sent : err; out_err: err = sk_stream_error(sk, flags, err); release_sock(sk); return err; } static int dn_device_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *dev = (struct net_device *)ptr; if (!net_eq(dev_net(dev), &init_net)) return NOTIFY_DONE; switch (event) { case NETDEV_UP: dn_dev_up(dev); break; case NETDEV_DOWN: dn_dev_down(dev); break; default: break; } return NOTIFY_DONE; } static struct notifier_block dn_dev_notifier = { .notifier_call = dn_device_event, }; extern int dn_route_rcv(struct sk_buff *, struct net_device *, struct packet_type *, struct net_device *); static struct packet_type dn_dix_packet_type __read_mostly = { .type = cpu_to_be16(ETH_P_DNA_RT), .func = dn_route_rcv, }; #ifdef CONFIG_PROC_FS struct dn_iter_state { int bucket; }; static struct sock *dn_socket_get_first(struct seq_file *seq) { struct dn_iter_state *state = seq->private; struct sock *n = NULL; for(state->bucket = 0; state->bucket < DN_SK_HASH_SIZE; ++state->bucket) { n = sk_head(&dn_sk_hash[state->bucket]); if (n) break; } return n; } static struct sock *dn_socket_get_next(struct seq_file *seq, struct sock *n) { struct dn_iter_state *state = seq->private; n = sk_next(n); try_again: if (n) goto out; if (++state->bucket >= DN_SK_HASH_SIZE) goto out; n = sk_head(&dn_sk_hash[state->bucket]); goto try_again; out: return n; } static struct sock *socket_get_idx(struct seq_file *seq, loff_t *pos) { struct sock *sk = dn_socket_get_first(seq); if (sk) { while(*pos && (sk = dn_socket_get_next(seq, sk))) --*pos; } return *pos ? NULL : sk; } static void *dn_socket_get_idx(struct seq_file *seq, loff_t pos) { void *rc; read_lock_bh(&dn_hash_lock); rc = socket_get_idx(seq, &pos); if (!rc) { read_unlock_bh(&dn_hash_lock); } return rc; } static void *dn_socket_seq_start(struct seq_file *seq, loff_t *pos) { return *pos ? dn_socket_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; } static void *dn_socket_seq_next(struct seq_file *seq, void *v, loff_t *pos) { void *rc; if (v == SEQ_START_TOKEN) { rc = dn_socket_get_idx(seq, 0); goto out; } rc = dn_socket_get_next(seq, v); if (rc) goto out; read_unlock_bh(&dn_hash_lock); out: ++*pos; return rc; } static void dn_socket_seq_stop(struct seq_file *seq, void *v) { if (v && v != SEQ_START_TOKEN) read_unlock_bh(&dn_hash_lock); } #define IS_NOT_PRINTABLE(x) ((x) < 32 || (x) > 126) static void dn_printable_object(struct sockaddr_dn *dn, unsigned char *buf) { int i; switch (le16_to_cpu(dn->sdn_objnamel)) { case 0: sprintf(buf, "%d", dn->sdn_objnum); break; default: for (i = 0; i < le16_to_cpu(dn->sdn_objnamel); i++) { buf[i] = dn->sdn_objname[i]; if (IS_NOT_PRINTABLE(buf[i])) buf[i] = '.'; } buf[i] = 0; } } static char *dn_state2asc(unsigned char state) { switch (state) { case DN_O: return "OPEN"; case DN_CR: return " CR"; case DN_DR: return " DR"; case DN_DRC: return " DRC"; case DN_CC: return " CC"; case DN_CI: return " CI"; case DN_NR: return " NR"; case DN_NC: return " NC"; case DN_CD: return " CD"; case DN_RJ: return " RJ"; case DN_RUN: return " RUN"; case DN_DI: return " DI"; case DN_DIC: return " DIC"; case DN_DN: return " DN"; case DN_CL: return " CL"; case DN_CN: return " CN"; } return "????"; } static inline void dn_socket_format_entry(struct seq_file *seq, struct sock *sk) { struct dn_scp *scp = DN_SK(sk); char buf1[DN_ASCBUF_LEN]; char buf2[DN_ASCBUF_LEN]; char local_object[DN_MAXOBJL+3]; char remote_object[DN_MAXOBJL+3]; dn_printable_object(&scp->addr, local_object); dn_printable_object(&scp->peer, remote_object); seq_printf(seq, "%6s/%04X %04d:%04d %04d:%04d %01d %-16s " "%6s/%04X %04d:%04d %04d:%04d %01d %-16s %4s %s\n", dn_addr2asc(le16_to_cpu(dn_saddr2dn(&scp->addr)), buf1), scp->addrloc, scp->numdat, scp->numoth, scp->ackxmt_dat, scp->ackxmt_oth, scp->flowloc_sw, local_object, dn_addr2asc(le16_to_cpu(dn_saddr2dn(&scp->peer)), buf2), scp->addrrem, scp->numdat_rcv, scp->numoth_rcv, scp->ackrcv_dat, scp->ackrcv_oth, scp->flowrem_sw, remote_object, dn_state2asc(scp->state), ((scp->accept_mode == ACC_IMMED) ? "IMMED" : "DEFER")); } static int dn_socket_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) { seq_puts(seq, "Local Remote\n"); } else { dn_socket_format_entry(seq, v); } return 0; } static const struct seq_operations dn_socket_seq_ops = { .start = dn_socket_seq_start, .next = dn_socket_seq_next, .stop = dn_socket_seq_stop, .show = dn_socket_seq_show, }; static int dn_socket_seq_open(struct inode *inode, struct file *file) { return seq_open_private(file, &dn_socket_seq_ops, sizeof(struct dn_iter_state)); } static const struct file_operations dn_socket_seq_fops = { .owner = THIS_MODULE, .open = dn_socket_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release_private, }; #endif static const struct net_proto_family dn_family_ops = { .family = AF_DECnet, .create = dn_create, .owner = THIS_MODULE, }; static const struct proto_ops dn_proto_ops = { .family = AF_DECnet, .owner = THIS_MODULE, .release = dn_release, .bind = dn_bind, .connect = dn_connect, .socketpair = sock_no_socketpair, .accept = dn_accept, .getname = dn_getname, .poll = dn_poll, .ioctl = dn_ioctl, .listen = dn_listen, .shutdown = dn_shutdown, .setsockopt = dn_setsockopt, .getsockopt = dn_getsockopt, .sendmsg = dn_sendmsg, .recvmsg = dn_recvmsg, .mmap = sock_no_mmap, .sendpage = sock_no_sendpage, }; void dn_register_sysctl_skeleton(void); void dn_unregister_sysctl_skeleton(void); void dn_register_sysctl(void); void dn_unregister_sysctl(void); MODULE_DESCRIPTION("The Linux DECnet Network Protocol"); MODULE_AUTHOR("Linux DECnet Project Team"); MODULE_LICENSE("GPL"); MODULE_ALIAS_NETPROTO(PF_DECnet); static char banner[] __initdata = KERN_INFO "NET4: DECnet for Linux: V.2.5.68s (C) 1995-2003 Linux DECnet Project Team\n"; static int __init decnet_init(void) { int rc; printk(banner); rc = proto_register(&dn_proto, 1); if (rc != 0) goto out; dn_register_sysctl_skeleton(); dn_neigh_init(); dn_dev_init(); dn_route_init(); dn_fib_init(); sock_register(&dn_family_ops); dev_add_pack(&dn_dix_packet_type); register_netdevice_notifier(&dn_dev_notifier); proc_net_fops_create(&init_net, "decnet", S_IRUGO, &dn_socket_seq_fops); dn_register_sysctl(); out: return rc; } module_init(decnet_init); /* * Prevent DECnet module unloading until its fixed properly. * Requires an audit of the code to check for memory leaks and * initialisation problems etc. */ #if 0 static void __exit decnet_exit(void) { sock_unregister(AF_DECnet); rtnl_unregister_all(PF_DECnet); dev_remove_pack(&dn_dix_packet_type); dn_unregister_sysctl(); unregister_netdevice_notifier(&dn_dev_notifier); dn_route_cleanup(); dn_dev_cleanup(); dn_neigh_cleanup(); dn_fib_cleanup(); proc_net_remove(&init_net, "decnet"); dn_unregister_sysctl_skeleton(); proto_unregister(&dn_proto); rcu_barrier_bh(); /* Wait for completion of call_rcu_bh()'s */ } module_exit(decnet_exit); #endif