// SPDX-License-Identifier: GPL-2.0 /* * This file contains common KASAN code. * * Copyright (c) 2014 Samsung Electronics Co., Ltd. * Author: Andrey Ryabinin * * Some code borrowed from https://github.com/xairy/kasan-prototype by * Andrey Konovalov */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "kasan.h" #include "../slab.h" depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc) { unsigned long entries[KASAN_STACK_DEPTH]; unsigned int nr_entries; nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); return __stack_depot_save(entries, nr_entries, flags, can_alloc); } void kasan_set_track(struct kasan_track *track, gfp_t flags) { track->pid = current->pid; track->stack = kasan_save_stack(flags, true); } #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) void kasan_enable_current(void) { current->kasan_depth++; } EXPORT_SYMBOL(kasan_enable_current); void kasan_disable_current(void) { current->kasan_depth--; } EXPORT_SYMBOL(kasan_disable_current); #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ void __kasan_unpoison_range(const void *address, size_t size) { kasan_unpoison(address, size, false); } #ifdef CONFIG_KASAN_STACK /* Unpoison the entire stack for a task. */ void kasan_unpoison_task_stack(struct task_struct *task) { void *base = task_stack_page(task); kasan_unpoison(base, THREAD_SIZE, false); } /* Unpoison the stack for the current task beyond a watermark sp value. */ asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) { /* * Calculate the task stack base address. Avoid using 'current' * because this function is called by early resume code which hasn't * yet set up the percpu register (%gs). */ void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); kasan_unpoison(base, watermark - base, false); } #endif /* CONFIG_KASAN_STACK */ /* * Only allow cache merging when stack collection is disabled and no metadata * is present. */ slab_flags_t __kasan_never_merge(void) { if (kasan_stack_collection_enabled()) return SLAB_KASAN; return 0; } void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init) { u8 tag; unsigned long i; if (unlikely(PageHighMem(page))) return; tag = kasan_random_tag(); kasan_unpoison(set_tag(page_address(page), tag), PAGE_SIZE << order, init); for (i = 0; i < (1 << order); i++) page_kasan_tag_set(page + i, tag); } void __kasan_poison_pages(struct page *page, unsigned int order, bool init) { if (likely(!PageHighMem(page))) kasan_poison(page_address(page), PAGE_SIZE << order, KASAN_PAGE_FREE, init); } /* * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. * For larger allocations larger redzones are used. */ static inline unsigned int optimal_redzone(unsigned int object_size) { return object_size <= 64 - 16 ? 16 : object_size <= 128 - 32 ? 32 : object_size <= 512 - 64 ? 64 : object_size <= 4096 - 128 ? 128 : object_size <= (1 << 14) - 256 ? 256 : object_size <= (1 << 15) - 512 ? 512 : object_size <= (1 << 16) - 1024 ? 1024 : 2048; } void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size, slab_flags_t *flags) { unsigned int ok_size; unsigned int optimal_size; /* * SLAB_KASAN is used to mark caches as ones that are sanitized by * KASAN. Currently this flag is used in two places: * 1. In slab_ksize() when calculating the size of the accessible * memory within the object. * 2. In slab_common.c to prevent merging of sanitized caches. */ *flags |= SLAB_KASAN; if (!kasan_stack_collection_enabled()) return; ok_size = *size; /* Add alloc meta into redzone. */ cache->kasan_info.alloc_meta_offset = *size; *size += sizeof(struct kasan_alloc_meta); /* * If alloc meta doesn't fit, don't add it. * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for * larger sizes. */ if (*size > KMALLOC_MAX_SIZE) { cache->kasan_info.alloc_meta_offset = 0; *size = ok_size; /* Continue, since free meta might still fit. */ } /* Only the generic mode uses free meta or flexible redzones. */ if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) { cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; return; } /* * Add free meta into redzone when it's not possible to store * it in the object. This is the case when: * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can * be touched after it was freed, or * 2. Object has a constructor, which means it's expected to * retain its content until the next allocation, or * 3. Object is too small. * Otherwise cache->kasan_info.free_meta_offset = 0 is implied. */ if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor || cache->object_size < sizeof(struct kasan_free_meta)) { ok_size = *size; cache->kasan_info.free_meta_offset = *size; *size += sizeof(struct kasan_free_meta); /* If free meta doesn't fit, don't add it. */ if (*size > KMALLOC_MAX_SIZE) { cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; *size = ok_size; } } /* Calculate size with optimal redzone. */ optimal_size = cache->object_size + optimal_redzone(cache->object_size); /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */ if (optimal_size > KMALLOC_MAX_SIZE) optimal_size = KMALLOC_MAX_SIZE; /* Use optimal size if the size with added metas is not large enough. */ if (*size < optimal_size) *size = optimal_size; } void __kasan_cache_create_kmalloc(struct kmem_cache *cache) { cache->kasan_info.is_kmalloc = true; } size_t __kasan_metadata_size(struct kmem_cache *cache) { if (!kasan_stack_collection_enabled()) return 0; return (cache->kasan_info.alloc_meta_offset ? sizeof(struct kasan_alloc_meta) : 0) + (cache->kasan_info.free_meta_offset ? sizeof(struct kasan_free_meta) : 0); } struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, const void *object) { if (!cache->kasan_info.alloc_meta_offset) return NULL; return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset; } #ifdef CONFIG_KASAN_GENERIC struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, const void *object) { BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META) return NULL; return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset; } #endif void __kasan_poison_slab(struct slab *slab) { struct page *page = slab_page(slab); unsigned long i; for (i = 0; i < compound_nr(page); i++) page_kasan_tag_reset(page + i); kasan_poison(page_address(page), page_size(page), KASAN_SLAB_REDZONE, false); } void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object) { kasan_unpoison(object, cache->object_size, false); } void __kasan_poison_object_data(struct kmem_cache *cache, void *object) { kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), KASAN_SLAB_REDZONE, false); } /* * This function assigns a tag to an object considering the following: * 1. A cache might have a constructor, which might save a pointer to a slab * object somewhere (e.g. in the object itself). We preassign a tag for * each object in caches with constructors during slab creation and reuse * the same tag each time a particular object is allocated. * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be * accessed after being freed. We preassign tags for objects in these * caches as well. * 3. For SLAB allocator we can't preassign tags randomly since the freelist * is stored as an array of indexes instead of a linked list. Assign tags * based on objects indexes, so that objects that are next to each other * get different tags. */ static inline u8 assign_tag(struct kmem_cache *cache, const void *object, bool init) { if (IS_ENABLED(CONFIG_KASAN_GENERIC)) return 0xff; /* * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU * set, assign a tag when the object is being allocated (init == false). */ if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) return init ? KASAN_TAG_KERNEL : kasan_random_tag(); /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ #ifdef CONFIG_SLAB /* For SLAB assign tags based on the object index in the freelist. */ return (u8)obj_to_index(cache, virt_to_slab(object), (void *)object); #else /* * For SLUB assign a random tag during slab creation, otherwise reuse * the already assigned tag. */ return init ? kasan_random_tag() : get_tag(object); #endif } void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, const void *object) { struct kasan_alloc_meta *alloc_meta; if (kasan_stack_collection_enabled()) { alloc_meta = kasan_get_alloc_meta(cache, object); if (alloc_meta) __memset(alloc_meta, 0, sizeof(*alloc_meta)); } /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ object = set_tag(object, assign_tag(cache, object, true)); return (void *)object; } static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip, bool quarantine, bool init) { u8 tag; void *tagged_object; if (!kasan_arch_is_ready()) return false; tag = get_tag(object); tagged_object = object; object = kasan_reset_tag(object); if (is_kfence_address(object)) return false; if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) { kasan_report_invalid_free(tagged_object, ip); return true; } /* RCU slabs could be legally used after free within the RCU period */ if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) return false; if (!kasan_byte_accessible(tagged_object)) { kasan_report_invalid_free(tagged_object, ip); return true; } kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), KASAN_SLAB_FREE, init); if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine)) return false; if (kasan_stack_collection_enabled()) kasan_set_free_info(cache, object, tag); return kasan_quarantine_put(cache, object); } bool __kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip, bool init) { return ____kasan_slab_free(cache, object, ip, true, init); } static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip) { if (ptr != page_address(virt_to_head_page(ptr))) { kasan_report_invalid_free(ptr, ip); return true; } if (!kasan_byte_accessible(ptr)) { kasan_report_invalid_free(ptr, ip); return true; } /* * The object will be poisoned by kasan_poison_pages() or * kasan_slab_free_mempool(). */ return false; } void __kasan_kfree_large(void *ptr, unsigned long ip) { ____kasan_kfree_large(ptr, ip); } void __kasan_slab_free_mempool(void *ptr, unsigned long ip) { struct folio *folio; folio = virt_to_folio(ptr); /* * Even though this function is only called for kmem_cache_alloc and * kmalloc backed mempool allocations, those allocations can still be * !PageSlab() when the size provided to kmalloc is larger than * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc. */ if (unlikely(!folio_test_slab(folio))) { if (____kasan_kfree_large(ptr, ip)) return; kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false); } else { struct slab *slab = folio_slab(folio); ____kasan_slab_free(slab->slab_cache, ptr, ip, false, false); } } static void set_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags, bool is_kmalloc) { struct kasan_alloc_meta *alloc_meta; /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */ if (cache->kasan_info.is_kmalloc && !is_kmalloc) return; alloc_meta = kasan_get_alloc_meta(cache, object); if (alloc_meta) kasan_set_track(&alloc_meta->alloc_track, flags); } void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, void *object, gfp_t flags, bool init) { u8 tag; void *tagged_object; if (gfpflags_allow_blocking(flags)) kasan_quarantine_reduce(); if (unlikely(object == NULL)) return NULL; if (is_kfence_address(object)) return (void *)object; /* * Generate and assign random tag for tag-based modes. * Tag is ignored in set_tag() for the generic mode. */ tag = assign_tag(cache, object, false); tagged_object = set_tag(object, tag); /* * Unpoison the whole object. * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning. */ kasan_unpoison(tagged_object, cache->object_size, init); /* Save alloc info (if possible) for non-kmalloc() allocations. */ if (kasan_stack_collection_enabled()) set_alloc_info(cache, (void *)object, flags, false); return tagged_object; } static inline void *____kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size, gfp_t flags) { unsigned long redzone_start; unsigned long redzone_end; if (gfpflags_allow_blocking(flags)) kasan_quarantine_reduce(); if (unlikely(object == NULL)) return NULL; if (is_kfence_address(kasan_reset_tag(object))) return (void *)object; /* * The object has already been unpoisoned by kasan_slab_alloc() for * kmalloc() or by kasan_krealloc() for krealloc(). */ /* * The redzone has byte-level precision for the generic mode. * Partially poison the last object granule to cover the unaligned * part of the redzone. */ if (IS_ENABLED(CONFIG_KASAN_GENERIC)) kasan_poison_last_granule((void *)object, size); /* Poison the aligned part of the redzone. */ redzone_start = round_up((unsigned long)(object + size), KASAN_GRANULE_SIZE); redzone_end = round_up((unsigned long)(object + cache->object_size), KASAN_GRANULE_SIZE); kasan_poison((void *)redzone_start, redzone_end - redzone_start, KASAN_SLAB_REDZONE, false); /* * Save alloc info (if possible) for kmalloc() allocations. * This also rewrites the alloc info when called from kasan_krealloc(). */ if (kasan_stack_collection_enabled()) set_alloc_info(cache, (void *)object, flags, true); /* Keep the tag that was set by kasan_slab_alloc(). */ return (void *)object; } void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, size_t size, gfp_t flags) { return ____kasan_kmalloc(cache, object, size, flags); } EXPORT_SYMBOL(__kasan_kmalloc); void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, gfp_t flags) { unsigned long redzone_start; unsigned long redzone_end; if (gfpflags_allow_blocking(flags)) kasan_quarantine_reduce(); if (unlikely(ptr == NULL)) return NULL; /* * The object has already been unpoisoned by kasan_unpoison_pages() for * alloc_pages() or by kasan_krealloc() for krealloc(). */ /* * The redzone has byte-level precision for the generic mode. * Partially poison the last object granule to cover the unaligned * part of the redzone. */ if (IS_ENABLED(CONFIG_KASAN_GENERIC)) kasan_poison_last_granule(ptr, size); /* Poison the aligned part of the redzone. */ redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE); redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr)); kasan_poison((void *)redzone_start, redzone_end - redzone_start, KASAN_PAGE_REDZONE, false); return (void *)ptr; } void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) { struct slab *slab; if (unlikely(object == ZERO_SIZE_PTR)) return (void *)object; /* * Unpoison the object's data. * Part of it might already have been unpoisoned, but it's unknown * how big that part is. */ kasan_unpoison(object, size, false); slab = virt_to_slab(object); /* Piggy-back on kmalloc() instrumentation to poison the redzone. */ if (unlikely(!slab)) return __kasan_kmalloc_large(object, size, flags); else return ____kasan_kmalloc(slab->slab_cache, object, size, flags); } bool __kasan_check_byte(const void *address, unsigned long ip) { if (!kasan_byte_accessible(address)) { kasan_report((unsigned long)address, 1, false, ip); return false; } return true; }