/* * Procedures for maintaining information about logical memory blocks. * * Peter Bergner, IBM Corp. June 2001. * Copyright (C) 2001 Peter Bergner. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/bitops.h> #include <linux/poison.h> #include <linux/pfn.h> #include <linux/debugfs.h> #include <linux/kmemleak.h> #include <linux/seq_file.h> #include <linux/memblock.h> #include <asm/sections.h> #include <linux/io.h> #include "internal.h" #define INIT_MEMBLOCK_REGIONS 128 #define INIT_PHYSMEM_REGIONS 4 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS #endif /** * DOC: memblock overview * * Memblock is a method of managing memory regions during the early * boot period when the usual kernel memory allocators are not up and * running. * * Memblock views the system memory as collections of contiguous * regions. There are several types of these collections: * * * ``memory`` - describes the physical memory available to the * kernel; this may differ from the actual physical memory installed * in the system, for instance when the memory is restricted with * ``mem=`` command line parameter * * ``reserved`` - describes the regions that were allocated * * ``physmap`` - describes the actual physical memory regardless of * the possible restrictions; the ``physmap`` type is only available * on some architectures. * * Each region is represented by :c:type:`struct memblock_region` that * defines the region extents, its attributes and NUMA node id on NUMA * systems. Every memory type is described by the :c:type:`struct * memblock_type` which contains an array of memory regions along with * the allocator metadata. The memory types are nicely wrapped with * :c:type:`struct memblock`. This structure is statically initialzed * at build time. The region arrays for the "memory" and "reserved" * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the * "physmap" type to %INIT_PHYSMEM_REGIONS. * The :c:func:`memblock_allow_resize` enables automatic resizing of * the region arrays during addition of new regions. This feature * should be used with care so that memory allocated for the region * array will not overlap with areas that should be reserved, for * example initrd. * * The early architecture setup should tell memblock what the physical * memory layout is by using :c:func:`memblock_add` or * :c:func:`memblock_add_node` functions. The first function does not * assign the region to a NUMA node and it is appropriate for UMA * systems. Yet, it is possible to use it on NUMA systems as well and * assign the region to a NUMA node later in the setup process using * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node` * performs such an assignment directly. * * Once memblock is setup the memory can be allocated using one of the * API variants: * * * :c:func:`memblock_phys_alloc*` - these functions return the * **physical** address of the allocated memory * * :c:func:`memblock_alloc*` - these functions return the **virtual** * address of the allocated memory. * * Note, that both API variants use implict assumptions about allowed * memory ranges and the fallback methods. Consult the documentation * of :c:func:`memblock_alloc_internal` and * :c:func:`memblock_alloc_range_nid` functions for more elaboarte * description. * * As the system boot progresses, the architecture specific * :c:func:`mem_init` function frees all the memory to the buddy page * allocator. * * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the * memblock data structures will be discarded after the system * initialization compltes. */ #ifndef CONFIG_NEED_MULTIPLE_NODES struct pglist_data __refdata contig_page_data; EXPORT_SYMBOL(contig_page_data); #endif unsigned long max_low_pfn; unsigned long min_low_pfn; unsigned long max_pfn; unsigned long long max_possible_pfn; static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock; #endif struct memblock memblock __initdata_memblock = { .memory.regions = memblock_memory_init_regions, .memory.cnt = 1, /* empty dummy entry */ .memory.max = INIT_MEMBLOCK_REGIONS, .memory.name = "memory", .reserved.regions = memblock_reserved_init_regions, .reserved.cnt = 1, /* empty dummy entry */ .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, .reserved.name = "reserved", #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP .physmem.regions = memblock_physmem_init_regions, .physmem.cnt = 1, /* empty dummy entry */ .physmem.max = INIT_PHYSMEM_REGIONS, .physmem.name = "physmem", #endif .bottom_up = false, .current_limit = MEMBLOCK_ALLOC_ANYWHERE, }; int memblock_debug __initdata_memblock; static bool system_has_some_mirror __initdata_memblock = false; static int memblock_can_resize __initdata_memblock; static int memblock_memory_in_slab __initdata_memblock = 0; static int memblock_reserved_in_slab __initdata_memblock = 0; static enum memblock_flags __init_memblock choose_memblock_flags(void) { return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; } /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) { return *size = min(*size, PHYS_ADDR_MAX - base); } /* * Address comparison utilities */ static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, phys_addr_t base2, phys_addr_t size2) { return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); } bool __init_memblock memblock_overlaps_region(struct memblock_type *type, phys_addr_t base, phys_addr_t size) { unsigned long i; for (i = 0; i < type->cnt; i++) if (memblock_addrs_overlap(base, size, type->regions[i].base, type->regions[i].size)) break; return i < type->cnt; } /** * __memblock_find_range_bottom_up - find free area utility in bottom-up * @start: start of candidate range * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or * %MEMBLOCK_ALLOC_ACCESSIBLE * @size: size of free area to find * @align: alignment of free area to find * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * @flags: pick from blocks based on memory attributes * * Utility called from memblock_find_in_range_node(), find free area bottom-up. * * Return: * Found address on success, 0 on failure. */ static phys_addr_t __init_memblock __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, phys_addr_t size, phys_addr_t align, int nid, enum memblock_flags flags) { phys_addr_t this_start, this_end, cand; u64 i; for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { this_start = clamp(this_start, start, end); this_end = clamp(this_end, start, end); cand = round_up(this_start, align); if (cand < this_end && this_end - cand >= size) return cand; } return 0; } /** * __memblock_find_range_top_down - find free area utility, in top-down * @start: start of candidate range * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or * %MEMBLOCK_ALLOC_ACCESSIBLE * @size: size of free area to find * @align: alignment of free area to find * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * @flags: pick from blocks based on memory attributes * * Utility called from memblock_find_in_range_node(), find free area top-down. * * Return: * Found address on success, 0 on failure. */ static phys_addr_t __init_memblock __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, phys_addr_t size, phys_addr_t align, int nid, enum memblock_flags flags) { phys_addr_t this_start, this_end, cand; u64 i; for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, NULL) { this_start = clamp(this_start, start, end); this_end = clamp(this_end, start, end); if (this_end < size) continue; cand = round_down(this_end - size, align); if (cand >= this_start) return cand; } return 0; } /** * memblock_find_in_range_node - find free area in given range and node * @size: size of free area to find * @align: alignment of free area to find * @start: start of candidate range * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or * %MEMBLOCK_ALLOC_ACCESSIBLE * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * @flags: pick from blocks based on memory attributes * * Find @size free area aligned to @align in the specified range and node. * * When allocation direction is bottom-up, the @start should be greater * than the end of the kernel image. Otherwise, it will be trimmed. The * reason is that we want the bottom-up allocation just near the kernel * image so it is highly likely that the allocated memory and the kernel * will reside in the same node. * * If bottom-up allocation failed, will try to allocate memory top-down. * * Return: * Found address on success, 0 on failure. */ static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, phys_addr_t align, phys_addr_t start, phys_addr_t end, int nid, enum memblock_flags flags) { phys_addr_t kernel_end, ret; /* pump up @end */ if (end == MEMBLOCK_ALLOC_ACCESSIBLE || end == MEMBLOCK_ALLOC_KASAN) end = memblock.current_limit; /* avoid allocating the first page */ start = max_t(phys_addr_t, start, PAGE_SIZE); end = max(start, end); kernel_end = __pa_symbol(_end); /* * try bottom-up allocation only when bottom-up mode * is set and @end is above the kernel image. */ if (memblock_bottom_up() && end > kernel_end) { phys_addr_t bottom_up_start; /* make sure we will allocate above the kernel */ bottom_up_start = max(start, kernel_end); /* ok, try bottom-up allocation first */ ret = __memblock_find_range_bottom_up(bottom_up_start, end, size, align, nid, flags); if (ret) return ret; /* * we always limit bottom-up allocation above the kernel, * but top-down allocation doesn't have the limit, so * retrying top-down allocation may succeed when bottom-up * allocation failed. * * bottom-up allocation is expected to be fail very rarely, * so we use WARN_ONCE() here to see the stack trace if * fail happens. */ WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE), "memblock: bottom-up allocation failed, memory hotremove may be affected\n"); } return __memblock_find_range_top_down(start, end, size, align, nid, flags); } /** * memblock_find_in_range - find free area in given range * @start: start of candidate range * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or * %MEMBLOCK_ALLOC_ACCESSIBLE * @size: size of free area to find * @align: alignment of free area to find * * Find @size free area aligned to @align in the specified range. * * Return: * Found address on success, 0 on failure. */ phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, phys_addr_t end, phys_addr_t size, phys_addr_t align) { phys_addr_t ret; enum memblock_flags flags = choose_memblock_flags(); again: ret = memblock_find_in_range_node(size, align, start, end, NUMA_NO_NODE, flags); if (!ret && (flags & MEMBLOCK_MIRROR)) { pr_warn("Could not allocate %pap bytes of mirrored memory\n", &size); flags &= ~MEMBLOCK_MIRROR; goto again; } return ret; } static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) { type->total_size -= type->regions[r].size; memmove(&type->regions[r], &type->regions[r + 1], (type->cnt - (r + 1)) * sizeof(type->regions[r])); type->cnt--; /* Special case for empty arrays */ if (type->cnt == 0) { WARN_ON(type->total_size != 0); type->cnt = 1; type->regions[0].base = 0; type->regions[0].size = 0; type->regions[0].flags = 0; memblock_set_region_node(&type->regions[0], MAX_NUMNODES); } } #ifndef CONFIG_ARCH_KEEP_MEMBLOCK /** * memblock_discard - discard memory and reserved arrays if they were allocated */ void __init memblock_discard(void) { phys_addr_t addr, size; if (memblock.reserved.regions != memblock_reserved_init_regions) { addr = __pa(memblock.reserved.regions); size = PAGE_ALIGN(sizeof(struct memblock_region) * memblock.reserved.max); __memblock_free_late(addr, size); } if (memblock.memory.regions != memblock_memory_init_regions) { addr = __pa(memblock.memory.regions); size = PAGE_ALIGN(sizeof(struct memblock_region) * memblock.memory.max); __memblock_free_late(addr, size); } } #endif /** * memblock_double_array - double the size of the memblock regions array * @type: memblock type of the regions array being doubled * @new_area_start: starting address of memory range to avoid overlap with * @new_area_size: size of memory range to avoid overlap with * * Double the size of the @type regions array. If memblock is being used to * allocate memory for a new reserved regions array and there is a previously * allocated memory range [@new_area_start, @new_area_start + @new_area_size] * waiting to be reserved, ensure the memory used by the new array does * not overlap. * * Return: * 0 on success, -1 on failure. */ static int __init_memblock memblock_double_array(struct memblock_type *type, phys_addr_t new_area_start, phys_addr_t new_area_size) { struct memblock_region *new_array, *old_array; phys_addr_t old_alloc_size, new_alloc_size; phys_addr_t old_size, new_size, addr, new_end; int use_slab = slab_is_available(); int *in_slab; /* We don't allow resizing until we know about the reserved regions * of memory that aren't suitable for allocation */ if (!memblock_can_resize) return -1; /* Calculate new doubled size */ old_size = type->max * sizeof(struct memblock_region); new_size = old_size << 1; /* * We need to allocated new one align to PAGE_SIZE, * so we can free them completely later. */ old_alloc_size = PAGE_ALIGN(old_size); new_alloc_size = PAGE_ALIGN(new_size); /* Retrieve the slab flag */ if (type == &memblock.memory) in_slab = &memblock_memory_in_slab; else in_slab = &memblock_reserved_in_slab; /* Try to find some space for it */ if (use_slab) { new_array = kmalloc(new_size, GFP_KERNEL); addr = new_array ? __pa(new_array) : 0; } else { /* only exclude range when trying to double reserved.regions */ if (type != &memblock.reserved) new_area_start = new_area_size = 0; addr = memblock_find_in_range(new_area_start + new_area_size, memblock.current_limit, new_alloc_size, PAGE_SIZE); if (!addr && new_area_size) addr = memblock_find_in_range(0, min(new_area_start, memblock.current_limit), new_alloc_size, PAGE_SIZE); new_array = addr ? __va(addr) : NULL; } if (!addr) { pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", type->name, type->max, type->max * 2); return -1; } new_end = addr + new_size - 1; memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", type->name, type->max * 2, &addr, &new_end); /* * Found space, we now need to move the array over before we add the * reserved region since it may be our reserved array itself that is * full. */ memcpy(new_array, type->regions, old_size); memset(new_array + type->max, 0, old_size); old_array = type->regions; type->regions = new_array; type->max <<= 1; /* Free old array. We needn't free it if the array is the static one */ if (*in_slab) kfree(old_array); else if (old_array != memblock_memory_init_regions && old_array != memblock_reserved_init_regions) memblock_free(__pa(old_array), old_alloc_size); /* * Reserve the new array if that comes from the memblock. Otherwise, we * needn't do it */ if (!use_slab) BUG_ON(memblock_reserve(addr, new_alloc_size)); /* Update slab flag */ *in_slab = use_slab; return 0; } /** * memblock_merge_regions - merge neighboring compatible regions * @type: memblock type to scan * * Scan @type and merge neighboring compatible regions. */ static void __init_memblock memblock_merge_regions(struct memblock_type *type) { int i = 0; /* cnt never goes below 1 */ while (i < type->cnt - 1) { struct memblock_region *this = &type->regions[i]; struct memblock_region *next = &type->regions[i + 1]; if (this->base + this->size != next->base || memblock_get_region_node(this) != memblock_get_region_node(next) || this->flags != next->flags) { BUG_ON(this->base + this->size > next->base); i++; continue; } this->size += next->size; /* move forward from next + 1, index of which is i + 2 */ memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); type->cnt--; } } /** * memblock_insert_region - insert new memblock region * @type: memblock type to insert into * @idx: index for the insertion point * @base: base address of the new region * @size: size of the new region * @nid: node id of the new region * @flags: flags of the new region * * Insert new memblock region [@base, @base + @size) into @type at @idx. * @type must already have extra room to accommodate the new region. */ static void __init_memblock memblock_insert_region(struct memblock_type *type, int idx, phys_addr_t base, phys_addr_t size, int nid, enum memblock_flags flags) { struct memblock_region *rgn = &type->regions[idx]; BUG_ON(type->cnt >= type->max); memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); rgn->base = base; rgn->size = size; rgn->flags = flags; memblock_set_region_node(rgn, nid); type->cnt++; type->total_size += size; } /** * memblock_add_range - add new memblock region * @type: memblock type to add new region into * @base: base address of the new region * @size: size of the new region * @nid: nid of the new region * @flags: flags of the new region * * Add new memblock region [@base, @base + @size) into @type. The new region * is allowed to overlap with existing ones - overlaps don't affect already * existing regions. @type is guaranteed to be minimal (all neighbouring * compatible regions are merged) after the addition. * * Return: * 0 on success, -errno on failure. */ int __init_memblock memblock_add_range(struct memblock_type *type, phys_addr_t base, phys_addr_t size, int nid, enum memblock_flags flags) { bool insert = false; phys_addr_t obase = base; phys_addr_t end = base + memblock_cap_size(base, &size); int idx, nr_new; struct memblock_region *rgn; if (!size) return 0; /* special case for empty array */ if (type->regions[0].size == 0) { WARN_ON(type->cnt != 1 || type->total_size); type->regions[0].base = base; type->regions[0].size = size; type->regions[0].flags = flags; memblock_set_region_node(&type->regions[0], nid); type->total_size = size; return 0; } repeat: /* * The following is executed twice. Once with %false @insert and * then with %true. The first counts the number of regions needed * to accommodate the new area. The second actually inserts them. */ base = obase; nr_new = 0; for_each_memblock_type(idx, type, rgn) { phys_addr_t rbase = rgn->base; phys_addr_t rend = rbase + rgn->size; if (rbase >= end) break; if (rend <= base) continue; /* * @rgn overlaps. If it separates the lower part of new * area, insert that portion. */ if (rbase > base) { #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP WARN_ON(nid != memblock_get_region_node(rgn)); #endif WARN_ON(flags != rgn->flags); nr_new++; if (insert) memblock_insert_region(type, idx++, base, rbase - base, nid, flags); } /* area below @rend is dealt with, forget about it */ base = min(rend, end); } /* insert the remaining portion */ if (base < end) { nr_new++; if (insert) memblock_insert_region(type, idx, base, end - base, nid, flags); } if (!nr_new) return 0; /* * If this was the first round, resize array and repeat for actual * insertions; otherwise, merge and return. */ if (!insert) { while (type->cnt + nr_new > type->max) if (memblock_double_array(type, obase, size) < 0) return -ENOMEM; insert = true; goto repeat; } else { memblock_merge_regions(type); return 0; } } /** * memblock_add_node - add new memblock region within a NUMA node * @base: base address of the new region * @size: size of the new region * @nid: nid of the new region * * Add new memblock region [@base, @base + @size) to the "memory" * type. See memblock_add_range() description for mode details * * Return: * 0 on success, -errno on failure. */ int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, int nid) { return memblock_add_range(&memblock.memory, base, size, nid, 0); } /** * memblock_add - add new memblock region * @base: base address of the new region * @size: size of the new region * * Add new memblock region [@base, @base + @size) to the "memory" * type. See memblock_add_range() description for mode details * * Return: * 0 on success, -errno on failure. */ int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) { phys_addr_t end = base + size - 1; memblock_dbg("memblock_add: [%pa-%pa] %pS\n", &base, &end, (void *)_RET_IP_); return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); } /** * memblock_isolate_range - isolate given range into disjoint memblocks * @type: memblock type to isolate range for * @base: base of range to isolate * @size: size of range to isolate * @start_rgn: out parameter for the start of isolated region * @end_rgn: out parameter for the end of isolated region * * Walk @type and ensure that regions don't cross the boundaries defined by * [@base, @base + @size). Crossing regions are split at the boundaries, * which may create at most two more regions. The index of the first * region inside the range is returned in *@start_rgn and end in *@end_rgn. * * Return: * 0 on success, -errno on failure. */ static int __init_memblock memblock_isolate_range(struct memblock_type *type, phys_addr_t base, phys_addr_t size, int *start_rgn, int *end_rgn) { phys_addr_t end = base + memblock_cap_size(base, &size); int idx; struct memblock_region *rgn; *start_rgn = *end_rgn = 0; if (!size) return 0; /* we'll create at most two more regions */ while (type->cnt + 2 > type->max) if (memblock_double_array(type, base, size) < 0) return -ENOMEM; for_each_memblock_type(idx, type, rgn) { phys_addr_t rbase = rgn->base; phys_addr_t rend = rbase + rgn->size; if (rbase >= end) break; if (rend <= base) continue; if (rbase < base) { /* * @rgn intersects from below. Split and continue * to process the next region - the new top half. */ rgn->base = base; rgn->size -= base - rbase; type->total_size -= base - rbase; memblock_insert_region(type, idx, rbase, base - rbase, memblock_get_region_node(rgn), rgn->flags); } else if (rend > end) { /* * @rgn intersects from above. Split and redo the * current region - the new bottom half. */ rgn->base = end; rgn->size -= end - rbase; type->total_size -= end - rbase; memblock_insert_region(type, idx--, rbase, end - rbase, memblock_get_region_node(rgn), rgn->flags); } else { /* @rgn is fully contained, record it */ if (!*end_rgn) *start_rgn = idx; *end_rgn = idx + 1; } } return 0; } static int __init_memblock memblock_remove_range(struct memblock_type *type, phys_addr_t base, phys_addr_t size) { int start_rgn, end_rgn; int i, ret; ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); if (ret) return ret; for (i = end_rgn - 1; i >= start_rgn; i--) memblock_remove_region(type, i); return 0; } int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) { phys_addr_t end = base + size - 1; memblock_dbg("memblock_remove: [%pa-%pa] %pS\n", &base, &end, (void *)_RET_IP_); return memblock_remove_range(&memblock.memory, base, size); } /** * memblock_free - free boot memory block * @base: phys starting address of the boot memory block * @size: size of the boot memory block in bytes * * Free boot memory block previously allocated by memblock_alloc_xx() API. * The freeing memory will not be released to the buddy allocator. */ int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) { phys_addr_t end = base + size - 1; memblock_dbg(" memblock_free: [%pa-%pa] %pS\n", &base, &end, (void *)_RET_IP_); kmemleak_free_part_phys(base, size); return memblock_remove_range(&memblock.reserved, base, size); } int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) { phys_addr_t end = base + size - 1; memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n", &base, &end, (void *)_RET_IP_); return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); } /** * memblock_setclr_flag - set or clear flag for a memory region * @base: base address of the region * @size: size of the region * @set: set or clear the flag * @flag: the flag to udpate * * This function isolates region [@base, @base + @size), and sets/clears flag * * Return: 0 on success, -errno on failure. */ static int __init_memblock memblock_setclr_flag(phys_addr_t base, phys_addr_t size, int set, int flag) { struct memblock_type *type = &memblock.memory; int i, ret, start_rgn, end_rgn; ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); if (ret) return ret; for (i = start_rgn; i < end_rgn; i++) { struct memblock_region *r = &type->regions[i]; if (set) r->flags |= flag; else r->flags &= ~flag; } memblock_merge_regions(type); return 0; } /** * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. * @base: the base phys addr of the region * @size: the size of the region * * Return: 0 on success, -errno on failure. */ int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) { return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); } /** * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. * @base: the base phys addr of the region * @size: the size of the region * * Return: 0 on success, -errno on failure. */ int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) { return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); } /** * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. * @base: the base phys addr of the region * @size: the size of the region * * Return: 0 on success, -errno on failure. */ int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) { system_has_some_mirror = true; return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); } /** * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. * @base: the base phys addr of the region * @size: the size of the region * * Return: 0 on success, -errno on failure. */ int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) { return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); } /** * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. * @base: the base phys addr of the region * @size: the size of the region * * Return: 0 on success, -errno on failure. */ int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) { return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); } /** * __next_reserved_mem_region - next function for for_each_reserved_region() * @idx: pointer to u64 loop variable * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL * * Iterate over all reserved memory regions. */ void __init_memblock __next_reserved_mem_region(u64 *idx, phys_addr_t *out_start, phys_addr_t *out_end) { struct memblock_type *type = &memblock.reserved; if (*idx < type->cnt) { struct memblock_region *r = &type->regions[*idx]; phys_addr_t base = r->base; phys_addr_t size = r->size; if (out_start) *out_start = base; if (out_end) *out_end = base + size - 1; *idx += 1; return; } /* signal end of iteration */ *idx = ULLONG_MAX; } static bool should_skip_region(struct memblock_region *m, int nid, int flags) { int m_nid = memblock_get_region_node(m); /* only memory regions are associated with nodes, check it */ if (nid != NUMA_NO_NODE && nid != m_nid) return true; /* skip hotpluggable memory regions if needed */ if (movable_node_is_enabled() && memblock_is_hotpluggable(m)) return true; /* if we want mirror memory skip non-mirror memory regions */ if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) return true; /* skip nomap memory unless we were asked for it explicitly */ if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) return true; return false; } /** * __next_mem_range - next function for for_each_free_mem_range() etc. * @idx: pointer to u64 loop variable * @nid: node selector, %NUMA_NO_NODE for all nodes * @flags: pick from blocks based on memory attributes * @type_a: pointer to memblock_type from where the range is taken * @type_b: pointer to memblock_type which excludes memory from being taken * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL * @out_nid: ptr to int for nid of the range, can be %NULL * * Find the first area from *@idx which matches @nid, fill the out * parameters, and update *@idx for the next iteration. The lower 32bit of * *@idx contains index into type_a and the upper 32bit indexes the * areas before each region in type_b. For example, if type_b regions * look like the following, * * 0:[0-16), 1:[32-48), 2:[128-130) * * The upper 32bit indexes the following regions. * * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) * * As both region arrays are sorted, the function advances the two indices * in lockstep and returns each intersection. */ void __init_memblock __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, struct memblock_type *type_a, struct memblock_type *type_b, phys_addr_t *out_start, phys_addr_t *out_end, int *out_nid) { int idx_a = *idx & 0xffffffff; int idx_b = *idx >> 32; if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) nid = NUMA_NO_NODE; for (; idx_a < type_a->cnt; idx_a++) { struct memblock_region *m = &type_a->regions[idx_a]; phys_addr_t m_start = m->base; phys_addr_t m_end = m->base + m->size; int m_nid = memblock_get_region_node(m); if (should_skip_region(m, nid, flags)) continue; if (!type_b) { if (out_start) *out_start = m_start; if (out_end) *out_end = m_end; if (out_nid) *out_nid = m_nid; idx_a++; *idx = (u32)idx_a | (u64)idx_b << 32; return; } /* scan areas before each reservation */ for (; idx_b < type_b->cnt + 1; idx_b++) { struct memblock_region *r; phys_addr_t r_start; phys_addr_t r_end; r = &type_b->regions[idx_b]; r_start = idx_b ? r[-1].base + r[-1].size : 0; r_end = idx_b < type_b->cnt ? r->base : PHYS_ADDR_MAX; /* * if idx_b advanced past idx_a, * break out to advance idx_a */ if (r_start >= m_end) break; /* if the two regions intersect, we're done */ if (m_start < r_end) { if (out_start) *out_start = max(m_start, r_start); if (out_end) *out_end = min(m_end, r_end); if (out_nid) *out_nid = m_nid; /* * The region which ends first is * advanced for the next iteration. */ if (m_end <= r_end) idx_a++; else idx_b++; *idx = (u32)idx_a | (u64)idx_b << 32; return; } } } /* signal end of iteration */ *idx = ULLONG_MAX; } /** * __next_mem_range_rev - generic next function for for_each_*_range_rev() * * @idx: pointer to u64 loop variable * @nid: node selector, %NUMA_NO_NODE for all nodes * @flags: pick from blocks based on memory attributes * @type_a: pointer to memblock_type from where the range is taken * @type_b: pointer to memblock_type which excludes memory from being taken * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL * @out_nid: ptr to int for nid of the range, can be %NULL * * Finds the next range from type_a which is not marked as unsuitable * in type_b. * * Reverse of __next_mem_range(). */ void __init_memblock __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags, struct memblock_type *type_a, struct memblock_type *type_b, phys_addr_t *out_start, phys_addr_t *out_end, int *out_nid) { int idx_a = *idx & 0xffffffff; int idx_b = *idx >> 32; if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) nid = NUMA_NO_NODE; if (*idx == (u64)ULLONG_MAX) { idx_a = type_a->cnt - 1; if (type_b != NULL) idx_b = type_b->cnt; else idx_b = 0; } for (; idx_a >= 0; idx_a--) { struct memblock_region *m = &type_a->regions[idx_a]; phys_addr_t m_start = m->base; phys_addr_t m_end = m->base + m->size; int m_nid = memblock_get_region_node(m); if (should_skip_region(m, nid, flags)) continue; if (!type_b) { if (out_start) *out_start = m_start; if (out_end) *out_end = m_end; if (out_nid) *out_nid = m_nid; idx_a--; *idx = (u32)idx_a | (u64)idx_b << 32; return; } /* scan areas before each reservation */ for (; idx_b >= 0; idx_b--) { struct memblock_region *r; phys_addr_t r_start; phys_addr_t r_end; r = &type_b->regions[idx_b]; r_start = idx_b ? r[-1].base + r[-1].size : 0; r_end = idx_b < type_b->cnt ? r->base : PHYS_ADDR_MAX; /* * if idx_b advanced past idx_a, * break out to advance idx_a */ if (r_end <= m_start) break; /* if the two regions intersect, we're done */ if (m_end > r_start) { if (out_start) *out_start = max(m_start, r_start); if (out_end) *out_end = min(m_end, r_end); if (out_nid) *out_nid = m_nid; if (m_start >= r_start) idx_a--; else idx_b--; *idx = (u32)idx_a | (u64)idx_b << 32; return; } } } /* signal end of iteration */ *idx = ULLONG_MAX; } #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP /* * Common iterator interface used to define for_each_mem_pfn_range(). */ void __init_memblock __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn, unsigned long *out_end_pfn, int *out_nid) { struct memblock_type *type = &memblock.memory; struct memblock_region *r; while (++*idx < type->cnt) { r = &type->regions[*idx]; if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) continue; if (nid == MAX_NUMNODES || nid == r->nid) break; } if (*idx >= type->cnt) { *idx = -1; return; } if (out_start_pfn) *out_start_pfn = PFN_UP(r->base); if (out_end_pfn) *out_end_pfn = PFN_DOWN(r->base + r->size); if (out_nid) *out_nid = r->nid; } /** * memblock_set_node - set node ID on memblock regions * @base: base of area to set node ID for * @size: size of area to set node ID for * @type: memblock type to set node ID for * @nid: node ID to set * * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. * Regions which cross the area boundaries are split as necessary. * * Return: * 0 on success, -errno on failure. */ int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, struct memblock_type *type, int nid) { int start_rgn, end_rgn; int i, ret; ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); if (ret) return ret; for (i = start_rgn; i < end_rgn; i++) memblock_set_region_node(&type->regions[i], nid); memblock_merge_regions(type); return 0; } #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT /** * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() * * @idx: pointer to u64 loop variable * @zone: zone in which all of the memory blocks reside * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL * * This function is meant to be a zone/pfn specific wrapper for the * for_each_mem_range type iterators. Specifically they are used in the * deferred memory init routines and as such we were duplicating much of * this logic throughout the code. So instead of having it in multiple * locations it seemed like it would make more sense to centralize this to * one new iterator that does everything they need. */ void __init_memblock __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, unsigned long *out_spfn, unsigned long *out_epfn) { int zone_nid = zone_to_nid(zone); phys_addr_t spa, epa; int nid; __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, &memblock.memory, &memblock.reserved, &spa, &epa, &nid); while (*idx != U64_MAX) { unsigned long epfn = PFN_DOWN(epa); unsigned long spfn = PFN_UP(spa); /* * Verify the end is at least past the start of the zone and * that we have at least one PFN to initialize. */ if (zone->zone_start_pfn < epfn && spfn < epfn) { /* if we went too far just stop searching */ if (zone_end_pfn(zone) <= spfn) { *idx = U64_MAX; break; } if (out_spfn) *out_spfn = max(zone->zone_start_pfn, spfn); if (out_epfn) *out_epfn = min(zone_end_pfn(zone), epfn); return; } __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, &memblock.memory, &memblock.reserved, &spa, &epa, &nid); } /* signal end of iteration */ if (out_spfn) *out_spfn = ULONG_MAX; if (out_epfn) *out_epfn = 0; } #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ /** * memblock_alloc_range_nid - allocate boot memory block * @size: size of memory block to be allocated in bytes * @align: alignment of the region and block's size * @start: the lower bound of the memory region to allocate (phys address) * @end: the upper bound of the memory region to allocate (phys address) * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * * The allocation is performed from memory region limited by * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE. * * If the specified node can not hold the requested memory the * allocation falls back to any node in the system * * For systems with memory mirroring, the allocation is attempted first * from the regions with mirroring enabled and then retried from any * memory region. * * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for * allocated boot memory block, so that it is never reported as leaks. * * Return: * Physical address of allocated memory block on success, %0 on failure. */ static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, phys_addr_t align, phys_addr_t start, phys_addr_t end, int nid) { enum memblock_flags flags = choose_memblock_flags(); phys_addr_t found; if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) nid = NUMA_NO_NODE; if (!align) { /* Can't use WARNs this early in boot on powerpc */ dump_stack(); align = SMP_CACHE_BYTES; } if (end > memblock.current_limit) end = memblock.current_limit; again: found = memblock_find_in_range_node(size, align, start, end, nid, flags); if (found && !memblock_reserve(found, size)) goto done; if (nid != NUMA_NO_NODE) { found = memblock_find_in_range_node(size, align, start, end, NUMA_NO_NODE, flags); if (found && !memblock_reserve(found, size)) goto done; } if (flags & MEMBLOCK_MIRROR) { flags &= ~MEMBLOCK_MIRROR; pr_warn("Could not allocate %pap bytes of mirrored memory\n", &size); goto again; } return 0; done: /* Skip kmemleak for kasan_init() due to high volume. */ if (end != MEMBLOCK_ALLOC_KASAN) /* * The min_count is set to 0 so that memblock allocated * blocks are never reported as leaks. This is because many * of these blocks are only referred via the physical * address which is not looked up by kmemleak. */ kmemleak_alloc_phys(found, size, 0, 0); return found; } /** * memblock_phys_alloc_range - allocate a memory block inside specified range * @size: size of memory block to be allocated in bytes * @align: alignment of the region and block's size * @start: the lower bound of the memory region to allocate (physical address) * @end: the upper bound of the memory region to allocate (physical address) * * Allocate @size bytes in the between @start and @end. * * Return: physical address of the allocated memory block on success, * %0 on failure. */ phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align, phys_addr_t start, phys_addr_t end) { return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE); } /** * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node * @size: size of memory block to be allocated in bytes * @align: alignment of the region and block's size * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * * Allocates memory block from the specified NUMA node. If the node * has no available memory, attempts to allocated from any node in the * system. * * Return: physical address of the allocated memory block on success, * %0 on failure. */ phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) { return memblock_alloc_range_nid(size, align, 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid); } /** * memblock_alloc_internal - allocate boot memory block * @size: size of memory block to be allocated in bytes * @align: alignment of the region and block's size * @min_addr: the lower bound of the memory region to allocate (phys address) * @max_addr: the upper bound of the memory region to allocate (phys address) * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * * Allocates memory block using memblock_alloc_range_nid() and * converts the returned physical address to virtual. * * The @min_addr limit is dropped if it can not be satisfied and the allocation * will fall back to memory below @min_addr. Other constraints, such * as node and mirrored memory will be handled again in * memblock_alloc_range_nid(). * * Return: * Virtual address of allocated memory block on success, NULL on failure. */ static void * __init memblock_alloc_internal( phys_addr_t size, phys_addr_t align, phys_addr_t min_addr, phys_addr_t max_addr, int nid) { phys_addr_t alloc; /* * Detect any accidental use of these APIs after slab is ready, as at * this moment memblock may be deinitialized already and its * internal data may be destroyed (after execution of memblock_free_all) */ if (WARN_ON_ONCE(slab_is_available())) return kzalloc_node(size, GFP_NOWAIT, nid); alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid); /* retry allocation without lower limit */ if (!alloc && min_addr) alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid); if (!alloc) return NULL; return phys_to_virt(alloc); } /** * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing * memory and without panicking * @size: size of memory block to be allocated in bytes * @align: alignment of the region and block's size * @min_addr: the lower bound of the memory region from where the allocation * is preferred (phys address) * @max_addr: the upper bound of the memory region from where the allocation * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to * allocate only from memory limited by memblock.current_limit value * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * * Public function, provides additional debug information (including caller * info), if enabled. Does not zero allocated memory, does not panic if request * cannot be satisfied. * * Return: * Virtual address of allocated memory block on success, NULL on failure. */ void * __init memblock_alloc_try_nid_raw( phys_addr_t size, phys_addr_t align, phys_addr_t min_addr, phys_addr_t max_addr, int nid) { void *ptr; memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr, (void *)_RET_IP_); ptr = memblock_alloc_internal(size, align, min_addr, max_addr, nid); if (ptr && size > 0) page_init_poison(ptr, size); return ptr; } /** * memblock_alloc_try_nid - allocate boot memory block * @size: size of memory block to be allocated in bytes * @align: alignment of the region and block's size * @min_addr: the lower bound of the memory region from where the allocation * is preferred (phys address) * @max_addr: the upper bound of the memory region from where the allocation * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to * allocate only from memory limited by memblock.current_limit value * @nid: nid of the free area to find, %NUMA_NO_NODE for any node * * Public function, provides additional debug information (including caller * info), if enabled. This function zeroes the allocated memory. * * Return: * Virtual address of allocated memory block on success, NULL on failure. */ void * __init memblock_alloc_try_nid( phys_addr_t size, phys_addr_t align, phys_addr_t min_addr, phys_addr_t max_addr, int nid) { void *ptr; memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr, (void *)_RET_IP_); ptr = memblock_alloc_internal(size, align, min_addr, max_addr, nid); if (ptr) memset(ptr, 0, size); return ptr; } /** * __memblock_free_late - free pages directly to buddy allocator * @base: phys starting address of the boot memory block * @size: size of the boot memory block in bytes * * This is only useful when the memblock allocator has already been torn * down, but we are still initializing the system. Pages are released directly * to the buddy allocator. */ void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) { phys_addr_t cursor, end; end = base + size - 1; memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, &base, &end, (void *)_RET_IP_); kmemleak_free_part_phys(base, size); cursor = PFN_UP(base); end = PFN_DOWN(base + size); for (; cursor < end; cursor++) { memblock_free_pages(pfn_to_page(cursor), cursor, 0); totalram_pages_inc(); } } /* * Remaining API functions */ phys_addr_t __init_memblock memblock_phys_mem_size(void) { return memblock.memory.total_size; } phys_addr_t __init_memblock memblock_reserved_size(void) { return memblock.reserved.total_size; } phys_addr_t __init memblock_mem_size(unsigned long limit_pfn) { unsigned long pages = 0; struct memblock_region *r; unsigned long start_pfn, end_pfn; for_each_memblock(memory, r) { start_pfn = memblock_region_memory_base_pfn(r); end_pfn = memblock_region_memory_end_pfn(r); start_pfn = min_t(unsigned long, start_pfn, limit_pfn); end_pfn = min_t(unsigned long, end_pfn, limit_pfn); pages += end_pfn - start_pfn; } return PFN_PHYS(pages); } /* lowest address */ phys_addr_t __init_memblock memblock_start_of_DRAM(void) { return memblock.memory.regions[0].base; } phys_addr_t __init_memblock memblock_end_of_DRAM(void) { int idx = memblock.memory.cnt - 1; return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); } static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) { phys_addr_t max_addr = PHYS_ADDR_MAX; struct memblock_region *r; /* * translate the memory @limit size into the max address within one of * the memory memblock regions, if the @limit exceeds the total size * of those regions, max_addr will keep original value PHYS_ADDR_MAX */ for_each_memblock(memory, r) { if (limit <= r->size) { max_addr = r->base + limit; break; } limit -= r->size; } return max_addr; } void __init memblock_enforce_memory_limit(phys_addr_t limit) { phys_addr_t max_addr = PHYS_ADDR_MAX; if (!limit) return; max_addr = __find_max_addr(limit); /* @limit exceeds the total size of the memory, do nothing */ if (max_addr == PHYS_ADDR_MAX) return; /* truncate both memory and reserved regions */ memblock_remove_range(&memblock.memory, max_addr, PHYS_ADDR_MAX); memblock_remove_range(&memblock.reserved, max_addr, PHYS_ADDR_MAX); } void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) { int start_rgn, end_rgn; int i, ret; if (!size) return; ret = memblock_isolate_range(&memblock.memory, base, size, &start_rgn, &end_rgn); if (ret) return; /* remove all the MAP regions */ for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) if (!memblock_is_nomap(&memblock.memory.regions[i])) memblock_remove_region(&memblock.memory, i); for (i = start_rgn - 1; i >= 0; i--) if (!memblock_is_nomap(&memblock.memory.regions[i])) memblock_remove_region(&memblock.memory, i); /* truncate the reserved regions */ memblock_remove_range(&memblock.reserved, 0, base); memblock_remove_range(&memblock.reserved, base + size, PHYS_ADDR_MAX); } void __init memblock_mem_limit_remove_map(phys_addr_t limit) { phys_addr_t max_addr; if (!limit) return; max_addr = __find_max_addr(limit); /* @limit exceeds the total size of the memory, do nothing */ if (max_addr == PHYS_ADDR_MAX) return; memblock_cap_memory_range(0, max_addr); } static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) { unsigned int left = 0, right = type->cnt; do { unsigned int mid = (right + left) / 2; if (addr < type->regions[mid].base) right = mid; else if (addr >= (type->regions[mid].base + type->regions[mid].size)) left = mid + 1; else return mid; } while (left < right); return -1; } bool __init_memblock memblock_is_reserved(phys_addr_t addr) { return memblock_search(&memblock.reserved, addr) != -1; } bool __init_memblock memblock_is_memory(phys_addr_t addr) { return memblock_search(&memblock.memory, addr) != -1; } bool __init_memblock memblock_is_map_memory(phys_addr_t addr) { int i = memblock_search(&memblock.memory, addr); if (i == -1) return false; return !memblock_is_nomap(&memblock.memory.regions[i]); } #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP int __init_memblock memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn, unsigned long *end_pfn) { struct memblock_type *type = &memblock.memory; int mid = memblock_search(type, PFN_PHYS(pfn)); if (mid == -1) return -1; *start_pfn = PFN_DOWN(type->regions[mid].base); *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); return type->regions[mid].nid; } #endif /** * memblock_is_region_memory - check if a region is a subset of memory * @base: base of region to check * @size: size of region to check * * Check if the region [@base, @base + @size) is a subset of a memory block. * * Return: * 0 if false, non-zero if true */ bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) { int idx = memblock_search(&memblock.memory, base); phys_addr_t end = base + memblock_cap_size(base, &size); if (idx == -1) return false; return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size) >= end; } /** * memblock_is_region_reserved - check if a region intersects reserved memory * @base: base of region to check * @size: size of region to check * * Check if the region [@base, @base + @size) intersects a reserved * memory block. * * Return: * True if they intersect, false if not. */ bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) { memblock_cap_size(base, &size); return memblock_overlaps_region(&memblock.reserved, base, size); } void __init_memblock memblock_trim_memory(phys_addr_t align) { phys_addr_t start, end, orig_start, orig_end; struct memblock_region *r; for_each_memblock(memory, r) { orig_start = r->base; orig_end = r->base + r->size; start = round_up(orig_start, align); end = round_down(orig_end, align); if (start == orig_start && end == orig_end) continue; if (start < end) { r->base = start; r->size = end - start; } else { memblock_remove_region(&memblock.memory, r - memblock.memory.regions); r--; } } } void __init_memblock memblock_set_current_limit(phys_addr_t limit) { memblock.current_limit = limit; } phys_addr_t __init_memblock memblock_get_current_limit(void) { return memblock.current_limit; } static void __init_memblock memblock_dump(struct memblock_type *type) { phys_addr_t base, end, size; enum memblock_flags flags; int idx; struct memblock_region *rgn; pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); for_each_memblock_type(idx, type, rgn) { char nid_buf[32] = ""; base = rgn->base; size = rgn->size; end = base + size - 1; flags = rgn->flags; #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP if (memblock_get_region_node(rgn) != MAX_NUMNODES) snprintf(nid_buf, sizeof(nid_buf), " on node %d", memblock_get_region_node(rgn)); #endif pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", type->name, idx, &base, &end, &size, nid_buf, flags); } } void __init_memblock __memblock_dump_all(void) { pr_info("MEMBLOCK configuration:\n"); pr_info(" memory size = %pa reserved size = %pa\n", &memblock.memory.total_size, &memblock.reserved.total_size); memblock_dump(&memblock.memory); memblock_dump(&memblock.reserved); #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP memblock_dump(&memblock.physmem); #endif } void __init memblock_allow_resize(void) { memblock_can_resize = 1; } static int __init early_memblock(char *p) { if (p && strstr(p, "debug")) memblock_debug = 1; return 0; } early_param("memblock", early_memblock); static void __init __free_pages_memory(unsigned long start, unsigned long end) { int order; while (start < end) { order = min(MAX_ORDER - 1UL, __ffs(start)); while (start + (1UL << order) > end) order--; memblock_free_pages(pfn_to_page(start), start, order); start += (1UL << order); } } static unsigned long __init __free_memory_core(phys_addr_t start, phys_addr_t end) { unsigned long start_pfn = PFN_UP(start); unsigned long end_pfn = min_t(unsigned long, PFN_DOWN(end), max_low_pfn); if (start_pfn >= end_pfn) return 0; __free_pages_memory(start_pfn, end_pfn); return end_pfn - start_pfn; } static unsigned long __init free_low_memory_core_early(void) { unsigned long count = 0; phys_addr_t start, end; u64 i; memblock_clear_hotplug(0, -1); for_each_reserved_mem_region(i, &start, &end) reserve_bootmem_region(start, end); /* * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id * because in some case like Node0 doesn't have RAM installed * low ram will be on Node1 */ for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) count += __free_memory_core(start, end); return count; } static int reset_managed_pages_done __initdata; void reset_node_managed_pages(pg_data_t *pgdat) { struct zone *z; for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) atomic_long_set(&z->managed_pages, 0); } void __init reset_all_zones_managed_pages(void) { struct pglist_data *pgdat; if (reset_managed_pages_done) return; for_each_online_pgdat(pgdat) reset_node_managed_pages(pgdat); reset_managed_pages_done = 1; } /** * memblock_free_all - release free pages to the buddy allocator * * Return: the number of pages actually released. */ unsigned long __init memblock_free_all(void) { unsigned long pages; reset_all_zones_managed_pages(); pages = free_low_memory_core_early(); totalram_pages_add(pages); return pages; } #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) static int memblock_debug_show(struct seq_file *m, void *private) { struct memblock_type *type = m->private; struct memblock_region *reg; int i; phys_addr_t end; for (i = 0; i < type->cnt; i++) { reg = &type->regions[i]; end = reg->base + reg->size - 1; seq_printf(m, "%4d: ", i); seq_printf(m, "%pa..%pa\n", ®->base, &end); } return 0; } DEFINE_SHOW_ATTRIBUTE(memblock_debug); static int __init memblock_init_debugfs(void) { struct dentry *root = debugfs_create_dir("memblock", NULL); debugfs_create_file("memory", 0444, root, &memblock.memory, &memblock_debug_fops); debugfs_create_file("reserved", 0444, root, &memblock.reserved, &memblock_debug_fops); #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP debugfs_create_file("physmem", 0444, root, &memblock.physmem, &memblock_debug_fops); #endif return 0; } __initcall(memblock_init_debugfs); #endif /* CONFIG_DEBUG_FS */