// SPDX-License-Identifier: GPL-2.0 #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "io_uring.h" #include "opdef.h" #include "kbuf.h" #include "alloc_cache.h" #include "rsrc.h" #include "poll.h" #include "rw.h" struct io_rw { /* NOTE: kiocb has the file as the first member, so don't do it here */ struct kiocb kiocb; u64 addr; u32 len; rwf_t flags; }; static inline bool io_file_supports_nowait(struct io_kiocb *req) { return req->flags & REQ_F_SUPPORT_NOWAIT; } #ifdef CONFIG_COMPAT static int io_iov_compat_buffer_select_prep(struct io_rw *rw) { struct compat_iovec __user *uiov; compat_ssize_t clen; uiov = u64_to_user_ptr(rw->addr); if (!access_ok(uiov, sizeof(*uiov))) return -EFAULT; if (__get_user(clen, &uiov->iov_len)) return -EFAULT; if (clen < 0) return -EINVAL; rw->len = clen; return 0; } #endif static int io_iov_buffer_select_prep(struct io_kiocb *req) { struct iovec __user *uiov; struct iovec iov; struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); if (rw->len != 1) return -EINVAL; #ifdef CONFIG_COMPAT if (req->ctx->compat) return io_iov_compat_buffer_select_prep(rw); #endif uiov = u64_to_user_ptr(rw->addr); if (copy_from_user(&iov, uiov, sizeof(*uiov))) return -EFAULT; rw->len = iov.iov_len; return 0; } static int __io_import_iovec(int ddir, struct io_kiocb *req, struct io_async_rw *io, unsigned int issue_flags) { const struct io_issue_def *def = &io_issue_defs[req->opcode]; struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); struct iovec *iov; void __user *buf; int nr_segs, ret; size_t sqe_len; buf = u64_to_user_ptr(rw->addr); sqe_len = rw->len; if (!def->vectored || req->flags & REQ_F_BUFFER_SELECT) { if (io_do_buffer_select(req)) { buf = io_buffer_select(req, &sqe_len, issue_flags); if (!buf) return -ENOBUFS; rw->addr = (unsigned long) buf; rw->len = sqe_len; } return import_ubuf(ddir, buf, sqe_len, &io->iter); } if (io->free_iovec) { nr_segs = io->free_iov_nr; iov = io->free_iovec; } else { iov = &io->fast_iov; nr_segs = 1; } ret = __import_iovec(ddir, buf, sqe_len, nr_segs, &iov, &io->iter, req->ctx->compat); if (unlikely(ret < 0)) return ret; if (iov) { req->flags |= REQ_F_NEED_CLEANUP; io->free_iov_nr = io->iter.nr_segs; kfree(io->free_iovec); io->free_iovec = iov; } return 0; } static inline int io_import_iovec(int rw, struct io_kiocb *req, struct io_async_rw *io, unsigned int issue_flags) { int ret; ret = __io_import_iovec(rw, req, io, issue_flags); if (unlikely(ret < 0)) return ret; iov_iter_save_state(&io->iter, &io->iter_state); return 0; } static void io_rw_iovec_free(struct io_async_rw *rw) { if (rw->free_iovec) { kfree(rw->free_iovec); rw->free_iov_nr = 0; rw->free_iovec = NULL; } } static void io_rw_recycle(struct io_kiocb *req, unsigned int issue_flags) { struct io_async_rw *rw = req->async_data; struct iovec *iov; if (unlikely(issue_flags & IO_URING_F_UNLOCKED)) { io_rw_iovec_free(rw); return; } iov = rw->free_iovec; if (io_alloc_cache_put(&req->ctx->rw_cache, rw)) { if (iov) kasan_mempool_poison_object(iov); req->async_data = NULL; req->flags &= ~REQ_F_ASYNC_DATA; } } static void io_req_rw_cleanup(struct io_kiocb *req, unsigned int issue_flags) { /* * Disable quick recycling for anything that's gone through io-wq. * In theory, this should be fine to cleanup. However, some read or * write iter handling touches the iovec AFTER having called into the * handler, eg to reexpand or revert. This means we can have: * * task io-wq * issue * punt to io-wq * issue * blkdev_write_iter() * ->ki_complete() * io_complete_rw() * queue tw complete * run tw * req_rw_cleanup * iov_iter_count() <- look at iov_iter again * * which can lead to a UAF. This is only possible for io-wq offload * as the cleanup can run in parallel. As io-wq is not the fast path, * just leave cleanup to the end. * * This is really a bug in the core code that does this, any issue * path should assume that a successful (or -EIOCBQUEUED) return can * mean that the underlying data can be gone at any time. But that * should be fixed seperately, and then this check could be killed. */ if (!(req->flags & REQ_F_REFCOUNT)) { req->flags &= ~REQ_F_NEED_CLEANUP; io_rw_recycle(req, issue_flags); } } static int io_rw_alloc_async(struct io_kiocb *req) { struct io_ring_ctx *ctx = req->ctx; struct io_async_rw *rw; rw = io_alloc_cache_get(&ctx->rw_cache); if (rw) { if (rw->free_iovec) { kasan_mempool_unpoison_object(rw->free_iovec, rw->free_iov_nr * sizeof(struct iovec)); req->flags |= REQ_F_NEED_CLEANUP; } req->flags |= REQ_F_ASYNC_DATA; req->async_data = rw; goto done; } if (!io_alloc_async_data(req)) { rw = req->async_data; rw->free_iovec = NULL; rw->free_iov_nr = 0; done: rw->bytes_done = 0; return 0; } return -ENOMEM; } static int io_prep_rw_setup(struct io_kiocb *req, int ddir, bool do_import) { struct io_async_rw *rw; int ret; if (io_rw_alloc_async(req)) return -ENOMEM; if (!do_import || io_do_buffer_select(req)) return 0; rw = req->async_data; ret = io_import_iovec(ddir, req, rw, 0); if (unlikely(ret < 0)) return ret; iov_iter_save_state(&rw->iter, &rw->iter_state); return 0; } static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe, int ddir, bool do_import) { struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); unsigned ioprio; int ret; rw->kiocb.ki_pos = READ_ONCE(sqe->off); /* used for fixed read/write too - just read unconditionally */ req->buf_index = READ_ONCE(sqe->buf_index); ioprio = READ_ONCE(sqe->ioprio); if (ioprio) { ret = ioprio_check_cap(ioprio); if (ret) return ret; rw->kiocb.ki_ioprio = ioprio; } else { rw->kiocb.ki_ioprio = get_current_ioprio(); } rw->kiocb.dio_complete = NULL; rw->addr = READ_ONCE(sqe->addr); rw->len = READ_ONCE(sqe->len); rw->flags = READ_ONCE(sqe->rw_flags); return io_prep_rw_setup(req, ddir, do_import); } int io_prep_read(struct io_kiocb *req, const struct io_uring_sqe *sqe) { return io_prep_rw(req, sqe, ITER_DEST, true); } int io_prep_write(struct io_kiocb *req, const struct io_uring_sqe *sqe) { return io_prep_rw(req, sqe, ITER_SOURCE, true); } static int io_prep_rwv(struct io_kiocb *req, const struct io_uring_sqe *sqe, int ddir) { const bool do_import = !(req->flags & REQ_F_BUFFER_SELECT); int ret; ret = io_prep_rw(req, sqe, ddir, do_import); if (unlikely(ret)) return ret; if (do_import) return 0; /* * Have to do this validation here, as this is in io_read() rw->len * might have chanaged due to buffer selection */ return io_iov_buffer_select_prep(req); } int io_prep_readv(struct io_kiocb *req, const struct io_uring_sqe *sqe) { return io_prep_rwv(req, sqe, ITER_DEST); } int io_prep_writev(struct io_kiocb *req, const struct io_uring_sqe *sqe) { return io_prep_rwv(req, sqe, ITER_SOURCE); } static int io_prep_rw_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe, int ddir) { struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); struct io_ring_ctx *ctx = req->ctx; struct io_async_rw *io; u16 index; int ret; ret = io_prep_rw(req, sqe, ddir, false); if (unlikely(ret)) return ret; if (unlikely(req->buf_index >= ctx->nr_user_bufs)) return -EFAULT; index = array_index_nospec(req->buf_index, ctx->nr_user_bufs); req->imu = ctx->user_bufs[index]; io_req_set_rsrc_node(req, ctx, 0); io = req->async_data; ret = io_import_fixed(ddir, &io->iter, req->imu, rw->addr, rw->len); iov_iter_save_state(&io->iter, &io->iter_state); return ret; } int io_prep_read_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) { return io_prep_rw_fixed(req, sqe, ITER_DEST); } int io_prep_write_fixed(struct io_kiocb *req, const struct io_uring_sqe *sqe) { return io_prep_rw_fixed(req, sqe, ITER_SOURCE); } /* * Multishot read is prepared just like a normal read/write request, only * difference is that we set the MULTISHOT flag. */ int io_read_mshot_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) { struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); int ret; /* must be used with provided buffers */ if (!(req->flags & REQ_F_BUFFER_SELECT)) return -EINVAL; ret = io_prep_rw(req, sqe, ITER_DEST, false); if (unlikely(ret)) return ret; if (rw->addr || rw->len) return -EINVAL; req->flags |= REQ_F_APOLL_MULTISHOT; return 0; } void io_readv_writev_cleanup(struct io_kiocb *req) { io_rw_iovec_free(req->async_data); } static inline loff_t *io_kiocb_update_pos(struct io_kiocb *req) { struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); if (rw->kiocb.ki_pos != -1) return &rw->kiocb.ki_pos; if (!(req->file->f_mode & FMODE_STREAM)) { req->flags |= REQ_F_CUR_POS; rw->kiocb.ki_pos = req->file->f_pos; return &rw->kiocb.ki_pos; } rw->kiocb.ki_pos = 0; return NULL; } #ifdef CONFIG_BLOCK static void io_resubmit_prep(struct io_kiocb *req) { struct io_async_rw *io = req->async_data; iov_iter_restore(&io->iter, &io->iter_state); } static bool io_rw_should_reissue(struct io_kiocb *req) { umode_t mode = file_inode(req->file)->i_mode; struct io_ring_ctx *ctx = req->ctx; if (!S_ISBLK(mode) && !S_ISREG(mode)) return false; if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() && !(ctx->flags & IORING_SETUP_IOPOLL))) return false; /* * If ref is dying, we might be running poll reap from the exit work. * Don't attempt to reissue from that path, just let it fail with * -EAGAIN. */ if (percpu_ref_is_dying(&ctx->refs)) return false; /* * Play it safe and assume not safe to re-import and reissue if we're * not in the original thread group (or in task context). */ if (!same_thread_group(req->task, current) || !in_task()) return false; return true; } #else static void io_resubmit_prep(struct io_kiocb *req) { } static bool io_rw_should_reissue(struct io_kiocb *req) { return false; } #endif static void io_req_end_write(struct io_kiocb *req) { if (req->flags & REQ_F_ISREG) { struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); kiocb_end_write(&rw->kiocb); } } /* * Trigger the notifications after having done some IO, and finish the write * accounting, if any. */ static void io_req_io_end(struct io_kiocb *req) { struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); if (rw->kiocb.ki_flags & IOCB_WRITE) { io_req_end_write(req); fsnotify_modify(req->file); } else { fsnotify_access(req->file); } } static bool __io_complete_rw_common(struct io_kiocb *req, long res) { if (unlikely(res != req->cqe.res)) { if ((res == -EAGAIN || res == -EOPNOTSUPP) && io_rw_should_reissue(req)) { /* * Reissue will start accounting again, finish the * current cycle. */ io_req_io_end(req); req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; return true; } req_set_fail(req); req->cqe.res = res; } return false; } static inline int io_fixup_rw_res(struct io_kiocb *req, long res) { struct io_async_rw *io = req->async_data; /* add previously done IO, if any */ if (req_has_async_data(req) && io->bytes_done > 0) { if (res < 0) res = io->bytes_done; else res += io->bytes_done; } return res; } void io_req_rw_complete(struct io_kiocb *req, struct io_tw_state *ts) { struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); struct kiocb *kiocb = &rw->kiocb; if ((kiocb->ki_flags & IOCB_DIO_CALLER_COMP) && kiocb->dio_complete) { long res = kiocb->dio_complete(rw->kiocb.private); io_req_set_res(req, io_fixup_rw_res(req, res), 0); } io_req_io_end(req); if (req->flags & (REQ_F_BUFFER_SELECTED|REQ_F_BUFFER_RING)) req->cqe.flags |= io_put_kbuf(req, 0); io_req_rw_cleanup(req, 0); io_req_task_complete(req, ts); } static void io_complete_rw(struct kiocb *kiocb, long res) { struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); struct io_kiocb *req = cmd_to_io_kiocb(rw); if (!kiocb->dio_complete || !(kiocb->ki_flags & IOCB_DIO_CALLER_COMP)) { if (__io_complete_rw_common(req, res)) return; io_req_set_res(req, io_fixup_rw_res(req, res), 0); } req->io_task_work.func = io_req_rw_complete; __io_req_task_work_add(req, IOU_F_TWQ_LAZY_WAKE); } static void io_complete_rw_iopoll(struct kiocb *kiocb, long res) { struct io_rw *rw = container_of(kiocb, struct io_rw, kiocb); struct io_kiocb *req = cmd_to_io_kiocb(rw); if (kiocb->ki_flags & IOCB_WRITE) io_req_end_write(req); if (unlikely(res != req->cqe.res)) { if (res == -EAGAIN && io_rw_should_reissue(req)) { req->flags |= REQ_F_REISSUE | REQ_F_BL_NO_RECYCLE; return; } req->cqe.res = res; } /* order with io_iopoll_complete() checking ->iopoll_completed */ smp_store_release(&req->iopoll_completed, 1); } static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret) { /* IO was queued async, completion will happen later */ if (ret == -EIOCBQUEUED) return; /* transform internal restart error codes */ if (unlikely(ret < 0)) { switch (ret) { case -ERESTARTSYS: case -ERESTARTNOINTR: case -ERESTARTNOHAND: case -ERESTART_RESTARTBLOCK: /* * We can't just restart the syscall, since previously * submitted sqes may already be in progress. Just fail * this IO with EINTR. */ ret = -EINTR; break; } } INDIRECT_CALL_2(kiocb->ki_complete, io_complete_rw_iopoll, io_complete_rw, kiocb, ret); } static int kiocb_done(struct io_kiocb *req, ssize_t ret, unsigned int issue_flags) { struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); unsigned final_ret = io_fixup_rw_res(req, ret); if (ret >= 0 && req->flags & REQ_F_CUR_POS) req->file->f_pos = rw->kiocb.ki_pos; if (ret >= 0 && (rw->kiocb.ki_complete == io_complete_rw)) { if (!__io_complete_rw_common(req, ret)) { /* * Safe to call io_end from here as we're inline * from the submission path. */ io_req_io_end(req); io_req_set_res(req, final_ret, io_put_kbuf(req, issue_flags)); io_req_rw_cleanup(req, issue_flags); return IOU_OK; } } else { io_rw_done(&rw->kiocb, ret); } if (req->flags & REQ_F_REISSUE) { req->flags &= ~REQ_F_REISSUE; io_resubmit_prep(req); return -EAGAIN; } return IOU_ISSUE_SKIP_COMPLETE; } static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb) { return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos; } /* * For files that don't have ->read_iter() and ->write_iter(), handle them * by looping over ->read() or ->write() manually. */ static ssize_t loop_rw_iter(int ddir, struct io_rw *rw, struct iov_iter *iter) { struct kiocb *kiocb = &rw->kiocb; struct file *file = kiocb->ki_filp; ssize_t ret = 0; loff_t *ppos; /* * Don't support polled IO through this interface, and we can't * support non-blocking either. For the latter, this just causes * the kiocb to be handled from an async context. */ if (kiocb->ki_flags & IOCB_HIPRI) return -EOPNOTSUPP; if ((kiocb->ki_flags & IOCB_NOWAIT) && !(kiocb->ki_filp->f_flags & O_NONBLOCK)) return -EAGAIN; ppos = io_kiocb_ppos(kiocb); while (iov_iter_count(iter)) { void __user *addr; size_t len; ssize_t nr; if (iter_is_ubuf(iter)) { addr = iter->ubuf + iter->iov_offset; len = iov_iter_count(iter); } else if (!iov_iter_is_bvec(iter)) { addr = iter_iov_addr(iter); len = iter_iov_len(iter); } else { addr = u64_to_user_ptr(rw->addr); len = rw->len; } if (ddir == READ) nr = file->f_op->read(file, addr, len, ppos); else nr = file->f_op->write(file, addr, len, ppos); if (nr < 0) { if (!ret) ret = nr; break; } ret += nr; if (!iov_iter_is_bvec(iter)) { iov_iter_advance(iter, nr); } else { rw->addr += nr; rw->len -= nr; if (!rw->len) break; } if (nr != len) break; } return ret; } /* * This is our waitqueue callback handler, registered through __folio_lock_async() * when we initially tried to do the IO with the iocb armed our waitqueue. * This gets called when the page is unlocked, and we generally expect that to * happen when the page IO is completed and the page is now uptodate. This will * queue a task_work based retry of the operation, attempting to copy the data * again. If the latter fails because the page was NOT uptodate, then we will * do a thread based blocking retry of the operation. That's the unexpected * slow path. */ static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode, int sync, void *arg) { struct wait_page_queue *wpq; struct io_kiocb *req = wait->private; struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); struct wait_page_key *key = arg; wpq = container_of(wait, struct wait_page_queue, wait); if (!wake_page_match(wpq, key)) return 0; rw->kiocb.ki_flags &= ~IOCB_WAITQ; list_del_init(&wait->entry); io_req_task_queue(req); return 1; } /* * This controls whether a given IO request should be armed for async page * based retry. If we return false here, the request is handed to the async * worker threads for retry. If we're doing buffered reads on a regular file, * we prepare a private wait_page_queue entry and retry the operation. This * will either succeed because the page is now uptodate and unlocked, or it * will register a callback when the page is unlocked at IO completion. Through * that callback, io_uring uses task_work to setup a retry of the operation. * That retry will attempt the buffered read again. The retry will generally * succeed, or in rare cases where it fails, we then fall back to using the * async worker threads for a blocking retry. */ static bool io_rw_should_retry(struct io_kiocb *req) { struct io_async_rw *io = req->async_data; struct wait_page_queue *wait = &io->wpq; struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); struct kiocb *kiocb = &rw->kiocb; /* never retry for NOWAIT, we just complete with -EAGAIN */ if (req->flags & REQ_F_NOWAIT) return false; /* Only for buffered IO */ if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI)) return false; /* * just use poll if we can, and don't attempt if the fs doesn't * support callback based unlocks */ if (io_file_can_poll(req) || !(req->file->f_mode & FMODE_BUF_RASYNC)) return false; wait->wait.func = io_async_buf_func; wait->wait.private = req; wait->wait.flags = 0; INIT_LIST_HEAD(&wait->wait.entry); kiocb->ki_flags |= IOCB_WAITQ; kiocb->ki_flags &= ~IOCB_NOWAIT; kiocb->ki_waitq = wait; return true; } static inline int io_iter_do_read(struct io_rw *rw, struct iov_iter *iter) { struct file *file = rw->kiocb.ki_filp; if (likely(file->f_op->read_iter)) return call_read_iter(file, &rw->kiocb, iter); else if (file->f_op->read) return loop_rw_iter(READ, rw, iter); else return -EINVAL; } static bool need_complete_io(struct io_kiocb *req) { return req->flags & REQ_F_ISREG || S_ISBLK(file_inode(req->file)->i_mode); } static int io_rw_init_file(struct io_kiocb *req, fmode_t mode) { struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); struct kiocb *kiocb = &rw->kiocb; struct io_ring_ctx *ctx = req->ctx; struct file *file = req->file; int ret; if (unlikely(!(file->f_mode & mode))) return -EBADF; if (!(req->flags & REQ_F_FIXED_FILE)) req->flags |= io_file_get_flags(file); kiocb->ki_flags = file->f_iocb_flags; ret = kiocb_set_rw_flags(kiocb, rw->flags); if (unlikely(ret)) return ret; kiocb->ki_flags |= IOCB_ALLOC_CACHE; /* * If the file is marked O_NONBLOCK, still allow retry for it if it * supports async. Otherwise it's impossible to use O_NONBLOCK files * reliably. If not, or it IOCB_NOWAIT is set, don't retry. */ if ((kiocb->ki_flags & IOCB_NOWAIT) || ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req))) req->flags |= REQ_F_NOWAIT; if (ctx->flags & IORING_SETUP_IOPOLL) { if (!(kiocb->ki_flags & IOCB_DIRECT) || !file->f_op->iopoll) return -EOPNOTSUPP; kiocb->private = NULL; kiocb->ki_flags |= IOCB_HIPRI; kiocb->ki_complete = io_complete_rw_iopoll; req->iopoll_completed = 0; } else { if (kiocb->ki_flags & IOCB_HIPRI) return -EINVAL; kiocb->ki_complete = io_complete_rw; } return 0; } static int __io_read(struct io_kiocb *req, unsigned int issue_flags) { bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); struct io_async_rw *io = req->async_data; struct kiocb *kiocb = &rw->kiocb; ssize_t ret; loff_t *ppos; if (io_do_buffer_select(req)) { ret = io_import_iovec(ITER_DEST, req, io, issue_flags); if (unlikely(ret < 0)) return ret; } ret = io_rw_init_file(req, FMODE_READ); if (unlikely(ret)) return ret; req->cqe.res = iov_iter_count(&io->iter); if (force_nonblock) { /* If the file doesn't support async, just async punt */ if (unlikely(!io_file_supports_nowait(req))) return -EAGAIN; kiocb->ki_flags |= IOCB_NOWAIT; } else { /* Ensure we clear previously set non-block flag */ kiocb->ki_flags &= ~IOCB_NOWAIT; } ppos = io_kiocb_update_pos(req); ret = rw_verify_area(READ, req->file, ppos, req->cqe.res); if (unlikely(ret)) return ret; ret = io_iter_do_read(rw, &io->iter); if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) { req->flags &= ~REQ_F_REISSUE; /* If we can poll, just do that. */ if (io_file_can_poll(req)) return -EAGAIN; /* IOPOLL retry should happen for io-wq threads */ if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL)) goto done; /* no retry on NONBLOCK nor RWF_NOWAIT */ if (req->flags & REQ_F_NOWAIT) goto done; ret = 0; } else if (ret == -EIOCBQUEUED) { return IOU_ISSUE_SKIP_COMPLETE; } else if (ret == req->cqe.res || ret <= 0 || !force_nonblock || (req->flags & REQ_F_NOWAIT) || !need_complete_io(req)) { /* read all, failed, already did sync or don't want to retry */ goto done; } /* * Don't depend on the iter state matching what was consumed, or being * untouched in case of error. Restore it and we'll advance it * manually if we need to. */ iov_iter_restore(&io->iter, &io->iter_state); do { /* * We end up here because of a partial read, either from * above or inside this loop. Advance the iter by the bytes * that were consumed. */ iov_iter_advance(&io->iter, ret); if (!iov_iter_count(&io->iter)) break; io->bytes_done += ret; iov_iter_save_state(&io->iter, &io->iter_state); /* if we can retry, do so with the callbacks armed */ if (!io_rw_should_retry(req)) { kiocb->ki_flags &= ~IOCB_WAITQ; return -EAGAIN; } req->cqe.res = iov_iter_count(&io->iter); /* * Now retry read with the IOCB_WAITQ parts set in the iocb. If * we get -EIOCBQUEUED, then we'll get a notification when the * desired page gets unlocked. We can also get a partial read * here, and if we do, then just retry at the new offset. */ ret = io_iter_do_read(rw, &io->iter); if (ret == -EIOCBQUEUED) return IOU_ISSUE_SKIP_COMPLETE; /* we got some bytes, but not all. retry. */ kiocb->ki_flags &= ~IOCB_WAITQ; iov_iter_restore(&io->iter, &io->iter_state); } while (ret > 0); done: /* it's faster to check here then delegate to kfree */ return ret; } int io_read(struct io_kiocb *req, unsigned int issue_flags) { int ret; ret = __io_read(req, issue_flags); if (ret >= 0) return kiocb_done(req, ret, issue_flags); return ret; } int io_read_mshot(struct io_kiocb *req, unsigned int issue_flags) { struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); unsigned int cflags = 0; int ret; /* * Multishot MUST be used on a pollable file */ if (!io_file_can_poll(req)) return -EBADFD; ret = __io_read(req, issue_flags); /* * If the file doesn't support proper NOWAIT, then disable multishot * and stay in single shot mode. */ if (!io_file_supports_nowait(req)) req->flags &= ~REQ_F_APOLL_MULTISHOT; /* * If we get -EAGAIN, recycle our buffer and just let normal poll * handling arm it. */ if (ret == -EAGAIN) { /* * Reset rw->len to 0 again to avoid clamping future mshot * reads, in case the buffer size varies. */ if (io_kbuf_recycle(req, issue_flags)) rw->len = 0; if (issue_flags & IO_URING_F_MULTISHOT) return IOU_ISSUE_SKIP_COMPLETE; return -EAGAIN; } /* * Any successful return value will keep the multishot read armed. */ if (ret > 0 && req->flags & REQ_F_APOLL_MULTISHOT) { /* * Put our buffer and post a CQE. If we fail to post a CQE, then * jump to the termination path. This request is then done. */ cflags = io_put_kbuf(req, issue_flags); rw->len = 0; /* similarly to above, reset len to 0 */ if (io_req_post_cqe(req, ret, cflags | IORING_CQE_F_MORE)) { if (issue_flags & IO_URING_F_MULTISHOT) { /* * Force retry, as we might have more data to * be read and otherwise it won't get retried * until (if ever) another poll is triggered. */ io_poll_multishot_retry(req); return IOU_ISSUE_SKIP_COMPLETE; } return -EAGAIN; } } /* * Either an error, or we've hit overflow posting the CQE. For any * multishot request, hitting overflow will terminate it. */ io_req_set_res(req, ret, cflags); io_req_rw_cleanup(req, issue_flags); if (issue_flags & IO_URING_F_MULTISHOT) return IOU_STOP_MULTISHOT; return IOU_OK; } int io_write(struct io_kiocb *req, unsigned int issue_flags) { bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK; struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); struct io_async_rw *io = req->async_data; struct kiocb *kiocb = &rw->kiocb; ssize_t ret, ret2; loff_t *ppos; ret = io_rw_init_file(req, FMODE_WRITE); if (unlikely(ret)) return ret; req->cqe.res = iov_iter_count(&io->iter); if (force_nonblock) { /* If the file doesn't support async, just async punt */ if (unlikely(!io_file_supports_nowait(req))) goto ret_eagain; /* File path supports NOWAIT for non-direct_IO only for block devices. */ if (!(kiocb->ki_flags & IOCB_DIRECT) && !(kiocb->ki_filp->f_mode & FMODE_BUF_WASYNC) && (req->flags & REQ_F_ISREG)) goto ret_eagain; kiocb->ki_flags |= IOCB_NOWAIT; } else { /* Ensure we clear previously set non-block flag */ kiocb->ki_flags &= ~IOCB_NOWAIT; } ppos = io_kiocb_update_pos(req); ret = rw_verify_area(WRITE, req->file, ppos, req->cqe.res); if (unlikely(ret)) return ret; if (req->flags & REQ_F_ISREG) kiocb_start_write(kiocb); kiocb->ki_flags |= IOCB_WRITE; if (likely(req->file->f_op->write_iter)) ret2 = call_write_iter(req->file, kiocb, &io->iter); else if (req->file->f_op->write) ret2 = loop_rw_iter(WRITE, rw, &io->iter); else ret2 = -EINVAL; if (req->flags & REQ_F_REISSUE) { req->flags &= ~REQ_F_REISSUE; ret2 = -EAGAIN; } /* * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just * retry them without IOCB_NOWAIT. */ if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT)) ret2 = -EAGAIN; /* no retry on NONBLOCK nor RWF_NOWAIT */ if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT)) goto done; if (!force_nonblock || ret2 != -EAGAIN) { /* IOPOLL retry should happen for io-wq threads */ if (ret2 == -EAGAIN && (req->ctx->flags & IORING_SETUP_IOPOLL)) goto ret_eagain; if (ret2 != req->cqe.res && ret2 >= 0 && need_complete_io(req)) { trace_io_uring_short_write(req->ctx, kiocb->ki_pos - ret2, req->cqe.res, ret2); /* This is a partial write. The file pos has already been * updated, setup the async struct to complete the request * in the worker. Also update bytes_done to account for * the bytes already written. */ iov_iter_save_state(&io->iter, &io->iter_state); io->bytes_done += ret2; if (kiocb->ki_flags & IOCB_WRITE) io_req_end_write(req); return -EAGAIN; } done: return kiocb_done(req, ret2, issue_flags); } else { ret_eagain: iov_iter_restore(&io->iter, &io->iter_state); if (kiocb->ki_flags & IOCB_WRITE) io_req_end_write(req); return -EAGAIN; } } void io_rw_fail(struct io_kiocb *req) { int res; res = io_fixup_rw_res(req, req->cqe.res); io_req_set_res(req, res, req->cqe.flags); } int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin) { struct io_wq_work_node *pos, *start, *prev; unsigned int poll_flags = 0; DEFINE_IO_COMP_BATCH(iob); int nr_events = 0; /* * Only spin for completions if we don't have multiple devices hanging * off our complete list. */ if (ctx->poll_multi_queue || force_nonspin) poll_flags |= BLK_POLL_ONESHOT; wq_list_for_each(pos, start, &ctx->iopoll_list) { struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); struct file *file = req->file; int ret; /* * Move completed and retryable entries to our local lists. * If we find a request that requires polling, break out * and complete those lists first, if we have entries there. */ if (READ_ONCE(req->iopoll_completed)) break; if (req->opcode == IORING_OP_URING_CMD) { struct io_uring_cmd *ioucmd; ioucmd = io_kiocb_to_cmd(req, struct io_uring_cmd); ret = file->f_op->uring_cmd_iopoll(ioucmd, &iob, poll_flags); } else { struct io_rw *rw = io_kiocb_to_cmd(req, struct io_rw); ret = file->f_op->iopoll(&rw->kiocb, &iob, poll_flags); } if (unlikely(ret < 0)) return ret; else if (ret) poll_flags |= BLK_POLL_ONESHOT; /* iopoll may have completed current req */ if (!rq_list_empty(iob.req_list) || READ_ONCE(req->iopoll_completed)) break; } if (!rq_list_empty(iob.req_list)) iob.complete(&iob); else if (!pos) return 0; prev = start; wq_list_for_each_resume(pos, prev) { struct io_kiocb *req = container_of(pos, struct io_kiocb, comp_list); /* order with io_complete_rw_iopoll(), e.g. ->result updates */ if (!smp_load_acquire(&req->iopoll_completed)) break; nr_events++; req->cqe.flags = io_put_kbuf(req, 0); if (req->opcode != IORING_OP_URING_CMD) io_req_rw_cleanup(req, 0); } if (unlikely(!nr_events)) return 0; pos = start ? start->next : ctx->iopoll_list.first; wq_list_cut(&ctx->iopoll_list, prev, start); if (WARN_ON_ONCE(!wq_list_empty(&ctx->submit_state.compl_reqs))) return 0; ctx->submit_state.compl_reqs.first = pos; __io_submit_flush_completions(ctx); return nr_events; } void io_rw_cache_free(const void *entry) { struct io_async_rw *rw = (struct io_async_rw *) entry; if (rw->free_iovec) { kasan_mempool_unpoison_object(rw->free_iovec, rw->free_iov_nr * sizeof(struct iovec)); io_rw_iovec_free(rw); } kfree(rw); }