// SPDX-License-Identifier: GPL-2.0-only #include <linux/export.h> #include <linux/bvec.h> #include <linux/uio.h> #include <linux/pagemap.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include <linux/splice.h> #include <net/checksum.h> #include <linux/scatterlist.h> #define PIPE_PARANOIA /* for now */ #define iterate_iovec(i, n, __v, __p, skip, STEP) { \ size_t left; \ size_t wanted = n; \ __p = i->iov; \ __v.iov_len = min(n, __p->iov_len - skip); \ if (likely(__v.iov_len)) { \ __v.iov_base = __p->iov_base + skip; \ left = (STEP); \ __v.iov_len -= left; \ skip += __v.iov_len; \ n -= __v.iov_len; \ } else { \ left = 0; \ } \ while (unlikely(!left && n)) { \ __p++; \ __v.iov_len = min(n, __p->iov_len); \ if (unlikely(!__v.iov_len)) \ continue; \ __v.iov_base = __p->iov_base; \ left = (STEP); \ __v.iov_len -= left; \ skip = __v.iov_len; \ n -= __v.iov_len; \ } \ n = wanted - n; \ } #define iterate_kvec(i, n, __v, __p, skip, STEP) { \ size_t wanted = n; \ __p = i->kvec; \ __v.iov_len = min(n, __p->iov_len - skip); \ if (likely(__v.iov_len)) { \ __v.iov_base = __p->iov_base + skip; \ (void)(STEP); \ skip += __v.iov_len; \ n -= __v.iov_len; \ } \ while (unlikely(n)) { \ __p++; \ __v.iov_len = min(n, __p->iov_len); \ if (unlikely(!__v.iov_len)) \ continue; \ __v.iov_base = __p->iov_base; \ (void)(STEP); \ skip = __v.iov_len; \ n -= __v.iov_len; \ } \ n = wanted; \ } #define iterate_bvec(i, n, __v, __bi, skip, STEP) { \ struct bvec_iter __start; \ __start.bi_size = n; \ __start.bi_bvec_done = skip; \ __start.bi_idx = 0; \ for_each_bvec(__v, i->bvec, __bi, __start) { \ if (!__v.bv_len) \ continue; \ (void)(STEP); \ } \ } #define iterate_all_kinds(i, n, v, I, B, K) { \ if (likely(n)) { \ size_t skip = i->iov_offset; \ if (unlikely(i->type & ITER_BVEC)) { \ struct bio_vec v; \ struct bvec_iter __bi; \ iterate_bvec(i, n, v, __bi, skip, (B)) \ } else if (unlikely(i->type & ITER_KVEC)) { \ const struct kvec *kvec; \ struct kvec v; \ iterate_kvec(i, n, v, kvec, skip, (K)) \ } else if (unlikely(i->type & ITER_DISCARD)) { \ } else { \ const struct iovec *iov; \ struct iovec v; \ iterate_iovec(i, n, v, iov, skip, (I)) \ } \ } \ } #define iterate_and_advance(i, n, v, I, B, K) { \ if (unlikely(i->count < n)) \ n = i->count; \ if (i->count) { \ size_t skip = i->iov_offset; \ if (unlikely(i->type & ITER_BVEC)) { \ const struct bio_vec *bvec = i->bvec; \ struct bio_vec v; \ struct bvec_iter __bi; \ iterate_bvec(i, n, v, __bi, skip, (B)) \ i->bvec = __bvec_iter_bvec(i->bvec, __bi); \ i->nr_segs -= i->bvec - bvec; \ skip = __bi.bi_bvec_done; \ } else if (unlikely(i->type & ITER_KVEC)) { \ const struct kvec *kvec; \ struct kvec v; \ iterate_kvec(i, n, v, kvec, skip, (K)) \ if (skip == kvec->iov_len) { \ kvec++; \ skip = 0; \ } \ i->nr_segs -= kvec - i->kvec; \ i->kvec = kvec; \ } else if (unlikely(i->type & ITER_DISCARD)) { \ skip += n; \ } else { \ const struct iovec *iov; \ struct iovec v; \ iterate_iovec(i, n, v, iov, skip, (I)) \ if (skip == iov->iov_len) { \ iov++; \ skip = 0; \ } \ i->nr_segs -= iov - i->iov; \ i->iov = iov; \ } \ i->count -= n; \ i->iov_offset = skip; \ } \ } static int copyout(void __user *to, const void *from, size_t n) { if (access_ok(to, n)) { kasan_check_read(from, n); n = raw_copy_to_user(to, from, n); } return n; } static int copyin(void *to, const void __user *from, size_t n) { if (access_ok(from, n)) { kasan_check_write(to, n); n = raw_copy_from_user(to, from, n); } return n; } static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t skip, copy, left, wanted; const struct iovec *iov; char __user *buf; void *kaddr, *from; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; might_fault(); wanted = bytes; iov = i->iov; skip = i->iov_offset; buf = iov->iov_base + skip; copy = min(bytes, iov->iov_len - skip); if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) { kaddr = kmap_atomic(page); from = kaddr + offset; /* first chunk, usually the only one */ left = copyout(buf, from, copy); copy -= left; skip += copy; from += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyout(buf, from, copy); copy -= left; skip = copy; from += copy; bytes -= copy; } if (likely(!bytes)) { kunmap_atomic(kaddr); goto done; } offset = from - kaddr; buf += copy; kunmap_atomic(kaddr); copy = min(bytes, iov->iov_len - skip); } /* Too bad - revert to non-atomic kmap */ kaddr = kmap(page); from = kaddr + offset; left = copyout(buf, from, copy); copy -= left; skip += copy; from += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyout(buf, from, copy); copy -= left; skip = copy; from += copy; bytes -= copy; } kunmap(page); done: if (skip == iov->iov_len) { iov++; skip = 0; } i->count -= wanted - bytes; i->nr_segs -= iov - i->iov; i->iov = iov; i->iov_offset = skip; return wanted - bytes; } static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { size_t skip, copy, left, wanted; const struct iovec *iov; char __user *buf; void *kaddr, *to; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; might_fault(); wanted = bytes; iov = i->iov; skip = i->iov_offset; buf = iov->iov_base + skip; copy = min(bytes, iov->iov_len - skip); if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) { kaddr = kmap_atomic(page); to = kaddr + offset; /* first chunk, usually the only one */ left = copyin(to, buf, copy); copy -= left; skip += copy; to += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyin(to, buf, copy); copy -= left; skip = copy; to += copy; bytes -= copy; } if (likely(!bytes)) { kunmap_atomic(kaddr); goto done; } offset = to - kaddr; buf += copy; kunmap_atomic(kaddr); copy = min(bytes, iov->iov_len - skip); } /* Too bad - revert to non-atomic kmap */ kaddr = kmap(page); to = kaddr + offset; left = copyin(to, buf, copy); copy -= left; skip += copy; to += copy; bytes -= copy; while (unlikely(!left && bytes)) { iov++; buf = iov->iov_base; copy = min(bytes, iov->iov_len); left = copyin(to, buf, copy); copy -= left; skip = copy; to += copy; bytes -= copy; } kunmap(page); done: if (skip == iov->iov_len) { iov++; skip = 0; } i->count -= wanted - bytes; i->nr_segs -= iov - i->iov; i->iov = iov; i->iov_offset = skip; return wanted - bytes; } #ifdef PIPE_PARANOIA static bool sanity(const struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; int idx = i->idx; int next = pipe->curbuf + pipe->nrbufs; if (i->iov_offset) { struct pipe_buffer *p; if (unlikely(!pipe->nrbufs)) goto Bad; // pipe must be non-empty if (unlikely(idx != ((next - 1) & (pipe->buffers - 1)))) goto Bad; // must be at the last buffer... p = &pipe->bufs[idx]; if (unlikely(p->offset + p->len != i->iov_offset)) goto Bad; // ... at the end of segment } else { if (idx != (next & (pipe->buffers - 1))) goto Bad; // must be right after the last buffer } return true; Bad: printk(KERN_ERR "idx = %d, offset = %zd\n", i->idx, i->iov_offset); printk(KERN_ERR "curbuf = %d, nrbufs = %d, buffers = %d\n", pipe->curbuf, pipe->nrbufs, pipe->buffers); for (idx = 0; idx < pipe->buffers; idx++) printk(KERN_ERR "[%p %p %d %d]\n", pipe->bufs[idx].ops, pipe->bufs[idx].page, pipe->bufs[idx].offset, pipe->bufs[idx].len); WARN_ON(1); return false; } #else #define sanity(i) true #endif static inline int next_idx(int idx, struct pipe_inode_info *pipe) { return (idx + 1) & (pipe->buffers - 1); } static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; struct pipe_buffer *buf; size_t off; int idx; if (unlikely(bytes > i->count)) bytes = i->count; if (unlikely(!bytes)) return 0; if (!sanity(i)) return 0; off = i->iov_offset; idx = i->idx; buf = &pipe->bufs[idx]; if (off) { if (offset == off && buf->page == page) { /* merge with the last one */ buf->len += bytes; i->iov_offset += bytes; goto out; } idx = next_idx(idx, pipe); buf = &pipe->bufs[idx]; } if (idx == pipe->curbuf && pipe->nrbufs) return 0; pipe->nrbufs++; buf->ops = &page_cache_pipe_buf_ops; get_page(buf->page = page); buf->offset = offset; buf->len = bytes; i->iov_offset = offset + bytes; i->idx = idx; out: i->count -= bytes; return bytes; } /* * Fault in one or more iovecs of the given iov_iter, to a maximum length of * bytes. For each iovec, fault in each page that constitutes the iovec. * * Return 0 on success, or non-zero if the memory could not be accessed (i.e. * because it is an invalid address). */ int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) { size_t skip = i->iov_offset; const struct iovec *iov; int err; struct iovec v; if (!(i->type & (ITER_BVEC|ITER_KVEC))) { iterate_iovec(i, bytes, v, iov, skip, ({ err = fault_in_pages_readable(v.iov_base, v.iov_len); if (unlikely(err)) return err; 0;})) } return 0; } EXPORT_SYMBOL(iov_iter_fault_in_readable); void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); direction &= READ | WRITE; /* It will get better. Eventually... */ if (uaccess_kernel()) { i->type = ITER_KVEC | direction; i->kvec = (struct kvec *)iov; } else { i->type = ITER_IOVEC | direction; i->iov = iov; } i->nr_segs = nr_segs; i->iov_offset = 0; i->count = count; } EXPORT_SYMBOL(iov_iter_init); static void memcpy_from_page(char *to, struct page *page, size_t offset, size_t len) { char *from = kmap_atomic(page); memcpy(to, from + offset, len); kunmap_atomic(from); } static void memcpy_to_page(struct page *page, size_t offset, const char *from, size_t len) { char *to = kmap_atomic(page); memcpy(to + offset, from, len); kunmap_atomic(to); } static void memzero_page(struct page *page, size_t offset, size_t len) { char *addr = kmap_atomic(page); memset(addr + offset, 0, len); kunmap_atomic(addr); } static inline bool allocated(struct pipe_buffer *buf) { return buf->ops == &default_pipe_buf_ops; } static inline void data_start(const struct iov_iter *i, int *idxp, size_t *offp) { size_t off = i->iov_offset; int idx = i->idx; if (off && (!allocated(&i->pipe->bufs[idx]) || off == PAGE_SIZE)) { idx = next_idx(idx, i->pipe); off = 0; } *idxp = idx; *offp = off; } static size_t push_pipe(struct iov_iter *i, size_t size, int *idxp, size_t *offp) { struct pipe_inode_info *pipe = i->pipe; size_t off; int idx; ssize_t left; if (unlikely(size > i->count)) size = i->count; if (unlikely(!size)) return 0; left = size; data_start(i, &idx, &off); *idxp = idx; *offp = off; if (off) { left -= PAGE_SIZE - off; if (left <= 0) { pipe->bufs[idx].len += size; return size; } pipe->bufs[idx].len = PAGE_SIZE; idx = next_idx(idx, pipe); } while (idx != pipe->curbuf || !pipe->nrbufs) { struct page *page = alloc_page(GFP_USER); if (!page) break; pipe->nrbufs++; pipe->bufs[idx].ops = &default_pipe_buf_ops; pipe->bufs[idx].page = page; pipe->bufs[idx].offset = 0; if (left <= PAGE_SIZE) { pipe->bufs[idx].len = left; return size; } pipe->bufs[idx].len = PAGE_SIZE; left -= PAGE_SIZE; idx = next_idx(idx, pipe); } return size - left; } static size_t copy_pipe_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; size_t n, off; int idx; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &idx, &off); if (unlikely(!n)) return 0; for ( ; n; idx = next_idx(idx, pipe), off = 0) { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); memcpy_to_page(pipe->bufs[idx].page, off, addr, chunk); i->idx = idx; i->iov_offset = off + chunk; n -= chunk; addr += chunk; } i->count -= bytes; return bytes; } static __wsum csum_and_memcpy(void *to, const void *from, size_t len, __wsum sum, size_t off) { __wsum next = csum_partial_copy_nocheck(from, to, len, 0); return csum_block_add(sum, next, off); } static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; size_t n, r; size_t off = 0; __wsum sum = *csum; int idx; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &idx, &r); if (unlikely(!n)) return 0; for ( ; n; idx = next_idx(idx, pipe), r = 0) { size_t chunk = min_t(size_t, n, PAGE_SIZE - r); char *p = kmap_atomic(pipe->bufs[idx].page); sum = csum_and_memcpy(p + r, addr, chunk, sum, off); kunmap_atomic(p); i->idx = idx; i->iov_offset = r + chunk; n -= chunk; off += chunk; addr += chunk; } i->count -= bytes; *csum = sum; return bytes; } size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i) { const char *from = addr; if (unlikely(iov_iter_is_pipe(i))) return copy_pipe_to_iter(addr, bytes, i); if (iter_is_iovec(i)) might_fault(); iterate_and_advance(i, bytes, v, copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), memcpy_to_page(v.bv_page, v.bv_offset, (from += v.bv_len) - v.bv_len, v.bv_len), memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len) ) return bytes; } EXPORT_SYMBOL(_copy_to_iter); #ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE static int copyout_mcsafe(void __user *to, const void *from, size_t n) { if (access_ok(to, n)) { kasan_check_read(from, n); n = copy_to_user_mcsafe((__force void *) to, from, n); } return n; } static unsigned long memcpy_mcsafe_to_page(struct page *page, size_t offset, const char *from, size_t len) { unsigned long ret; char *to; to = kmap_atomic(page); ret = memcpy_mcsafe(to + offset, from, len); kunmap_atomic(to); return ret; } static size_t copy_pipe_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; size_t n, off, xfer = 0; int idx; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &idx, &off); if (unlikely(!n)) return 0; for ( ; n; idx = next_idx(idx, pipe), off = 0) { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); unsigned long rem; rem = memcpy_mcsafe_to_page(pipe->bufs[idx].page, off, addr, chunk); i->idx = idx; i->iov_offset = off + chunk - rem; xfer += chunk - rem; if (rem) break; n -= chunk; addr += chunk; } i->count -= xfer; return xfer; } /** * _copy_to_iter_mcsafe - copy to user with source-read error exception handling * @addr: source kernel address * @bytes: total transfer length * @iter: destination iterator * * The pmem driver arranges for filesystem-dax to use this facility via * dax_copy_to_iter() for protecting read/write to persistent memory. * Unless / until an architecture can guarantee identical performance * between _copy_to_iter_mcsafe() and _copy_to_iter() it would be a * performance regression to switch more users to the mcsafe version. * * Otherwise, the main differences between this and typical _copy_to_iter(). * * * Typical tail/residue handling after a fault retries the copy * byte-by-byte until the fault happens again. Re-triggering machine * checks is potentially fatal so the implementation uses source * alignment and poison alignment assumptions to avoid re-triggering * hardware exceptions. * * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies. * Compare to copy_to_iter() where only ITER_IOVEC attempts might return * a short copy. * * See MCSAFE_TEST for self-test. */ size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i) { const char *from = addr; unsigned long rem, curr_addr, s_addr = (unsigned long) addr; if (unlikely(iov_iter_is_pipe(i))) return copy_pipe_to_iter_mcsafe(addr, bytes, i); if (iter_is_iovec(i)) might_fault(); iterate_and_advance(i, bytes, v, copyout_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len), ({ rem = memcpy_mcsafe_to_page(v.bv_page, v.bv_offset, (from += v.bv_len) - v.bv_len, v.bv_len); if (rem) { curr_addr = (unsigned long) from; bytes = curr_addr - s_addr - rem; return bytes; } }), ({ rem = memcpy_mcsafe(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len); if (rem) { curr_addr = (unsigned long) from; bytes = curr_addr - s_addr - rem; return bytes; } }) ) return bytes; } EXPORT_SYMBOL_GPL(_copy_to_iter_mcsafe); #endif /* CONFIG_ARCH_HAS_UACCESS_MCSAFE */ size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } if (iter_is_iovec(i)) might_fault(); iterate_and_advance(i, bytes, v, copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) return bytes; } EXPORT_SYMBOL(_copy_from_iter); bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return false; } if (unlikely(i->count < bytes)) return false; if (iter_is_iovec(i)) might_fault(); iterate_all_kinds(i, bytes, v, ({ if (copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)) return false; 0;}), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) iov_iter_advance(i, bytes); return true; } EXPORT_SYMBOL(_copy_from_iter_full); size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, v, __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) return bytes; } EXPORT_SYMBOL(_copy_from_iter_nocache); #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE /** * _copy_from_iter_flushcache - write destination through cpu cache * @addr: destination kernel address * @bytes: total transfer length * @iter: source iterator * * The pmem driver arranges for filesystem-dax to use this facility via * dax_copy_from_iter() for ensuring that writes to persistent memory * are flushed through the CPU cache. It is differentiated from * _copy_from_iter_nocache() in that guarantees all data is flushed for * all iterator types. The _copy_from_iter_nocache() only attempts to * bypass the cache for the ITER_IOVEC case, and on some archs may use * instructions that strand dirty-data in the cache. */ size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, v, __copy_from_user_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) return bytes; } EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache); #endif bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i) { char *to = addr; if (unlikely(iov_iter_is_pipe(i))) { WARN_ON(1); return false; } if (unlikely(i->count < bytes)) return false; iterate_all_kinds(i, bytes, v, ({ if (__copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len)) return false; 0;}), memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) iov_iter_advance(i, bytes); return true; } EXPORT_SYMBOL(_copy_from_iter_full_nocache); static inline bool page_copy_sane(struct page *page, size_t offset, size_t n) { struct page *head; size_t v = n + offset; /* * The general case needs to access the page order in order * to compute the page size. * However, we mostly deal with order-0 pages and thus can * avoid a possible cache line miss for requests that fit all * page orders. */ if (n <= v && v <= PAGE_SIZE) return true; head = compound_head(page); v += (page - head) << PAGE_SHIFT; if (likely(n <= v && v <= (page_size(head)))) return true; WARN_ON(1); return false; } size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { if (unlikely(!page_copy_sane(page, offset, bytes))) return 0; if (i->type & (ITER_BVEC|ITER_KVEC)) { void *kaddr = kmap_atomic(page); size_t wanted = copy_to_iter(kaddr + offset, bytes, i); kunmap_atomic(kaddr); return wanted; } else if (unlikely(iov_iter_is_discard(i))) return bytes; else if (likely(!iov_iter_is_pipe(i))) return copy_page_to_iter_iovec(page, offset, bytes, i); else return copy_page_to_iter_pipe(page, offset, bytes, i); } EXPORT_SYMBOL(copy_page_to_iter); size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes, struct iov_iter *i) { if (unlikely(!page_copy_sane(page, offset, bytes))) return 0; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return 0; } if (i->type & (ITER_BVEC|ITER_KVEC)) { void *kaddr = kmap_atomic(page); size_t wanted = _copy_from_iter(kaddr + offset, bytes, i); kunmap_atomic(kaddr); return wanted; } else return copy_page_from_iter_iovec(page, offset, bytes, i); } EXPORT_SYMBOL(copy_page_from_iter); static size_t pipe_zero(size_t bytes, struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; size_t n, off; int idx; if (!sanity(i)) return 0; bytes = n = push_pipe(i, bytes, &idx, &off); if (unlikely(!n)) return 0; for ( ; n; idx = next_idx(idx, pipe), off = 0) { size_t chunk = min_t(size_t, n, PAGE_SIZE - off); memzero_page(pipe->bufs[idx].page, off, chunk); i->idx = idx; i->iov_offset = off + chunk; n -= chunk; } i->count -= bytes; return bytes; } size_t iov_iter_zero(size_t bytes, struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) return pipe_zero(bytes, i); iterate_and_advance(i, bytes, v, clear_user(v.iov_base, v.iov_len), memzero_page(v.bv_page, v.bv_offset, v.bv_len), memset(v.iov_base, 0, v.iov_len) ) return bytes; } EXPORT_SYMBOL(iov_iter_zero); size_t iov_iter_copy_from_user_atomic(struct page *page, struct iov_iter *i, unsigned long offset, size_t bytes) { char *kaddr = kmap_atomic(page), *p = kaddr + offset; if (unlikely(!page_copy_sane(page, offset, bytes))) { kunmap_atomic(kaddr); return 0; } if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { kunmap_atomic(kaddr); WARN_ON(1); return 0; } iterate_all_kinds(i, bytes, v, copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len), memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page, v.bv_offset, v.bv_len), memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len) ) kunmap_atomic(kaddr); return bytes; } EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); static inline void pipe_truncate(struct iov_iter *i) { struct pipe_inode_info *pipe = i->pipe; if (pipe->nrbufs) { size_t off = i->iov_offset; int idx = i->idx; int nrbufs = (idx - pipe->curbuf) & (pipe->buffers - 1); if (off) { pipe->bufs[idx].len = off - pipe->bufs[idx].offset; idx = next_idx(idx, pipe); nrbufs++; } while (pipe->nrbufs > nrbufs) { pipe_buf_release(pipe, &pipe->bufs[idx]); idx = next_idx(idx, pipe); pipe->nrbufs--; } } } static void pipe_advance(struct iov_iter *i, size_t size) { struct pipe_inode_info *pipe = i->pipe; if (unlikely(i->count < size)) size = i->count; if (size) { struct pipe_buffer *buf; size_t off = i->iov_offset, left = size; int idx = i->idx; if (off) /* make it relative to the beginning of buffer */ left += off - pipe->bufs[idx].offset; while (1) { buf = &pipe->bufs[idx]; if (left <= buf->len) break; left -= buf->len; idx = next_idx(idx, pipe); } i->idx = idx; i->iov_offset = buf->offset + left; } i->count -= size; /* ... and discard everything past that point */ pipe_truncate(i); } void iov_iter_advance(struct iov_iter *i, size_t size) { if (unlikely(iov_iter_is_pipe(i))) { pipe_advance(i, size); return; } if (unlikely(iov_iter_is_discard(i))) { i->count -= size; return; } iterate_and_advance(i, size, v, 0, 0, 0) } EXPORT_SYMBOL(iov_iter_advance); void iov_iter_revert(struct iov_iter *i, size_t unroll) { if (!unroll) return; if (WARN_ON(unroll > MAX_RW_COUNT)) return; i->count += unroll; if (unlikely(iov_iter_is_pipe(i))) { struct pipe_inode_info *pipe = i->pipe; int idx = i->idx; size_t off = i->iov_offset; while (1) { size_t n = off - pipe->bufs[idx].offset; if (unroll < n) { off -= unroll; break; } unroll -= n; if (!unroll && idx == i->start_idx) { off = 0; break; } if (!idx--) idx = pipe->buffers - 1; off = pipe->bufs[idx].offset + pipe->bufs[idx].len; } i->iov_offset = off; i->idx = idx; pipe_truncate(i); return; } if (unlikely(iov_iter_is_discard(i))) return; if (unroll <= i->iov_offset) { i->iov_offset -= unroll; return; } unroll -= i->iov_offset; if (iov_iter_is_bvec(i)) { const struct bio_vec *bvec = i->bvec; while (1) { size_t n = (--bvec)->bv_len; i->nr_segs++; if (unroll <= n) { i->bvec = bvec; i->iov_offset = n - unroll; return; } unroll -= n; } } else { /* same logics for iovec and kvec */ const struct iovec *iov = i->iov; while (1) { size_t n = (--iov)->iov_len; i->nr_segs++; if (unroll <= n) { i->iov = iov; i->iov_offset = n - unroll; return; } unroll -= n; } } } EXPORT_SYMBOL(iov_iter_revert); /* * Return the count of just the current iov_iter segment. */ size_t iov_iter_single_seg_count(const struct iov_iter *i) { if (unlikely(iov_iter_is_pipe(i))) return i->count; // it is a silly place, anyway if (i->nr_segs == 1) return i->count; if (unlikely(iov_iter_is_discard(i))) return i->count; else if (iov_iter_is_bvec(i)) return min(i->count, i->bvec->bv_len - i->iov_offset); else return min(i->count, i->iov->iov_len - i->iov_offset); } EXPORT_SYMBOL(iov_iter_single_seg_count); void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); i->type = ITER_KVEC | (direction & (READ | WRITE)); i->kvec = kvec; i->nr_segs = nr_segs; i->iov_offset = 0; i->count = count; } EXPORT_SYMBOL(iov_iter_kvec); void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec, unsigned long nr_segs, size_t count) { WARN_ON(direction & ~(READ | WRITE)); i->type = ITER_BVEC | (direction & (READ | WRITE)); i->bvec = bvec; i->nr_segs = nr_segs; i->iov_offset = 0; i->count = count; } EXPORT_SYMBOL(iov_iter_bvec); void iov_iter_pipe(struct iov_iter *i, unsigned int direction, struct pipe_inode_info *pipe, size_t count) { BUG_ON(direction != READ); WARN_ON(pipe->nrbufs == pipe->buffers); i->type = ITER_PIPE | READ; i->pipe = pipe; i->idx = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1); i->iov_offset = 0; i->count = count; i->start_idx = i->idx; } EXPORT_SYMBOL(iov_iter_pipe); /** * iov_iter_discard - Initialise an I/O iterator that discards data * @i: The iterator to initialise. * @direction: The direction of the transfer. * @count: The size of the I/O buffer in bytes. * * Set up an I/O iterator that just discards everything that's written to it. * It's only available as a READ iterator. */ void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count) { BUG_ON(direction != READ); i->type = ITER_DISCARD | READ; i->count = count; i->iov_offset = 0; } EXPORT_SYMBOL(iov_iter_discard); unsigned long iov_iter_alignment(const struct iov_iter *i) { unsigned long res = 0; size_t size = i->count; if (unlikely(iov_iter_is_pipe(i))) { if (size && i->iov_offset && allocated(&i->pipe->bufs[i->idx])) return size | i->iov_offset; return size; } iterate_all_kinds(i, size, v, (res |= (unsigned long)v.iov_base | v.iov_len, 0), res |= v.bv_offset | v.bv_len, res |= (unsigned long)v.iov_base | v.iov_len ) return res; } EXPORT_SYMBOL(iov_iter_alignment); unsigned long iov_iter_gap_alignment(const struct iov_iter *i) { unsigned long res = 0; size_t size = i->count; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return ~0U; } iterate_all_kinds(i, size, v, (res |= (!res ? 0 : (unsigned long)v.iov_base) | (size != v.iov_len ? size : 0), 0), (res |= (!res ? 0 : (unsigned long)v.bv_offset) | (size != v.bv_len ? size : 0)), (res |= (!res ? 0 : (unsigned long)v.iov_base) | (size != v.iov_len ? size : 0)) ); return res; } EXPORT_SYMBOL(iov_iter_gap_alignment); static inline ssize_t __pipe_get_pages(struct iov_iter *i, size_t maxsize, struct page **pages, int idx, size_t *start) { struct pipe_inode_info *pipe = i->pipe; ssize_t n = push_pipe(i, maxsize, &idx, start); if (!n) return -EFAULT; maxsize = n; n += *start; while (n > 0) { get_page(*pages++ = pipe->bufs[idx].page); idx = next_idx(idx, pipe); n -= PAGE_SIZE; } return maxsize; } static ssize_t pipe_get_pages(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start) { unsigned npages; size_t capacity; int idx; if (!maxsize) return 0; if (!sanity(i)) return -EFAULT; data_start(i, &idx, start); /* some of this one + all after this one */ npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; capacity = min(npages,maxpages) * PAGE_SIZE - *start; return __pipe_get_pages(i, min(maxsize, capacity), pages, idx, start); } ssize_t iov_iter_get_pages(struct iov_iter *i, struct page **pages, size_t maxsize, unsigned maxpages, size_t *start) { if (maxsize > i->count) maxsize = i->count; if (unlikely(iov_iter_is_pipe(i))) return pipe_get_pages(i, pages, maxsize, maxpages, start); if (unlikely(iov_iter_is_discard(i))) return -EFAULT; iterate_all_kinds(i, maxsize, v, ({ unsigned long addr = (unsigned long)v.iov_base; size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); int n; int res; if (len > maxpages * PAGE_SIZE) len = maxpages * PAGE_SIZE; addr &= ~(PAGE_SIZE - 1); n = DIV_ROUND_UP(len, PAGE_SIZE); res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, pages); if (unlikely(res < 0)) return res; return (res == n ? len : res * PAGE_SIZE) - *start; 0;}),({ /* can't be more than PAGE_SIZE */ *start = v.bv_offset; get_page(*pages = v.bv_page); return v.bv_len; }),({ return -EFAULT; }) ) return 0; } EXPORT_SYMBOL(iov_iter_get_pages); static struct page **get_pages_array(size_t n) { return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL); } static ssize_t pipe_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start) { struct page **p; ssize_t n; int idx; int npages; if (!maxsize) return 0; if (!sanity(i)) return -EFAULT; data_start(i, &idx, start); /* some of this one + all after this one */ npages = ((i->pipe->curbuf - idx - 1) & (i->pipe->buffers - 1)) + 1; n = npages * PAGE_SIZE - *start; if (maxsize > n) maxsize = n; else npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE); p = get_pages_array(npages); if (!p) return -ENOMEM; n = __pipe_get_pages(i, maxsize, p, idx, start); if (n > 0) *pages = p; else kvfree(p); return n; } ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, struct page ***pages, size_t maxsize, size_t *start) { struct page **p; if (maxsize > i->count) maxsize = i->count; if (unlikely(iov_iter_is_pipe(i))) return pipe_get_pages_alloc(i, pages, maxsize, start); if (unlikely(iov_iter_is_discard(i))) return -EFAULT; iterate_all_kinds(i, maxsize, v, ({ unsigned long addr = (unsigned long)v.iov_base; size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1)); int n; int res; addr &= ~(PAGE_SIZE - 1); n = DIV_ROUND_UP(len, PAGE_SIZE); p = get_pages_array(n); if (!p) return -ENOMEM; res = get_user_pages_fast(addr, n, iov_iter_rw(i) != WRITE ? FOLL_WRITE : 0, p); if (unlikely(res < 0)) { kvfree(p); return res; } *pages = p; return (res == n ? len : res * PAGE_SIZE) - *start; 0;}),({ /* can't be more than PAGE_SIZE */ *start = v.bv_offset; *pages = p = get_pages_array(1); if (!p) return -ENOMEM; get_page(*p = v.bv_page); return v.bv_len; }),({ return -EFAULT; }) ) return 0; } EXPORT_SYMBOL(iov_iter_get_pages_alloc); size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) { char *to = addr; __wsum sum, next; size_t off = 0; sum = *csum; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return 0; } iterate_and_advance(i, bytes, v, ({ int err = 0; next = csum_and_copy_from_user(v.iov_base, (to += v.iov_len) - v.iov_len, v.iov_len, 0, &err); if (!err) { sum = csum_block_add(sum, next, off); off += v.iov_len; } err ? v.iov_len : 0; }), ({ char *p = kmap_atomic(v.bv_page); sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, p + v.bv_offset, v.bv_len, sum, off); kunmap_atomic(p); off += v.bv_len; }),({ sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len, sum, off); off += v.iov_len; }) ) *csum = sum; return bytes; } EXPORT_SYMBOL(csum_and_copy_from_iter); bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i) { char *to = addr; __wsum sum, next; size_t off = 0; sum = *csum; if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) { WARN_ON(1); return false; } if (unlikely(i->count < bytes)) return false; iterate_all_kinds(i, bytes, v, ({ int err = 0; next = csum_and_copy_from_user(v.iov_base, (to += v.iov_len) - v.iov_len, v.iov_len, 0, &err); if (err) return false; sum = csum_block_add(sum, next, off); off += v.iov_len; 0; }), ({ char *p = kmap_atomic(v.bv_page); sum = csum_and_memcpy((to += v.bv_len) - v.bv_len, p + v.bv_offset, v.bv_len, sum, off); kunmap_atomic(p); off += v.bv_len; }),({ sum = csum_and_memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len, sum, off); off += v.iov_len; }) ) *csum = sum; iov_iter_advance(i, bytes); return true; } EXPORT_SYMBOL(csum_and_copy_from_iter_full); size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump, struct iov_iter *i) { const char *from = addr; __wsum *csum = csump; __wsum sum, next; size_t off = 0; if (unlikely(iov_iter_is_pipe(i))) return csum_and_copy_to_pipe_iter(addr, bytes, csum, i); sum = *csum; if (unlikely(iov_iter_is_discard(i))) { WARN_ON(1); /* for now */ return 0; } iterate_and_advance(i, bytes, v, ({ int err = 0; next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len, v.iov_base, v.iov_len, 0, &err); if (!err) { sum = csum_block_add(sum, next, off); off += v.iov_len; } err ? v.iov_len : 0; }), ({ char *p = kmap_atomic(v.bv_page); sum = csum_and_memcpy(p + v.bv_offset, (from += v.bv_len) - v.bv_len, v.bv_len, sum, off); kunmap_atomic(p); off += v.bv_len; }),({ sum = csum_and_memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len, sum, off); off += v.iov_len; }) ) *csum = sum; return bytes; } EXPORT_SYMBOL(csum_and_copy_to_iter); size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp, struct iov_iter *i) { #ifdef CONFIG_CRYPTO struct ahash_request *hash = hashp; struct scatterlist sg; size_t copied; copied = copy_to_iter(addr, bytes, i); sg_init_one(&sg, addr, copied); ahash_request_set_crypt(hash, &sg, NULL, copied); crypto_ahash_update(hash); return copied; #else return 0; #endif } EXPORT_SYMBOL(hash_and_copy_to_iter); int iov_iter_npages(const struct iov_iter *i, int maxpages) { size_t size = i->count; int npages = 0; if (!size) return 0; if (unlikely(iov_iter_is_discard(i))) return 0; if (unlikely(iov_iter_is_pipe(i))) { struct pipe_inode_info *pipe = i->pipe; size_t off; int idx; if (!sanity(i)) return 0; data_start(i, &idx, &off); /* some of this one + all after this one */ npages = ((pipe->curbuf - idx - 1) & (pipe->buffers - 1)) + 1; if (npages >= maxpages) return maxpages; } else iterate_all_kinds(i, size, v, ({ unsigned long p = (unsigned long)v.iov_base; npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) - p / PAGE_SIZE; if (npages >= maxpages) return maxpages; 0;}),({ npages++; if (npages >= maxpages) return maxpages; }),({ unsigned long p = (unsigned long)v.iov_base; npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE) - p / PAGE_SIZE; if (npages >= maxpages) return maxpages; }) ) return npages; } EXPORT_SYMBOL(iov_iter_npages); const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags) { *new = *old; if (unlikely(iov_iter_is_pipe(new))) { WARN_ON(1); return NULL; } if (unlikely(iov_iter_is_discard(new))) return NULL; if (iov_iter_is_bvec(new)) return new->bvec = kmemdup(new->bvec, new->nr_segs * sizeof(struct bio_vec), flags); else /* iovec and kvec have identical layout */ return new->iov = kmemdup(new->iov, new->nr_segs * sizeof(struct iovec), flags); } EXPORT_SYMBOL(dup_iter); /** * import_iovec() - Copy an array of &struct iovec from userspace * into the kernel, check that it is valid, and initialize a new * &struct iov_iter iterator to access it. * * @type: One of %READ or %WRITE. * @uvector: Pointer to the userspace array. * @nr_segs: Number of elements in userspace array. * @fast_segs: Number of elements in @iov. * @iov: (input and output parameter) Pointer to pointer to (usually small * on-stack) kernel array. * @i: Pointer to iterator that will be initialized on success. * * If the array pointed to by *@iov is large enough to hold all @nr_segs, * then this function places %NULL in *@iov on return. Otherwise, a new * array will be allocated and the result placed in *@iov. This means that * the caller may call kfree() on *@iov regardless of whether the small * on-stack array was used or not (and regardless of whether this function * returns an error or not). * * Return: Negative error code on error, bytes imported on success */ ssize_t import_iovec(int type, const struct iovec __user * uvector, unsigned nr_segs, unsigned fast_segs, struct iovec **iov, struct iov_iter *i) { ssize_t n; struct iovec *p; n = rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, *iov, &p); if (n < 0) { if (p != *iov) kfree(p); *iov = NULL; return n; } iov_iter_init(i, type, p, nr_segs, n); *iov = p == *iov ? NULL : p; return n; } EXPORT_SYMBOL(import_iovec); #ifdef CONFIG_COMPAT #include <linux/compat.h> ssize_t compat_import_iovec(int type, const struct compat_iovec __user * uvector, unsigned nr_segs, unsigned fast_segs, struct iovec **iov, struct iov_iter *i) { ssize_t n; struct iovec *p; n = compat_rw_copy_check_uvector(type, uvector, nr_segs, fast_segs, *iov, &p); if (n < 0) { if (p != *iov) kfree(p); *iov = NULL; return n; } iov_iter_init(i, type, p, nr_segs, n); *iov = p == *iov ? NULL : p; return n; } #endif int import_single_range(int rw, void __user *buf, size_t len, struct iovec *iov, struct iov_iter *i) { if (len > MAX_RW_COUNT) len = MAX_RW_COUNT; if (unlikely(!access_ok(buf, len))) return -EFAULT; iov->iov_base = buf; iov->iov_len = len; iov_iter_init(i, rw, iov, 1, len); return 0; } EXPORT_SYMBOL(import_single_range); int iov_iter_for_each_range(struct iov_iter *i, size_t bytes, int (*f)(struct kvec *vec, void *context), void *context) { struct kvec w; int err = -EINVAL; if (!bytes) return 0; iterate_all_kinds(i, bytes, v, -EINVAL, ({ w.iov_base = kmap(v.bv_page) + v.bv_offset; w.iov_len = v.bv_len; err = f(&w, context); kunmap(v.bv_page); err;}), ({ w = v; err = f(&w, context);}) ) return err; } EXPORT_SYMBOL(iov_iter_for_each_range);