#include <linux/debugfs.h> #include <linux/mm.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/bootmem.h> #include <linux/stacktrace.h> #include <linux/page_owner.h> #include <linux/jump_label.h> #include <linux/migrate.h> #include <linux/stackdepot.h> #include "internal.h" /* * TODO: teach PAGE_OWNER_STACK_DEPTH (__dump_page_owner and save_stack) * to use off stack temporal storage */ #define PAGE_OWNER_STACK_DEPTH (16) static bool page_owner_disabled = true; DEFINE_STATIC_KEY_FALSE(page_owner_inited); static depot_stack_handle_t dummy_handle; static depot_stack_handle_t failure_handle; static void init_early_allocated_pages(void); static int early_page_owner_param(char *buf) { if (!buf) return -EINVAL; if (strcmp(buf, "on") == 0) page_owner_disabled = false; return 0; } early_param("page_owner", early_page_owner_param); static bool need_page_owner(void) { if (page_owner_disabled) return false; return true; } static noinline void register_dummy_stack(void) { unsigned long entries[4]; struct stack_trace dummy; dummy.nr_entries = 0; dummy.max_entries = ARRAY_SIZE(entries); dummy.entries = &entries[0]; dummy.skip = 0; save_stack_trace(&dummy); dummy_handle = depot_save_stack(&dummy, GFP_KERNEL); } static noinline void register_failure_stack(void) { unsigned long entries[4]; struct stack_trace failure; failure.nr_entries = 0; failure.max_entries = ARRAY_SIZE(entries); failure.entries = &entries[0]; failure.skip = 0; save_stack_trace(&failure); failure_handle = depot_save_stack(&failure, GFP_KERNEL); } static void init_page_owner(void) { if (page_owner_disabled) return; register_dummy_stack(); register_failure_stack(); static_branch_enable(&page_owner_inited); init_early_allocated_pages(); } struct page_ext_operations page_owner_ops = { .need = need_page_owner, .init = init_page_owner, }; void __reset_page_owner(struct page *page, unsigned int order) { int i; struct page_ext *page_ext; for (i = 0; i < (1 << order); i++) { page_ext = lookup_page_ext(page + i); if (unlikely(!page_ext)) continue; __clear_bit(PAGE_EXT_OWNER, &page_ext->flags); } } static inline bool check_recursive_alloc(struct stack_trace *trace, unsigned long ip) { int i, count; if (!trace->nr_entries) return false; for (i = 0, count = 0; i < trace->nr_entries; i++) { if (trace->entries[i] == ip && ++count == 2) return true; } return false; } static noinline depot_stack_handle_t save_stack(gfp_t flags) { unsigned long entries[PAGE_OWNER_STACK_DEPTH]; struct stack_trace trace = { .nr_entries = 0, .entries = entries, .max_entries = PAGE_OWNER_STACK_DEPTH, .skip = 0 }; depot_stack_handle_t handle; save_stack_trace(&trace); if (trace.nr_entries != 0 && trace.entries[trace.nr_entries-1] == ULONG_MAX) trace.nr_entries--; /* * We need to check recursion here because our request to stackdepot * could trigger memory allocation to save new entry. New memory * allocation would reach here and call depot_save_stack() again * if we don't catch it. There is still not enough memory in stackdepot * so it would try to allocate memory again and loop forever. */ if (check_recursive_alloc(&trace, _RET_IP_)) return dummy_handle; handle = depot_save_stack(&trace, flags); if (!handle) handle = failure_handle; return handle; } noinline void __set_page_owner(struct page *page, unsigned int order, gfp_t gfp_mask) { struct page_ext *page_ext = lookup_page_ext(page); if (unlikely(!page_ext)) return; page_ext->handle = save_stack(gfp_mask); page_ext->order = order; page_ext->gfp_mask = gfp_mask; page_ext->last_migrate_reason = -1; __set_bit(PAGE_EXT_OWNER, &page_ext->flags); } void __set_page_owner_migrate_reason(struct page *page, int reason) { struct page_ext *page_ext = lookup_page_ext(page); if (unlikely(!page_ext)) return; page_ext->last_migrate_reason = reason; } void __split_page_owner(struct page *page, unsigned int order) { int i; struct page_ext *page_ext = lookup_page_ext(page); if (unlikely(!page_ext)) return; page_ext->order = 0; for (i = 1; i < (1 << order); i++) __copy_page_owner(page, page + i); } void __copy_page_owner(struct page *oldpage, struct page *newpage) { struct page_ext *old_ext = lookup_page_ext(oldpage); struct page_ext *new_ext = lookup_page_ext(newpage); if (unlikely(!old_ext || !new_ext)) return; new_ext->order = old_ext->order; new_ext->gfp_mask = old_ext->gfp_mask; new_ext->last_migrate_reason = old_ext->last_migrate_reason; new_ext->handle = old_ext->handle; /* * We don't clear the bit on the oldpage as it's going to be freed * after migration. Until then, the info can be useful in case of * a bug, and the overal stats will be off a bit only temporarily. * Also, migrate_misplaced_transhuge_page() can still fail the * migration and then we want the oldpage to retain the info. But * in that case we also don't need to explicitly clear the info from * the new page, which will be freed. */ __set_bit(PAGE_EXT_OWNER, &new_ext->flags); } static ssize_t print_page_owner(char __user *buf, size_t count, unsigned long pfn, struct page *page, struct page_ext *page_ext, depot_stack_handle_t handle) { int ret; int pageblock_mt, page_mt; char *kbuf; unsigned long entries[PAGE_OWNER_STACK_DEPTH]; struct stack_trace trace = { .nr_entries = 0, .entries = entries, .max_entries = PAGE_OWNER_STACK_DEPTH, .skip = 0 }; kbuf = kmalloc(count, GFP_KERNEL); if (!kbuf) return -ENOMEM; ret = snprintf(kbuf, count, "Page allocated via order %u, mask %#x(%pGg)\n", page_ext->order, page_ext->gfp_mask, &page_ext->gfp_mask); if (ret >= count) goto err; /* Print information relevant to grouping pages by mobility */ pageblock_mt = get_pageblock_migratetype(page); page_mt = gfpflags_to_migratetype(page_ext->gfp_mask); ret += snprintf(kbuf + ret, count - ret, "PFN %lu type %s Block %lu type %s Flags %#lx(%pGp)\n", pfn, migratetype_names[page_mt], pfn >> pageblock_order, migratetype_names[pageblock_mt], page->flags, &page->flags); if (ret >= count) goto err; depot_fetch_stack(handle, &trace); ret += snprint_stack_trace(kbuf + ret, count - ret, &trace, 0); if (ret >= count) goto err; if (page_ext->last_migrate_reason != -1) { ret += snprintf(kbuf + ret, count - ret, "Page has been migrated, last migrate reason: %s\n", migrate_reason_names[page_ext->last_migrate_reason]); if (ret >= count) goto err; } ret += snprintf(kbuf + ret, count - ret, "\n"); if (ret >= count) goto err; if (copy_to_user(buf, kbuf, ret)) ret = -EFAULT; kfree(kbuf); return ret; err: kfree(kbuf); return -ENOMEM; } void __dump_page_owner(struct page *page) { struct page_ext *page_ext = lookup_page_ext(page); unsigned long entries[PAGE_OWNER_STACK_DEPTH]; struct stack_trace trace = { .nr_entries = 0, .entries = entries, .max_entries = PAGE_OWNER_STACK_DEPTH, .skip = 0 }; depot_stack_handle_t handle; gfp_t gfp_mask; int mt; if (unlikely(!page_ext)) { pr_alert("There is not page extension available.\n"); return; } gfp_mask = page_ext->gfp_mask; mt = gfpflags_to_migratetype(gfp_mask); if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags)) { pr_alert("page_owner info is not active (free page?)\n"); return; } handle = READ_ONCE(page_ext->handle); if (!handle) { pr_alert("page_owner info is not active (free page?)\n"); return; } depot_fetch_stack(handle, &trace); pr_alert("page allocated via order %u, migratetype %s, gfp_mask %#x(%pGg)\n", page_ext->order, migratetype_names[mt], gfp_mask, &gfp_mask); print_stack_trace(&trace, 0); if (page_ext->last_migrate_reason != -1) pr_alert("page has been migrated, last migrate reason: %s\n", migrate_reason_names[page_ext->last_migrate_reason]); } static ssize_t read_page_owner(struct file *file, char __user *buf, size_t count, loff_t *ppos) { unsigned long pfn; struct page *page; struct page_ext *page_ext; depot_stack_handle_t handle; if (!static_branch_unlikely(&page_owner_inited)) return -EINVAL; page = NULL; pfn = min_low_pfn + *ppos; /* Find a valid PFN or the start of a MAX_ORDER_NR_PAGES area */ while (!pfn_valid(pfn) && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) pfn++; drain_all_pages(NULL); /* Find an allocated page */ for (; pfn < max_pfn; pfn++) { /* * If the new page is in a new MAX_ORDER_NR_PAGES area, * validate the area as existing, skip it if not */ if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0 && !pfn_valid(pfn)) { pfn += MAX_ORDER_NR_PAGES - 1; continue; } /* Check for holes within a MAX_ORDER area */ if (!pfn_valid_within(pfn)) continue; page = pfn_to_page(pfn); if (PageBuddy(page)) { unsigned long freepage_order = page_order_unsafe(page); if (freepage_order < MAX_ORDER) pfn += (1UL << freepage_order) - 1; continue; } page_ext = lookup_page_ext(page); if (unlikely(!page_ext)) continue; /* * Some pages could be missed by concurrent allocation or free, * because we don't hold the zone lock. */ if (!test_bit(PAGE_EXT_OWNER, &page_ext->flags)) continue; /* * Access to page_ext->handle isn't synchronous so we should * be careful to access it. */ handle = READ_ONCE(page_ext->handle); if (!handle) continue; /* Record the next PFN to read in the file offset */ *ppos = (pfn - min_low_pfn) + 1; return print_page_owner(buf, count, pfn, page, page_ext, handle); } return 0; } static void init_pages_in_zone(pg_data_t *pgdat, struct zone *zone) { struct page *page; struct page_ext *page_ext; unsigned long pfn = zone->zone_start_pfn, block_end_pfn; unsigned long end_pfn = pfn + zone->spanned_pages; unsigned long count = 0; /* Scan block by block. First and last block may be incomplete */ pfn = zone->zone_start_pfn; /* * Walk the zone in pageblock_nr_pages steps. If a page block spans * a zone boundary, it will be double counted between zones. This does * not matter as the mixed block count will still be correct */ for (; pfn < end_pfn; ) { if (!pfn_valid(pfn)) { pfn = ALIGN(pfn + 1, MAX_ORDER_NR_PAGES); continue; } block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages); block_end_pfn = min(block_end_pfn, end_pfn); page = pfn_to_page(pfn); for (; pfn < block_end_pfn; pfn++) { if (!pfn_valid_within(pfn)) continue; page = pfn_to_page(pfn); if (page_zone(page) != zone) continue; /* * We are safe to check buddy flag and order, because * this is init stage and only single thread runs. */ if (PageBuddy(page)) { pfn += (1UL << page_order(page)) - 1; continue; } if (PageReserved(page)) continue; page_ext = lookup_page_ext(page); if (unlikely(!page_ext)) continue; /* Maybe overraping zone */ if (test_bit(PAGE_EXT_OWNER, &page_ext->flags)) continue; /* Found early allocated page */ set_page_owner(page, 0, 0); count++; } } pr_info("Node %d, zone %8s: page owner found early allocated %lu pages\n", pgdat->node_id, zone->name, count); } static void init_zones_in_node(pg_data_t *pgdat) { struct zone *zone; struct zone *node_zones = pgdat->node_zones; unsigned long flags; for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { if (!populated_zone(zone)) continue; spin_lock_irqsave(&zone->lock, flags); init_pages_in_zone(pgdat, zone); spin_unlock_irqrestore(&zone->lock, flags); } } static void init_early_allocated_pages(void) { pg_data_t *pgdat; drain_all_pages(NULL); for_each_online_pgdat(pgdat) init_zones_in_node(pgdat); } static const struct file_operations proc_page_owner_operations = { .read = read_page_owner, }; static int __init pageowner_init(void) { struct dentry *dentry; if (!static_branch_unlikely(&page_owner_inited)) { pr_info("page_owner is disabled\n"); return 0; } dentry = debugfs_create_file("page_owner", S_IRUSR, NULL, NULL, &proc_page_owner_operations); if (IS_ERR(dentry)) return PTR_ERR(dentry); return 0; } late_initcall(pageowner_init)